王志勇,湯濤林,徐志強(qiáng),倪漢華
(1. 農(nóng)業(yè)部漁業(yè)裝備與工程重點(diǎn)開放實(shí)驗(yàn)室,上海 200092;2. 中國水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,上海 200092)
漁船拖網(wǎng)絞車張力自動(dòng)控制系統(tǒng)設(shè)計(jì)及試驗(yàn)
王志勇1,2,湯濤林2,徐志強(qiáng)2,倪漢華2
(1. 農(nóng)業(yè)部漁業(yè)裝備與工程重點(diǎn)開放實(shí)驗(yàn)室,上海 200092;2. 中國水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,上海 200092)
為了補(bǔ)償拖網(wǎng)漁船作業(yè)過程中絞車綱繩張力波動(dòng)或漁船轉(zhuǎn)向造成的負(fù)載不對稱性,保持網(wǎng)具良好的開口形狀,基于電液控制技術(shù)設(shè)計(jì)了拖網(wǎng)張力自動(dòng)控制系統(tǒng)。對拖網(wǎng)曳綱張力采集方法進(jìn)行了研究,采用油壓力傳感器間接測量拖網(wǎng)左右曳綱張力數(shù)據(jù)作為輸入信號,傳輸?shù)娇刂破鬟M(jìn)行邏輯運(yùn)算,控制先導(dǎo)溢流閥調(diào)整馬達(dá)溢流壓力,改變絞車輸出扭矩,從而驅(qū)動(dòng)拖網(wǎng)絞車收、放來控制左右曳綱張力,達(dá)到系統(tǒng)動(dòng)態(tài)平衡。并基于實(shí)驗(yàn)室虛擬儀器工程平臺(laboratory virtual instrument engineering workbench,LabVIEW)對系統(tǒng)軟件進(jìn)行了設(shè)計(jì),實(shí)現(xiàn)絞車張力控制系統(tǒng)的參數(shù)設(shè)置與控制管理。為了驗(yàn)證系統(tǒng)的張力控制特性和實(shí)用性,對系統(tǒng)進(jìn)行了海上應(yīng)用試驗(yàn),在張力自動(dòng)控制模式下,拖網(wǎng)絞車根據(jù)漁船航速和水流自動(dòng)調(diào)節(jié)收放網(wǎng)速度,減少作業(yè)過程中曳綱張力波動(dòng)。拖曳過程中拖網(wǎng)曳綱長度范圍為350~490 m,絞車曳綱張力范圍為118~148 kN,對應(yīng)系統(tǒng)壓力為2.3~2.7 MPa,漁船平均拖速為5.6節(jié)。試驗(yàn)結(jié)果表明,左右曳綱張力差在合理范圍內(nèi),系統(tǒng)能很好調(diào)節(jié)曳綱張力大小,為漁船安全生產(chǎn)提供了保障;啟用張力控制系統(tǒng)后網(wǎng)口面積比未使用張力控制系統(tǒng)前增大了9.5%,有效調(diào)整了網(wǎng)口擴(kuò)張,提高了捕撈效率。
漁業(yè);漁船;控制系統(tǒng);拖網(wǎng)絞車;曳綱張力;電液控制;張力平衡
