高苙宸, 林金生
(生合生物科技股份有限公司,高雄 000800)
乳酸菌青貯與自然青貯的質(zhì)量及其對(duì)反芻動(dòng)物的影響
高苙宸, 林金生
(生合生物科技股份有限公司,高雄 000800)
青貯是保存新鮮粗飼料的重要手段,能確保動(dòng)物常年有質(zhì)量穩(wěn)定的新鮮粗飼料可以食用。粗飼料原料自身特性、氣候因素、青貯的過程,以及開封后的管理等因素都會(huì)影響到青貯飼料的質(zhì)量。青貯添加劑,特別是乳酸菌青貯添加劑的使用,可以在飼草發(fā)酵過程中產(chǎn)生大量的有機(jī)酸加速青貯發(fā)酵過程,降低干物質(zhì)的損失,延長開封后的好氧穩(wěn)定性,提高營養(yǎng)價(jià)值與適口性并且能提高動(dòng)物的經(jīng)濟(jì)效益,在提升青貯質(zhì)量上扮演重要的角色。
青貯;乳酸菌;添加劑;動(dòng)物表現(xiàn)
為了長期穩(wěn)定地提供高營養(yǎng)高質(zhì)量的粗飼料給反芻動(dòng)物,將鮮草發(fā)酵制成青貯飼料已成為絕大多數(shù)牧場(chǎng)的選擇,是養(yǎng)殖企業(yè)的一件大事。但在生產(chǎn)中存在的困難是青貯發(fā)酵過程很難控制,而且容易造成大量干物質(zhì)的損失。發(fā)展乳酸菌添加劑的目標(biāo)是確保發(fā)酵的質(zhì)量以及減少干物質(zhì)損失。研究證明乳酸菌添加劑發(fā)酵制作的青貯料可以增加反芻動(dòng)物的采食量和生產(chǎn)性能表現(xiàn)。
1.1 影響青貯發(fā)酵的因子
粗飼料有許多保存形式,青貯是一種可以達(dá)到長久保存及保留粗飼料絕大部分養(yǎng)分的方式,可給反芻動(dòng)物持續(xù)穩(wěn)定地提供營養(yǎng)多汁的飼料[1]。青貯是一個(gè)動(dòng)態(tài)且復(fù)雜的過程,影響其發(fā)酵質(zhì)量的因素包括青貯原料的可溶性碳水化合物(WSC)、干物質(zhì)含量(DM)、緩沖能(BC),以及降雨、溫度、濕度、成熟度、微生物等。
WSC作為青貯原料的發(fā)酵基底可轉(zhuǎn)換成乳酸,達(dá)到保存養(yǎng)分的效果[2~4]。不同植物的WSC含量不同,例如大麥中WSC含量為10%~20%,玉米為3%~10%[2~4],并且隨著植物成熟度的提高而降低。BC會(huì)影響青貯飼料pH降低的能力[5],10%~20%會(huì)作用于pH,而粗蛋白質(zhì)(CP)也會(huì)影響B(tài)C的能力。
發(fā)酵系數(shù)(FC)可用來評(píng)估鮮草青貯發(fā)酵的能力。其計(jì)算公式為FC=DM%+8WSC/BC。當(dāng)FC<35為差,35
1.2 乳酸菌添加劑的用法
青貯的添加劑有酶制劑、有機(jī)酸、乳酸菌制劑等。.乳酸菌作為生物添加劑,不只可以提高青貯成功率,也可以增加青貯料營養(yǎng)價(jià)值,對(duì)于環(huán)境的負(fù)擔(dān)較小也不具有侵蝕性,可延長農(nóng)具的使用時(shí)間[12,13]。青貯時(shí)乳酸菌添加量在105~106cfu/g鮮草就可以超過附生的菌數(shù)成為優(yōu)勢(shì)菌種[14,15],實(shí)現(xiàn)短期快速產(chǎn)生大量乳酸,達(dá)到降低pH、減少干物質(zhì)的損失、保留鮮綠飼草營養(yǎng)價(jià)值的目的。Kung[16]建議乳酸菌添加劑的適宜用量為1x105cfu/g鮮草,添加量提升2~3倍可以提升青貯料質(zhì)量,但提高到1x106cfu/g鮮草,并沒有呈現(xiàn)出劑量效應(yīng)的差異。
