容躍堂,董苗娜,何 堤,王曉麗
(西安工程大學 理學院,陜西 西安 710048)
一類具有交叉擴散項的捕食-食餌模型的局部分歧
容躍堂,董苗娜,何 堤,王曉麗
(西安工程大學 理學院,陜西 西安 710048)
研究一類帶有交叉擴散項的捕食-食餌模型在齊次Dirichlet邊界條件下分歧解的存在性.利用極大值原理和上下解法得到正解的先驗估計,并借助Crandall-Rabinowitz分歧理論,得出局部分歧正解存在的充分條件.
捕食-食餌;自擴散;交叉擴散;先驗估計;局部分歧
近年來,關于生物數(shù)學領域的捕食食餌模型的研究已經(jīng)成為熱點,尤其是對于種群擴散影響下的捕食模型,國內(nèi)外學者均已取得了一些符合實際的研究成果.文獻[1]研究了一類捕食模型的正常數(shù)平衡態(tài)解的穩(wěn)定性及分歧;文獻[2-3]利用極大值原理和分歧定理研究了一類捕食模型局部解的延拓;文獻[4-7]利用分歧定理研究了模型在交叉擴散影響下的正解的存在性問題.在文獻[8]中,作者提出了一類具有擴散項的捕食食餌模型,通過給出正解的先驗估計及局部分歧解存在條件,進而得到該系統(tǒng)平衡態(tài)的全局分歧解及其走向;文獻[9]則在上述基礎上研究了該類模型在交叉擴散項影響下的分歧.
在同時考慮交叉擴散和自擴散項時,本文將繼續(xù)研究如下捕食-食餌模型在齊次Dirichlet邊界條件下正解的存在性,即
(1)
本文將針對模型(1)的如下平衡態(tài)方程展開討論.
(2)
注:對于問題(2)的解(u,v),如果在Ω中,(u,v)中只有一個分量為0,則稱其為半平凡解.
首先,考慮特征值問題
(3)
再考慮邊值問題
(4)
(5)
引理2[11](1) 如果a≤λ1,則u=0是問題(4)的唯一非負解;若a>λ1,則問題(4)的唯一正解為θa.
(2) 如果c≤λ1,則v=0是問題(5)的唯一非負解;當c>λ1時,其存在唯一正解θc.因此,當a>λ1,問題(2)存在半平凡解(θa,0);當c>λ1,問題(2)存在半平凡解(0,θc).
定義Z=(U,V),其中U=(1+m1u+m2v)u,V=(1+m3v+m4u)v,則
即(u,v)≥0與(U,V)≥0之間存在一一對應的關系.現(xiàn)在,引入和問題(2)等價的半線性橢圓系統(tǒng)
(6)
再對A(a*(c),c)=0兩邊關于c求導,得Aa(a*(c),c)·a*′(c)+Ac(a*(c),c)=0.由于Ac(a,c)<0,結(jié)合Aa(a,c)>0得知a*′(c)>0,即a=a*(c)關于c嚴格單調(diào)遞增.
類似可以證明以下引理.
現(xiàn)在,結(jié)合文獻[12-13]中的方法給出系統(tǒng)(6)的正解存在的必要條件及先驗估計.
證明 若問題(6)存在正解(U,V),由問題(6)中的第2個方程得
兩邊同乘以V,分部積分得
同理可得
由(u,v)與(U,V)之間的關系知定理2成立.
證明 令
同時對(U,V)求導,得
因此,算子L(a*;0,0)的核空間N(L(a*;0,0))=span{U0},U0=(φ*,ψ*)T,其中
又令L*(a*;0,0)為L(a*;0,0)的自伴算子,類似可得
N(L*(a*;0,0))=span{U*},U*=(0,ψ*)T.
由Fredholm選擇公理知
因此可得dimN(L(a*;0,0))=1,codimR(L(a*;0,0))=1.
L1(a*;0,0)·(φ*,ψ*)?R(L(a*;0,0)).
假設?(h,k)∈X,使得L1(a*;0,0)·(φ*,ψ*)=L(a*;0,0)·(h,k).經(jīng)計算得
那么有
兩邊同時乘以ψ*,分部積分得
由于cm4-d>0,且θa關于a嚴格單調(diào)遞增,則上式左端大于0,矛盾.
[1] 周冬梅,李艷玲.一類捕食模型正常數(shù)平衡態(tài)解的穩(wěn)定性及分歧[J].科學技術(shù)與工程,2010,10 (23):5615-5619.
ZHOU Dongmei,LI Yanling.Stability and bifurcation of positive constant steady-state solution for predator-prey model[J].Science Technology and Engineering,2010,10(23):5615-5619.
[2] 李海俠,李艷玲.一類捕食模型正平衡解的整體分歧[J].西北師范大學學報:自然科學版,2006,42(2):8-12.
LI Haixia,LI Yanling.Bifurcation of positive steady-state solutions for a king of predator-prey model[J].Journal of Northwest Normal University:Natural Science,2006,42(2):8-12.
[3] 王妮婭,李艷玲.一類帶收獲率的的捕食模型的全局分歧和穩(wěn)定性[J].安徽師范大學學報:自然科學版,2015,38(1):25-30.
WANG Niya,LI Yanling.Global bifurcation and stability of a class of predator-prey models with prey harvesting [J].Journal of Anhui University:Natural Science Edition,2015,38(1):25-30.
[4] KUTO K,YAMADA Y.Multiple coexistence states for a prey-predator system with cross-diffusion[J].J Differential Equations,2004,197(2):315-348.
[5] 張曉晶,容躍堂,何堤,等.一類帶有交叉擴散的捕食-食餌模型的分歧性[J].紡織高?;A科學學報,2014,27(3):322-326.