拖網(wǎng)捕撈是中國捕撈產(chǎn)量最高的捕撈方式,拖網(wǎng)絞車作為拖網(wǎng)漁船捕撈作業(yè)中最為重要的設(shè)備,其性能好壞至關(guān)重要[1-2]。拖網(wǎng)漁船上一般配置2臺拖網(wǎng)絞車,分別牽引網(wǎng)具的左、右曳綱,拖曳網(wǎng)具在漁場前行。拖網(wǎng)漁船上拖網(wǎng)過程中由于風(fēng)浪、底質(zhì)、轉(zhuǎn)向變化以及海底障礙物等影響都會引起拖網(wǎng)曳綱上的張力波動(dòng),對拖網(wǎng)絞車的性能和壽命具有很大的影響,另外,曳綱張力波動(dòng)過大也會影響拖網(wǎng)網(wǎng)口擴(kuò)張,引起網(wǎng)口形狀變形,導(dǎo)致捕撈效率低下[3-8]。國外從20世紀(jì)80年代開始起就對拖網(wǎng)曳綱張力自動(dòng)控制技術(shù)開展了研究[9-14],研制了恒張力絞車控制系統(tǒng),目前,其大型的拖網(wǎng)加工船一般都配套曳綱張力控制設(shè)備,系統(tǒng)自動(dòng)根據(jù)設(shè)定的曳綱長度值調(diào)節(jié)絞車張力,用于補(bǔ)償曳綱長度變化以及漁獲數(shù)量變化而引起的負(fù)載拖力變化,能夠及時(shí)有效的補(bǔ)償船體受海浪引起的附加運(yùn)動(dòng)[15-18]。國內(nèi)的研究學(xué)者也對拖網(wǎng)漁船波浪補(bǔ)償[19-21]、海洋恒張力絞車液壓控制等技術(shù)分別進(jìn)行了研究[22-24],但相關(guān)研究的應(yīng)用相對較少。
本文基于電液控制技術(shù),采用閥控液壓馬達(dá)恒壓力方式實(shí)現(xiàn)拖網(wǎng)曳綱張力恒定,詳細(xì)介紹了系統(tǒng)控制過程,重點(diǎn)分析了拖網(wǎng)作業(yè)不同階段控制特性和效果,旨在提高中國漁船捕撈裝備自動(dòng)化水平,為漁船安全生產(chǎn)提供技術(shù)保障。
1.1 原理設(shè)計(jì)
控制原理見圖1所示,通過在液壓油路中油壓力傳感器測量馬達(dá)輸出壓力,根據(jù)馬達(dá)壓力與輸出扭矩的關(guān)系,將采集的絞車液壓油路高壓端油液壓力值通過壓力與張力換算模塊轉(zhuǎn)算為張力值信號,換算公式為
式中T為拖網(wǎng)曳綱張力,N;P為液壓馬達(dá)高壓口壓力,MPa;Q為馬達(dá)流量,L/min;D為絞車滾筒直徑,m;η為機(jī)械效率,取值0.95。
圖1 電液控制技術(shù)框圖Fig.1 Block diagram of electro hydraulic control technology
以曳綱張力為反饋信號,張力值信號通過數(shù)據(jù)通訊線傳輸給可編程邏輯控制器(programmable logic controller,PLC)控制先導(dǎo)閥調(diào)整溢流閥壓力,實(shí)現(xiàn)控制左、右絞機(jī)馬達(dá)高壓端溢流壓力[25-27]。絞車放綱長度通過脈沖編碼器來測量,編碼器信號通過PLC高速計(jì)數(shù)模塊進(jìn)行處理,在操作界面上可以轉(zhuǎn)換成曳綱放繩長度,作為曳綱張力控制的反饋信號。
液壓控制系統(tǒng)如圖2所示,拖網(wǎng)過程中,絞車大部分時(shí)間處于收綱微動(dòng)平衡狀態(tài),絞車收綱拉力與網(wǎng)具受力平衡,油泵一直開啟供油從而溢流閥長期處于開啟狀態(tài),保證馬達(dá)高壓端油壓。由于波浪引起船舶上下升沉運(yùn)動(dòng)導(dǎo)致拖網(wǎng)曳綱張力大小隨機(jī)變化,當(dāng)漁船轉(zhuǎn)向或波浪引起曳綱張力變小時(shí),PLC通過先導(dǎo)閥5提高溢流閥4溢流壓力,液壓控制系統(tǒng)驅(qū)動(dòng)左、右絞車收綱,調(diào)整左右曳綱張力與位置,如果需要放綱則降低溢流閥壓力網(wǎng)具將在水流帶動(dòng)下放出,使左右曳綱達(dá)到動(dòng)態(tài)平衡。
圖2 液壓控制原理圖Fig.2 Hydraulic control schematic diagram