1.3 乳酸菌青貯和自然青貯的差異
多項(xiàng)研究表明,苜蓿、高水分玉米、牧草和谷物等使用乳酸菌添加劑可以改善青貯質(zhì)量。苜蓿萎凋之后制成半干青貯,添加植物乳桿菌D41組和不添加的組別(自然青貯/直接青貯)相比,其pH在4周、8周、12周時(shí)比較低;添加乳酸菌的試驗(yàn)組青貯料中乳酸含量高于對(duì)照組,同時(shí)同型乳酸菌也比自然青貯組的表現(xiàn)好[17]。在羊草(Panicum.maximum)中添加植物乳桿菌和鼠李糖乳桿菌(L..rhamnosus)后青貯,兩組pH值分別是4.21和4.1,低于自然青貯的5.30;結(jié)果表明添加菌劑青貯提升了青貯料中乳酸含量,降低了醋酸、丁酸含量[18]。大麥中添加同型乳酸菌青貯時(shí),乳酸含量高于自然青貯組,且pH較低,Addah[7]與McAllister.和Hristov[19]在大麥中添加乳酸菌的試驗(yàn)獲得了相似的結(jié)果。但大麥的中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)和淀粉以及玉米的ADF、NDF不會(huì)受到乳酸菌制劑的影響[2,7,20],因?yàn)槿鄙倭丝梢运庵参锛?xì)胞壁的酵素[2,5,12]。
玉米青貯時(shí)添加乳酸菌制劑相較于自然青貯,不一定會(huì)增加有機(jī)酸含量和獲得較低的pH,這是因?yàn)橥ǔS衩妆旧砀缴娜樗峋芏?,超過添加劑可以造成的影響[20,21]。不過Bolsen[21]指出乳酸菌添加劑可以提升青貯玉米干物質(zhì)回收率(增加1.3%),且整體經(jīng)濟(jì)效益也可增加1.8%。另外,在高水分玉米青貯中使用乳酸菌可以抑制梭狀芽孢桿菌的發(fā)酵,提升發(fā)酵質(zhì)量[22]。
Muck和Kung[23]通過回顧文獻(xiàn)指出,使用乳酸菌添加劑加工的青貯料pH較低,其中60%的文獻(xiàn)提到氨態(tài)氮降低,35%的文獻(xiàn)報(bào)道干物質(zhì)回收率增加,窖的使用壽命延長。
1.4 開封后的穩(wěn)定性
青貯的過程基本上都是在厭氧的狀態(tài)下進(jìn)行。當(dāng)青貯完成,開封進(jìn)行飼喂之后,青貯料再度暴露在空氣中,厭氧的狀態(tài)就被破壞,特別是在開封的截面。此時(shí),好氧的微生物特別是酵母菌快速生長消耗乳酸,造成pH上升,腐敗菌開始活動(dòng)導(dǎo)致青貯料的變質(zhì)[10,11],造成了開封穩(wěn)定性的下降。醋酸是一個(gè)廣泛抑制細(xì)菌的物質(zhì)。異型發(fā)酵乳酸菌可代謝糖類產(chǎn)生乳酸與醋酸,其中又以布氏乳桿菌(L..buchneri)為代表。這種菌種生長速度較慢,是將糖類進(jìn)行異型發(fā)酵的過程,雖然能量的損耗較高,但醋酸量增加對(duì)于好氧穩(wěn)定性有正向影響。有報(bào)道指出,同型發(fā)酵因?yàn)闇p少了醋酸生成所以對(duì)開封后的好氧穩(wěn)定性有負(fù)面影響[24]。但是Broberg等[25]發(fā)現(xiàn)青貯料中的植物乳桿菌的代謝產(chǎn)物3-羥基癸酸可以抑制畢赤酵母屬(Pichia.anomala)、熏煙曲菌(Aspergillus.fumigates)、羅克福爾青霉菌(Penicillium.roquefort)的生長,維持青貯飼料的開封穩(wěn)定性??偠灾?,乳酸菌可以通過增加乳酸或是代謝抑菌物質(zhì)提升好氧穩(wěn)定性。