ZHANG Xiaojing,RONG Yuetang,HE Di.Bifurcation for a prey-predator model with cross-diffusion[J].Basic Sciences Journal of Textile Universities,2014,27(3):322-326.
[6] DUBEY B,DAS B,HASSAIN J.A prey-predator interaction model with self and cross-diffusion[J].Ecol Modelling,2002,141:67-76.
[7] ZHANG Cunhua,YAN Xiangping.Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects[J].Appl Math J China Univ,2011,26(3):342-352.
[8] 馮孝周,吳建華.具有飽和與競爭項的捕食系統(tǒng)的全局分歧及穩(wěn)定性[J].系統(tǒng)科學與數(shù)學,2010,30(7):979-989.
FENG Xiaozhou,WU Jianhua.Global bifurcation and stability for predator-prey model with predator saturation and competition[J].Journal of System Science and Mathematical Sciences,2010,30(7):979-989.
[9] 何堤,容躍堂,張曉晶.一類具有交叉擴散的捕食-食餌模型的分歧[J].紡織高校基礎科學學報,2015,28(4):426-430.
HE Di,RONG Yuetang,ZHANG Xiaojing.Bifurcation for a prey-predator model with cross-diffusion[J].Basic Sciences Journal of Textile Universities,2015,28(4):426-430.
[10] BAZYKIN A D.Nonlinear dynamics of interacting population[M].Singapore:World Scientific,1998.
[11] 葉其孝,李正元,王明新.反應擴散方程引論[M].北京:科學出版社,2011:40-56.
YE Qixiao,LI Zhengyuan,WANG Mingxin.Introduction of reaction-diffusion equations[M].Beijing:Science Press,2011:40-56.
[12] 何堤,容躍堂,王曉麗,等.一類具有交叉擴散的捕食-食餌模型的局部分歧[J].西安工業(yè)大學學報,2015,35(11):872-876.
HE Di,RONG Yuetang,WANG Xiaoli,et al.Local bifurcation for a prey-predator model with cross-diffusion[J].Journal of Xi′an Technological University,2015,35(11):872-876.
[13] 容躍堂,何堤,張曉晶.帶交叉擴散項的Holling Ⅳ捕食-食餌模型的全局分歧[J].紡織高?;A科學學報,2015,26(3):287-293.
RONG Yuetang,HE Di,ZHANG Xiaojing.The global bifurcation for a prey-predator model with cross-diffusion and Holling Ⅳ [J].Basic Sciences Journal of Textile Universities,2015,26(3):287-293.
[14] 馬曉麗,馮孝周.一類具有交叉擴散的捕食模型的正解的存在性[J].安徽大學學報:自然科學版,2011,35(5):26-31.
MA Xiaoli,FENG Xiaozhou.The existence of positive solutions for a predator-prey model with cross-diffusion[J].Journal of Anhui University:Natural Science Edition,2011,35(5):26-31.
[15] 馬曉麗.一類具有交叉擴散的捕食模型的整體分歧[J].西安工業(yè)大學學報,2010,30(5):506-510.
MA Xiaoli.Global bifurcation for a predator-prey model with cross-diffusion[J].Journal of Xi′an Technological University,2010,30(5):506-510.
[16] 戴婉儀,付一平.一類交叉擴散系統(tǒng)定態(tài)解的分歧與穩(wěn)定性[J].華南理工大學大學報:自然科學版,2005,33(2):99-102.
DAI Wanyi,FU Yiping.Bifurcation and stability of the steady-state solutions to a system with cross-diffusion effect[J].Journal of South China University of Technology:Natural Science Edition,2005,33(2):99-102.
[17] 柴俊平,李艷玲.帶有交叉擴散項的捕食-食餌模型的全局分歧[J].紡織高校基礎科學學報,2011,24(4):490-494.
CHAI Junping,LI Yaning.Global bifurcation of a class of predator-prey models with cross-diffusion effect[J].Basic Sciences Journal of Textile Universities,2011,24(4):490-494.
[18] WU J H.Global bifurcation of coexistence states for the competition model in the chemostat[J].Nonlinear Analysis,2000,39(7):817-835.
[19] CRANDALL M G,RABINOWITZ P H.Bifurcation from simple eigenvalues[J].J Functional Analysis,1971,8(2):321-340.
編輯、校對:師 瑯
The local bifurcation for a kind of prey-predator model with cross-diffusion
RONGYuetang,DONGMiaona,HEDi,WANGXiaoli
(School of Science, Xi′an Polytechnic University, Xi′an 710048, China)
The existence of bifurcation solutions for a predator-prey model with cross-diffusion under homogeneous Dirichlet boundary conditions is concerned. By the maximum principle, a priori estimate of positive solutions are obtained. Then by Crandall-Rabinowitz bifurcation theory, the sufficient conditions for the existence of positive solutions to a local bifurcation is proved.
predator-prey model;self-diffusion;cross-diffusion;priori estimate;local bifurcation
1006-8341(2016)04-0443-07
10.13338/j.issn.1006-8341.2016.04.005
2016-04-08
陜西省自然科學基礎研究計劃項目(2015JM1034)
容躍堂(1960—),男,陜西省寶雞市人,西安工程大學教授,研究方向為偏微分方程理論及其應用,偏微分方程數(shù)值解. E-mail:rongyuetang@126.com
容躍堂,董苗娜,何堤,等.一類具有交叉擴散項的捕食-食餌模型的局部分歧[J].紡織高?;A科學學報,2016,29(4):443-449.
RONG Yuetang,DONG Miaona,HE Di,et al.The local bifurcation for a kind of prey-predator model with cross-diffusion[J].Basic Sciences Journal of Textile Universities,2016,29(4):443-449.
O 175.26
A