1.2 控制功能
拖網(wǎng)過程中曳綱張力主要通過控制溢流閥壓力變化來實(shí)現(xiàn),溢流閥先導(dǎo)口控制器通過端口輸出0~20 mA電流信號,通過比例放大器轉(zhuǎn)換為0~5 V電壓信號控制先導(dǎo)閥0~1 MPa輸出,從而保證0~4 MPa油壓溢流。
整個(gè)拖網(wǎng)作業(yè)過程主要包括放網(wǎng)、拖曳和起網(wǎng)階段,系統(tǒng)控制流程如圖3所示。當(dāng)漁船達(dá)到指定漁場后,操作人員將網(wǎng)囊從艉滑道拋入海中,依靠水的阻力將網(wǎng)身、手綱、網(wǎng)板拖入水中。操作人員手動(dòng)操縱絞車松放曳綱,當(dāng)曳綱放出50 m后轉(zhuǎn)入自動(dòng)放網(wǎng)階段,連通閥7得電,此時(shí)系統(tǒng)根據(jù)設(shè)定張力值自動(dòng)對稱的將兩邊曳綱放出,保證左右絞車受力平衡,放網(wǎng)速度穩(wěn)定。因?yàn)榉啪W(wǎng)速度過慢會導(dǎo)致作業(yè)效率低下,而放網(wǎng)速度過快會導(dǎo)致曳綱松弛引起網(wǎng)板傾覆,網(wǎng)具變形,導(dǎo)致放網(wǎng)過程失敗。放網(wǎng)長度達(dá)到設(shè)定長度時(shí),系統(tǒng)由放網(wǎng)轉(zhuǎn)換為自動(dòng)拖曳工作,此時(shí),控制器自動(dòng)采集左右絞車油路壓力信號,經(jīng)過換算轉(zhuǎn)換成絞車曳綱張力,通過比例積分微分(proportion in tegration differentiation,PID)運(yùn)算控制保證此張力差為一個(gè)定值,通過調(diào)整左右絞車工作壓力差值,使拖網(wǎng)曳綱在一定長度變化范圍內(nèi)保持張力恒定,左右曳綱絞車的最大繩長差設(shè)為30 m。系統(tǒng)最小、最大拖曳壓力可隨時(shí)調(diào)整,最大拖曳壓力設(shè)定線性溢流閥的壓力,具體對應(yīng)關(guān)系為0~4 M Pa線性對應(yīng)0~5 V。當(dāng)拖曳結(jié)束后,拖網(wǎng)絞車開始起網(wǎng),此時(shí)網(wǎng)具在水中的拖曳速度為漁船航速與絞車起網(wǎng)速度之和,拖網(wǎng)曳綱張力最大。起網(wǎng)壓力可通過人機(jī)界面調(diào)整,設(shè)定值線性對應(yīng)溢流閥的設(shè)定壓力輸出。
圖3 系統(tǒng)控制流程圖Fig.3 Control flow chart of system
1.3 軟件設(shè)計(jì)
基于實(shí)驗(yàn)室虛擬儀器工程平臺(laboratory vi rtual Instrument engineering workbench,LabVIEW)進(jìn)行了張力平衡控制系統(tǒng)人機(jī)界面設(shè)計(jì),LabVIEW具有強(qiáng)大的計(jì)算機(jī)圖形環(huán)境,采用可視化的圖形編程語言和平臺,能與整個(gè)硬件系統(tǒng)無縫連接。系統(tǒng)軟件設(shè)計(jì)主要由參數(shù)設(shè)置、信息管理、系統(tǒng)監(jiān)控、歷史數(shù)據(jù)查詢等子系統(tǒng)組成,主界面如圖4所示,分別實(shí)現(xiàn)系統(tǒng)設(shè)置、張力平衡系統(tǒng)信息設(shè)置與管理、液壓動(dòng)力系統(tǒng)自動(dòng)化操作與監(jiān)視、歷史信息查詢等功能。軟件使用操作系統(tǒng):windows xp,windows7操作系統(tǒng);軟件數(shù)據(jù)庫:基于微軟Access數(shù)據(jù)庫開發(fā);