添加乳酸菌青貯劑制作青貯,可有效減少青貯飼料的損失,提高青貯料品質(zhì),提高奶牛生產(chǎn)性能。張乃鋒等[26]采用乳酸菌青貯劑制作的青貯飼料喂奶牛,產(chǎn)奶量增加了0.82kg/(頭·d),提高了4.6%,經(jīng)濟(jì)效益提高1.39元/(頭·d)。劉艷豐等[27]采用乳酸菌青貯劑制作的青貯飼料喂奶牛,結(jié)果發(fā)現(xiàn)產(chǎn)奶量增加了1.36kg/(頭·d),提高了7.12%,經(jīng)濟(jì)效益提高3.68元/(頭·d)。杲壽善以乳酸菌青貯和常規(guī)青貯兩種處理對(duì)16頭泌乳牛進(jìn)行了40d的飼喂對(duì)比試驗(yàn),結(jié)果表明:添加乳酸菌制劑的青貯相比常規(guī)青貯品質(zhì)高、適口性性好,試驗(yàn)組比對(duì)照組多產(chǎn)奶426.0kg,頭日增加收入1.39元,試驗(yàn)期內(nèi)多增收444.85元,具有明顯的經(jīng)濟(jì)效益[28]。劉晗璐[29]給西門塔爾牛飼喂添加植物乳桿菌和蒙氏腸球菌的無芒雀麥青貯料,結(jié)果顯示,試驗(yàn)牛干物質(zhì)采食量顯著增加(P<0.005),干物質(zhì)消化率提高了4個(gè)百分點(diǎn)(0.05<P<0.1),乳產(chǎn)量(P>0.05)及乳脂肪產(chǎn)量(P<0.05)不同程度提高。Muck[30]比較了乳酸菌青貯和自然青貯制作的青貯料對(duì)奶牛瘤胃消化的影響,發(fā)現(xiàn)飼喂前者可減少氣體產(chǎn)生,獲得更多的揮發(fā)性脂肪酸或瘤胃微生物。Moran和Owen[31]發(fā)現(xiàn),給肉牛飼喂添加乳酸菌的青貯料可以增加7.5%的干物質(zhì)采食量及11.1%的體增重。在羊的試驗(yàn)上,也有人觀察到飼喂羊草的同時(shí)添加植物乳桿菌和鼠李糖乳桿菌青貯料,羊只生產(chǎn)性能提升效果明顯[18],干物質(zhì)消化率從59.4%提升到64.1%和64.4%,有機(jī)物質(zhì)消化率從60.2%DM提升到64.9%DM和65.0%DM,自主采食量從638g.DM/d提升到885g.DM/d和928g.DM/d。而Kung和Muck[23]通過回顧已發(fā)表的文獻(xiàn)指出,飼喂添加乳酸菌青貯劑制作的青貯料,28%在采食量、53%在體增重、47%在乳產(chǎn)量上有提升的正面效應(yīng)。
青貯原料的發(fā)酵過程無法控制,在制作青貯時(shí)添加乳酸菌,其可成為優(yōu)勢(shì)菌種,從而可以提高發(fā)酵時(shí)乳酸的含量,降低pH,達(dá)到長期保存的效果,還可以增加干物質(zhì)回收率。對(duì)于水分、蛋白質(zhì)含量、緩沖能值較高的原料,添加乳酸菌青貯可減少蛋白質(zhì)的降解和氨態(tài)氮的形成,進(jìn)而提升青貯料的質(zhì)量。飼喂接種乳酸菌的青貯料對(duì)于動(dòng)物的采食量、增重、泌乳量、干物質(zhì)消化率等均可產(chǎn)生正向的影響,同時(shí)還可減少瘤胃氣體產(chǎn)生,提高瘤胃微生物或揮發(fā)性脂肪酸含量,使動(dòng)物表現(xiàn)更佳。.