圖4 系統(tǒng)軟件設(shè)計(jì)界面Fig.4 Design interface of system software
為了驗(yàn)證系統(tǒng)的實(shí)用性,2015年3月在中國東海海域?qū)ν暇W(wǎng)張力自動(dòng)控制系統(tǒng)進(jìn)行了海上試驗(yàn),試驗(yàn)漁船為上海開創(chuàng)漁業(yè)公司“開裕號”漁船,氣控拖網(wǎng)絞車主液壓額定工作壓力4 MPa,鋼絲繩直徑32 mm,測量了一個(gè)網(wǎng)次拖網(wǎng)左右曳綱作業(yè)數(shù)據(jù),如表1所示。
表1 系統(tǒng)試驗(yàn)結(jié)果Table 1 System experiment result
由表1中數(shù)據(jù)分析,放網(wǎng)開始時(shí)船速為5.4~7.9節(jié),張力自動(dòng)控制系統(tǒng)自動(dòng)調(diào)節(jié)左右絞車放網(wǎng)速度基本一致,隨著放綱長度增加,拖網(wǎng)絞車曳綱張力也逐漸增大,但左右曳綱張力始終處于平衡狀態(tài),使得網(wǎng)具具有穩(wěn)定的對地速度進(jìn)而保證網(wǎng)具具有穩(wěn)定的下沉速度以及理想的網(wǎng)口擴(kuò)張。
拖曳過程是拖網(wǎng)作業(yè)最重要也是持續(xù)時(shí)間最長的步驟,曳綱長度范圍:350~490 m;絞車工作壓力:2.3~2.7 MPa;絞車?yán)?18~148 kN;拖速范圍:5.3~5.8節(jié),平均拖速為5.6節(jié)。漁船勻速拖曳,當(dāng)放綱長度和水深不變時(shí),拖網(wǎng)曳綱處于平衡狀態(tài),主要受到水動(dòng)力、曳綱自重和水中漁具的阻力作用。拖網(wǎng)絞車大部分時(shí)間處于恒張力狀態(tài),曳綱張力始終在一定范圍內(nèi)波動(dòng)。當(dāng)曳綱張力差超過設(shè)定范圍時(shí),張力自動(dòng)控制系統(tǒng)控制拖網(wǎng)絞車放出綱繩達(dá)到左右曳綱張力平衡。
起網(wǎng)時(shí)由于網(wǎng)具相對水流速度增加,拖網(wǎng)曳綱張力開始增大,為了防止曳綱過度絞收,損壞曳綱和網(wǎng)具,此時(shí)船舶航速減半,航速2~4節(jié),同時(shí)絞收曳綱。單拖漁船拖網(wǎng)絞車曳綱的最大負(fù)荷出現(xiàn)于網(wǎng)板即將露出水面時(shí),網(wǎng)板的水阻力和重量以及網(wǎng)具的阻力完全由拖網(wǎng)絞車承擔(dān),曳綱收絞完畢后,網(wǎng)板固結(jié)于網(wǎng)板架上,由于網(wǎng)具對水速度減小,拖網(wǎng)絞車?yán)E減[28-30],測量數(shù)據(jù)與拖網(wǎng)作業(yè)實(shí)際情況比較吻合。
借助船上網(wǎng)位儀采集了應(yīng)用拖網(wǎng)張力控制系統(tǒng)前后的網(wǎng)口形狀圖,如圖5a和圖5b所示。對網(wǎng)形測試結(jié)果進(jìn)行了分析,圖5a為未使用張力平衡控制系統(tǒng)時(shí)網(wǎng)形,圖5b為使用曳綱張力控制系統(tǒng)網(wǎng)形,對比2個(gè)圖形,圖5a中網(wǎng)口變形較為嚴(yán)重,左右兩端出現(xiàn)明顯的銳角;圖5b中網(wǎng)形張開形狀較好,呈流暢的橢圓形網(wǎng)口,網(wǎng)形變形量顯著減小。對測量網(wǎng)形圖進(jìn)行計(jì)算,由圖中可知每格為20 m,對應(yīng)網(wǎng)形數(shù)據(jù)如表2所示,在網(wǎng)口周長基本一致的情況下,啟用張力控制系統(tǒng)后網(wǎng)口高度增大明顯,改善了網(wǎng)口擴(kuò)張,網(wǎng)口面積增大了9.5%,有效提高了捕撈效率。
圖5 拖網(wǎng)作業(yè)網(wǎng)口形狀Fig.5 Shape of net mouth
表2 網(wǎng)形測試數(shù)據(jù)Table 2 Test data of net shape
張力控制過程中,通過在不同作業(yè)模式下設(shè)定溢流閥開口壓力,根據(jù)需要調(diào)整拖網(wǎng)曳綱最大張力。當(dāng)左右曳綱張力差值最大為25 kN時(shí),右舷絞車能夠?qū)崟r(shí)放出綱繩,張力控制系統(tǒng)對曳綱張力隨波浪變化的動(dòng)態(tài)響應(yīng)性能較好。試驗(yàn)過程中,左、右舷絞車工作壓力值從1.6 MPa變化至3.2 MPa,無論在放網(wǎng)、起網(wǎng)階段還是拖曳階段,左舷絞車和右舷絞車馬達(dá)進(jìn)油閥口壓差始終保持恒定,減少了絞車速度受負(fù)載變化的干擾。
該張力自動(dòng)控制系統(tǒng)采用溢流閥控制系統(tǒng)相對恒定的壓力,由于該張力控制采用馬達(dá)高壓口壓力恒定來實(shí)現(xiàn)拖網(wǎng)曳綱張力平衡,所以液壓泵一直供應(yīng)液壓油,液壓系統(tǒng)會產(chǎn)生熱量,有一定的功率損失,一般適用于中小功率的絞車[31]。但該拖網(wǎng)絞車液壓系統(tǒng)為低壓系統(tǒng),所以功耗與散熱并不是很大,另外,該系統(tǒng)設(shè)計(jì)簡單、適應(yīng)性強(qiáng)、可靠性高、成本較低,因此相對于漁船應(yīng)用更為經(jīng)濟(jì)、實(shí)用。
1)在放網(wǎng)初始階段及收網(wǎng)的最后階段,由于網(wǎng)板及網(wǎng)具距離漁船較近,拖網(wǎng)絞車一般為人工操作,采用速度控制。當(dāng)曳綱長度不變,而拖網(wǎng)船加速或減速運(yùn)動(dòng)時(shí),曳綱張力、位置和形狀受慣性力的影響有較大的不同。漁船加速運(yùn)動(dòng)時(shí)拖網(wǎng)曳綱張力增大,而漁船減速運(yùn)動(dòng)時(shí)則拖網(wǎng)曳綱張力減小。該試驗(yàn)中起網(wǎng)時(shí)曳綱張力達(dá)到最大值208 kN,為了拖網(wǎng)絞車安全,此時(shí),漁船減速航行。
2)由試驗(yàn)測試結(jié)果顯示,采用張力自動(dòng)控制系統(tǒng)穩(wěn)定可靠,控制拖網(wǎng)絞車大部分時(shí)間處于恒張力狀態(tài),即曳綱張力一定張力范圍波動(dòng),保證了拖網(wǎng)漁船安全生產(chǎn)。網(wǎng)口面積可以增大9.5%,有效改善了網(wǎng)口擴(kuò)張,對于提高漁船作業(yè)效率具有實(shí)際意義。
[1] 賀波.世界漁業(yè)捕撈裝備技術(shù)現(xiàn)狀及發(fā)展趨勢[J].中國水產(chǎn),2012,(5):43-45.
[2] 諶志新.我國漁船捕撈裝備的發(fā)展方向與重點(diǎn)[J].漁業(yè)現(xiàn)代化,2005,(4):3-4.
[3] 歐陽弋.曳綱張力監(jiān)測及其監(jiān)測儀的研制[J].漁業(yè)現(xiàn)代化,1992,19(4):27-29.