[1] Stewart, W.M. Plant Nutrition Today. From Scientific Staff of the International Plant Nutrition Institute (IPNI), Norcross, Georgia. 2011.
[2] McAllister, T. A., Selinger, L. B., McMahon, L. R., et al. Digestibility and aerobic stability of barley silage inoculated with mixtures of Lactobacillus plantarum and Enterococcus faecium[J]. Can. J.Anim. Sci., 1995,75:425-432.
[3] Zahiroddini H., Baah J., Absalom W, et al. Effect of an inoculants and hydrolytic enzymes on fermentation and nutritive value of whole-crop barley silage[J]. Anim. Feed Sci. Technol,2004,117:317-330.
[4] Hargreaves, A., Hill, J.and Leaver, J. D. Effect of stage of growth on the chemical composition, nutritive value and ensilability of whole-crop barley[J]. Anim. Feed. Sci. , 2009,152:50-61.
[5] McDonald, P. The biochemistry of silage[M]. John Wiley and Sons Ltd., 1981. Toronto, ON. 226 pp.
[6] Weissbach, F. and Honig, H. On anticipation and control of the run of fermentation in silage making from extensively grown forages[J]. Landbauforschung V?lkenrode,1996, 1:10-17.
[7] W. Addah, J. Baah, P. Groenewegen, et al. McAllister Comparison of the fermentation characteristics, aerobic stability and nutritive value of barley and corn silages ensiled with or without a mixed bacterial inoculants[J]. Can. J. Anim. Sci, 2011,91:133-146.
[8] Lin, C., Bolsen, K.K., Brent, B. E., et al. Epiphytic microflora on alfalfa and whole-plant corn[J]. Dairy Sci., 1992, 75:2484-2493.
[9] McDonald, P., Henderson, A.R. and Heron, S.J.E. Microorganisms. In The Biochemistry of Silage. 4 Aberystwyth,UK: Chalcombe Publications.1991, 2nd edn, 81-151.
[10] Pahlow, G, Muck, R.E, Driehuis, F. et al. Microbiology of ensiling. In: Buxton, D.R., Muck, R.E., Harrison, J.H. (Eds.) Silage science and technology. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2003. 31-93.
[11] Woolford, M. K. The detrimental effects of air on silage[J]. J. Appl. Bacteriol, 1990,68:101-116.
[12] Filya I, Muck RE, et al. Inoculant effects on alfalfa silage: fermentation products and nutritive value[J]. Journal of Dairy Science, 2007,90,11:5108-5114.
[13] Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage[J]. FEMS Microbiology Reviews, 1996, 19:53-68.
[14] Weimer, P. J. Why don’t ruminal bacteria digest cellulose faster?[J]. J. Dairy Sci, 1996,79:1496-1502.
[15] Kung, Jr., L.,M. R. Stokes, and C. J. Lin. Silage additives. Silage Science and Technology, D. R. Buxton, R. E. Muck and J. H. Harrison, eds. Am. Soc. Agronomy, Inc., Madison, WI. 2003, 305-360.
[16] Kung L. A review on silage additives and enzymes[J]. Newark:Department of Animal and Food Sciences University of Delaware, 2010.
[17] Yu TH, Wang SM, Liu HH, et al. Selection of bacterial inoculants for ensiling and their effects on alfalfa haylage[J]. Taiwan Livestock Res, 2012,45(3):209-216 .