[4] 佘顯煒.拖網(wǎng)曳綱動(dòng)力學(xué)問題的研究[J].浙江水產(chǎn)學(xué)院學(xué)報(bào),1993,12(1):1-13.She Xianwei. A study on dynamic forces acting upon a trawl warp [J]. Journ al of Zhejia ng College of Fish eries,1993,12(1):1-13.(in Chinese with English abstract)
[5] Lee C W,Lee J H. M odeling of a m idwinter trawl system with r espect to the vert ical m oment [J]. Fisher ies Sci ence,2000,66(5):851-857.
[6] Sun Xiaofeng,Yin Yong,Jin Yicheng,et al. The modeling of single-boat,mid-water trawl systems for f ishing simulation [J]. Fisheries Science. 2011,109(1):7-15.
[7] Lee C W,Zhang C I,Shin H O. Sim plified tr awl system modeling and d esign of a d epth control s ystem using fuzzy logic [J]. Fisheries Research,2001,53(1):83-94.
[8] Weinberg K L,Somerton D A. Variation in trawl geometr y due to unequal warp length [J]. Fisher y Bulletin,2006,104(1):21-34.
[9] Murphy H M,Bungay T,Stern E W P,et al. Measurement of warp loads of bongo plankton samplers [J]. Fisheries Research,2015,162:43-46.
[10] Johan R K,Vegar J. Control struc ture for tra wl systems[C]. Lisbon,Portug al:7th Conf erence on Man euvering and Control of Marine Craft,IFAC,2006.
[11] Lee C W,Lee J H,Kim I J. Application of a fuzzy controller to depth control of a mid water trawl net [J]. Fisheries Science,2000,66(5):858-862.
[12] Trout G C. A deep-trawling w inch for can adian f isheries research [J]. Ocean Engineering,1972,2(3):117-122.
[13] Carral J,Carral L,Lamas M,et al. Fishing grounds’ influence on trawler winch design [J]. Ocean Engineering,2015,102:136-145.
[14] Wang Y D,Pan H. Stud yon constant tension winch with PDF controller applications in ocean engineering [J]. Advanced Materials Research,2013,830(8):101-107.
[15] Holmes P G,S mithson J G. Development of an improved electric trawl-winch control for stern trawlers [J]. Proceedings of the Institution of Electrical Engin eers-London,1968,115(7):1045-1055.
[16] Hystad P H. Device and a meth od for autotrawl operation:U.S. Patents 5351430[P]. 1994-10-4.
[17] Fuwa S,Ebata K,Kinoshita H,et al. New tr awling system equipped in Nansei Maru of Kagoshima U niversity [J],Fisheries Engineering,2005,42(1):29-38.
[18] Mitchell M R,Dessureault J G. A constant tension winch:design and t est of a s imple pas sive s ystem[J]. Ocean Engineering,1992,19(5):489-496.
[19] 徐志強(qiáng),羊衍貴,王志勇,等.大型遠(yuǎn)洋拖網(wǎng)漁船拖網(wǎng)被動(dòng)補(bǔ)償系統(tǒng)的研究[J].船舶工程,2013,35(4):51-54.Xu Zhiqiang,Yang Yangui,Wang Zhiy ong,et al. Research on passive compensation system for trawlnet used in large ocean trawlers[J]. Ship Enginee ring,2013,35(4):51-54.(in Chinese with English abstract)