[18] S.Ando, M. Ishida, S. Oshio, et al. Effects of isolated and commercial lactic acid bacteria on the silage quality, digestibility, voluntary intake and ruminal fluid characteristics[J]. Asian-Australasian Journal of Animal Sciences, 2006,19(3):386-389.
[19] McAllister, T. A. and Hristov, A. N. The fundamentals of making good quality silage. Proc. 2000. Western Can. Dairy Seminar. University of Alberta, Dept. of Agric., Food and Nutr. Sci., Edmonton, AB.
[20] Kung, L., Jr., J. H. Chen, E. M. Kreck, et al. Effect of microbial inoculants on the nutritive value of corn silage for lactating dairy cows[J]. J. Dairy Sci, 1993,76(12):3763-3770.
[21] Bolsen, K. K., Lin, C., Brent, B. E., et al. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages[J]. J. Dairy Sci,1992, 75: 3066-3083.
[22] Schaefer, D. M., Brotz, P. G., Arp, S. C, et al. Inoculation of corn silage and high-moisture corn with lactic acid bacteria and its effects on the subsequent fermentations and on feedlot performance of beef steers[J]. Anim. Feed Sc.Technol, 1989,25:23-38.
[23] Kung Jr., L. and Muck, R.E. Effects of Silage Additives on Ensiling. Proceedings from the Silage: Field to Feed bunk North American Conference, Hershey, 11-13 February 1997, NRAES-99, 187-199.
[24] Muck R. E. Recent advance in silage microviology[J]. Agric. and Food Sci, 2013,22:3-15.
[25] Broberg A, Jacobsson K, Str?m K, et al. Metabolite profiles of lactic acid bacteria in grass silage[J]. Appl Environ Microbiol, 2007,73(17):5547-52.
[26] 張乃鋒,刁其玉,王吉峰,等.微生物青貯劑對(duì)奶牛生產(chǎn)性能的影響[J].中國奶牛,2005,6:24-25.
[27] 劉艷豐,唐淑珍,巴音巴特,等.微生物青貯添加劑處理后玉米青貯對(duì)奶牛生產(chǎn)性能和經(jīng)濟(jì)效益的影響[J].中國畜牧雜志,2012,48(23):76-78.
[28] 杲壽善,添加乳酸菌制劑青貯飼料飼喂奶牛效果試驗(yàn)[J].中國草食動(dòng)物,2002,22(1):20-21.
[29] 劉晗璐,桂榮,魏日華,等.添加乳酸菌的無芒雀麥青貯對(duì)西門塔爾牛生產(chǎn)性能的影響[J].中國飼料,2009,5:17-20.
[30] Muck R. E., Filya I., and Contreras-Govea F. E. Inoculant effects on Alfalfa silage: In vitro gas and volatile fatty acid production[J]. J. Dairy Sci., 2007,90:5115-5125.
[31] Moran, J.P. and Owen, T.R. The effects of feeding silage treated with an inoculum of lactobacillus plantarum on beef production from growing and finishing cattle[J]. Annales de Zootechnie, 1995,44:383.
The Quality and Effects of Nature Silage and Inoculated Silage on Ruminat Animal Performance
GAO Li-chen, LIN Jin-sheng
(SynbioTech Inc., Gaoxiong 000800)
The making of silage is a very important mean to preserve fresh forage as a steady and stable feed for animals. Forage itself, climate, the ensiling process and the management of feedout, all determine the final silage quality. Silage additives, especially the bacterial inoculants ferment the carbohydrates into large amount of organic acids that reduce the pH, speed up the ensiling process, extend the aerobic stability, improve the nutritional value and palatability and economic performance of the animals.
Silage; Lactic acid bacteria; Inoculant; Animal performance
S823.4
A
1004-4264(2017)06-0017-04
10.19305/j.cnki.11-3009/s.2017.06.003
2016-11-18
高苙宸(1988-),研究員,研究方向?yàn)槿樗峋c牧草加工。.