[20] 謝安桓,宋金威,喻峰,等.曳綱絞車液壓系統(tǒng)的設(shè)計(jì)及控制研究[J].液壓與氣動(dòng),2014,(10):11-16.Xie Anhuan,Song Jinwei,Yu Feng,et al. Design and control of th e h ydraulic s ystem of trawl win ches [J]. Chinese Hydraulics &Pneumatics,2014,(10):11-16.(in Chinese with English abstract)
[21] 宋金威.拖網(wǎng)漁船液壓系統(tǒng)研究[D].杭州:浙江大學(xué),2014.Song Jinwei. Research on the Hydraulic System of Trawler [D]. Hangzhou:Zhejiang University,2014.(in Chinese with English abstract)
[22] 魏素芬,楊文林,張?bào)糜ⅲ簤航g車主動(dòng)升沉補(bǔ)償控制研究[J].液壓與氣動(dòng),2009(7):27-28.Wei Sufen,Yang Wenlin,Zhang Zhuying. Research on the active h eave control of h ydraulic winch [J]. Chines e Hydraulics &Pneumatics,2009(7):27-28.(in Chinese with English abstract)
[23] 張超.海洋拖曳絞車液壓調(diào)速及張力波動(dòng)抑制研究[D].杭州:浙江大學(xué),2011.Zhang Ch ao. Research on Speed Control and Tension Fluctuation Sup pression of the Oceanog raphic H ydraulic Towing Win ch [D]. Hangzhou:Zh ejiang Univ ersity,2011.(in Chinese with English abstract)
[24] 王福山,王克文,周然,等. 液壓絞車復(fù)合控制技術(shù)[J].液壓與氣動(dòng),2012(6):43-45.Wang Fushan,Wang Kewen,Zhou Ran,et al. The technology of composite control for hydraulic winch [J]. Chinese Hydraulics &Pneumatics,2012(6):43-45.(in Chinese with English abstract)
[25] 毛建忠,朱康武,錢怡,等.基于工控機(jī)的鋼繩絞車張力速度控制系統(tǒng)[J]. 機(jī)械設(shè)計(jì)與制造,2008(5):91-92.Mao Jianzhong,Zhu Kangwu,Qian Yi,et al. Tension and velocity control s ystem for steel wire winch based on industrial computer [J]. Machinery Design &Manufacture,2008(5):91-92.(in Chinese with English abstract)
[26] 鄢華林,宋林. 恒張力絞車的應(yīng)用研究[J].液壓與氣動(dòng),2011(7):80-82.Yan Hualin,So ng Lin. Applica tion research of winch with constant tension [J]. Chinese Hydraulics &Pneumatics,2011(7):80-82.(in Chinese with English abstract)
[27] 常晴晴,孫斌,高世陽.基于AMESim與SIMULINK的雙絞車恒張力控制研究[J].液壓與氣動(dòng),2011(10):107-110. Chang Qingq ing,Sun Bin,Gao Shiy ang. Con stant tension control of do uble winch es based on A MESim and SIMULINK [J]. Chinese Hydraulics &Pneumatics,2011(10):107-110.(in Chinese with English abstract)
[28] Kotwicki S,Weinberg K L,Somerton D A. The effect of auto trawl s ystems o n the P erformance of a s urvey trawl [J]. Fishery Bulletin,2006,104(1):35-45.
[29] 汪錦源.拖網(wǎng)絞車?yán)Ψ治鎏接慬J].水產(chǎn)學(xué)報(bào),1964,1(1):99-118.Wang Jinyuan. An analysis for the pull loads of trawl winch [J]. Journal of Fisheries of China,1964,1(1):99-118.(in Chinese with English abstract)
[30] Fujimori Y,Ch iba K,Oshim a T. Th e influence of warp length on trawl dimension and catch of walleye pollock theragra cha lcogramma in a bot tom tr awl s urvey [J]. Fisheries Science,2005,71(4):738-747.
[31] 江峰,陳愷愷.淺析船用被動(dòng)式恒張力控制液壓絞車[J].液壓氣動(dòng)與密封,2013(11):38-40.Jiang Feng,Chen Kaikai. Analysis of marine passive constant tension winch [J]. Hydraulics Pneumatics &Seals,2013(11):38-40.(in Chinese with English abstract)
Design and experiment of automatic tension control system for trawl winch on fishing boat
Wang Zhiyong1,2,Tang Taolin2,Xu Zhiqiang2,Ni Hanhua2
(1. Key Laboratory of Fishery Equipment and Engineering,Ministry of Agriculture,Shanghai 200092,China;2. Fishery Machinery and Instrument Research Institute,Chinese Academy of Fishery Science,Shanghai 200092,China)
Trawl winch is the most important equipment of t rawler fishing. In order to ensure safe dragging operations of fishing vessel equipment under the complex sea conditions as well as to realize the quick response and precise control of trawl winch,an d keep net sh ape goo d,in th is stud y,th e t rawl ten sion automatic co ntrol system was designed based on electro-hydraulic control technology. The systemmainly consisted of proportional directional valve,balance valve,overflow valve,pilot valve,oil pressure sensor,and electric control system. Through measured input and output pressure of motor,we calculated warp tension as the fee dback signal and usedPLC(programmable logic controller) to control the pressure of pilot relief valve,whichwas used to adjust the left and right warp tension and position,to maintain the dynamic balance of system as well as to keep the net s hape good. T he m an-machine interface and ope ration m ode of a utomatic tension c ontrol was developed bas ed on La bVIEW,of which i ts main f unction co nsisted of parameter set,in formation m anagement,syste m monitor an d data inqu ire. The system facilitated o perator m onitoring t he running state of th e various eq uipment,and management equipment operation. In order to verify the characteristic and practicability of tension control of th e system,application test w as carried on the East C hina Sea ar ea in 2015. The experiment continued about 4.5 hours,including three stages:shooting net,dragging net,and heaving net,which tested speed control and tension control performance of the system under the corresponding operating conditions,and measured relevant data su ch as sho ot depth,shoot length,shoot speed,heave speed,warp tension and winch working pressure. The test resultshowed that dragging stage was the longest,and in this process,the left warp and right warp were kept balance,warp tension was mainly affected by hydrodynamic,warp weight,and water resistance of fishing gear. Warp shoot length range was 350-490 m,warp tension range was 118 -148 kN,corresponding to the system pressure of 2.3-2.7 MPa,and the average trawling speed of fishing vessel was 5.6 kN. Although warp tension various with the shoot length and shoot depth change,the winch was in constant tension state at the most. Data showed that the system could adjust the warp tension well to en sure trawl warp tension maintained in a certain rang e through adjusting the speed of receiving or releasing net,which suppressed effectively the interference of the warp tension variation on the nets. In addition,experiment also recorded the chart of net shape by netsonde,calculated the net expansion parameter. It could be known that net mouth perimeter was equal before and after using the tension automatic control system by comparison data. The net mouth height and net mouth roundness increased and the net mouth area was expanded by 9.5% after using tension control system,which effectively adjusted the net mouth expansion and improving the fishing efficiency. During the different stage of experiment,the set pressure of overflow valve should be different correspondingly. At the beginning of shooting,the pressure value was small,which can maintain good net mouth shape and position. Due to net speed increased relative to water flow,warp tension was increased and the maximum value reached 208 kN. The set pressure of overflow valve should be large so that it could be used to effectively protect warp and net safety,provided a guarantee for the safe production of fishing vessel. The experiment process was basically consistent with the actual fishing conditions. We concluded that in the tension automatic control mode,the trawl winch can automatically adjust speed of heave and shoot according to the fishing vessel speed and water flow. Though the system could generate heat and result in power loss during uses,the warp tension control system still cab meet the requirements of warp speed and tension control in the different trawl condition.
fisheries;fishing vessels;control systems;trawl winch;warp tension;electro-hydraulic control;tension balance
10.11975/j.issn.1002-6819.2017.01.012
S981.9
A
1002-6819(2017)-01-0090-05
王志勇,湯濤林,徐志強(qiáng),倪漢華. 漁船拖網(wǎng)絞車張力自動(dòng)控制系統(tǒng)設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):90-94.doi:10.11975/j.issn.1002-6819.2017.01.012 http://www.tcsae.org
Wang Zhiyong,Tang Taolin,Xu Zhiqiang,Ni Hanhua. Design and experiment of automatic tension control system for trawl winch on fishing boat[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):90-94.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.012 http://www .tcsae.org
2016-06-28
2016-10-31
國家科技支撐計(jì)劃資助(2013BAD13B02)
王志勇,男,河南汝南人,副研究員,主要從事海洋漁業(yè)裝備研究。上海 中國水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,200092。Email:wzy279@sina.com