梅 蘭 綜述,刁顯明,邱麗華* 審校
(1.西南醫(yī)科大學附屬醫(yī)院放射科,四川 瀘州 646000;2.宜賓市第二人民醫(yī)院CT/MR室,四川 宜賓 644000)
頸動脈斑塊的力學發(fā)展機制及MR成像技術(shù)的研究進展
梅 蘭1,2綜述,刁顯明2,邱麗華2*審校
(1.西南醫(yī)科大學附屬醫(yī)院放射科,四川 瀘州 646000;2.宜賓市第二人民醫(yī)院CT/MR室,四川 宜賓 644000)
頸動脈斑塊與腦卒中或短暫性腦缺血疾病密切相關(guān)。MRI于診斷和評估頸動脈斑塊預后方面有重要作用,目前頸動脈斑塊的MRI研究主要集中于評估斑塊穩(wěn)定性和明確病理機制等方面。本文對頸動脈斑塊力學發(fā)展機制和MR成像技術(shù)的研究進展進行綜述。
頸動脈;斑塊,粥樣硬化;磁共振成像;力學機制
頸動脈狹窄是缺血性腦卒中的嚴重危險因素,可致10%~20%的患者腦卒中或短暫性腦缺血發(fā)作[1]。隨著MR血管成像技術(shù)的發(fā)展,高分辨率MR血管成像既可顯示管腔狹窄程度,又可識別頸動脈斑塊內(nèi)組成成分,如斑塊內(nèi)出血(intraplaque hemorrhage, IPH)、壞死脂質(zhì)核心(lipid-rich necrotic core, LRNC)、變薄或破裂的纖維帽(thinned/ruptured fibrous cap, TRFC)和鈣化等,可準確判斷斑塊的穩(wěn)定性,對患者行更精準的危險度分級[2]。本文對頸動脈斑塊的力學發(fā)展機制及MR成像方法進行綜述。
頸動脈粥樣硬化斑塊的并發(fā)癥主要包括急性動脈血栓形成、動脈栓塞及腦卒中,而頸動脈斑塊周圍血流動力學因素可能與其發(fā)病過程相關(guān)。Lovett等[3]認為血管壁面剪切應力(wall shear stress, WSS)有抗動脈粥樣硬化作用,但當流體流經(jīng)管腔的狹窄部位時,狹窄前端過高的剪切應力使血小板源性生長因子分泌減少,抑制了血管平滑肌細胞的蛋白合成,細胞凋亡增加,導致斑塊的易損性增加。Marshall等[4]通過頸動脈模型重建及血流動力學數(shù)值模擬研究,認為WSS作用于斑塊可被轉(zhuǎn)化為生化信號。不同的剪切應力場可誘導趨化因子的表達不同,導致所形成的斑塊組成成分不同,頸動脈的低剪切應力(low shear stress, LSS)相對于振動剪切應力更易誘導不穩(wěn)定斑塊形成,其特征為LSS誘導生長調(diào)節(jié)基因α、趨化因子Fractalkine和趨化因子IP-10的表達增加,其中趨化因子Fractalkine在LSS誘導形成不穩(wěn)定斑塊的過程中至關(guān)重要,所以抑制趨化因子Fractalkine與受體的相互作用,可能是一種減少不穩(wěn)定斑塊形成的有效方法[5]。當WSS超出斑塊纖維帽強度限值時,斑塊即發(fā)生破裂,來比較,患者的血壓越高則斑塊破裂的風險越大[6]。Lu等[7]通過模擬動脈粥樣硬化斑塊力學條件的有限元分析模型發(fā)現(xiàn),導致斑塊內(nèi)新生血管出血的力學環(huán)境與斑塊的形狀、曲率、斑塊與頸動脈管腔的距離和斑塊組成成分的特性有關(guān)。相同條件下,合并有出血和潰瘍成分的斑塊越靠近頸動脈管腔,其周長與曲率越大、承受的壓力和拉伸越大,斑塊內(nèi)的新生血管更易出血并加速斑塊的破裂。目前對于斑塊生物力學和易損斑塊破裂間關(guān)系的研究少見,將其應用于治療決策和手術(shù)規(guī)劃中還需大量研究證實。
隨著高場強MR頸部專用多通道相控陣表面線圈、特殊成像序列以及靶向?qū)Ρ葎┑膽?,采用MR成像技術(shù)對患者進行多次隨訪掃描,可為建立個體化頸動脈斑塊血流動力學數(shù)值模擬提供真實可靠的解剖結(jié)構(gòu)和血流速度數(shù)據(jù),為研究血流動力學因素對血流與動脈壁之間物質(zhì)轉(zhuǎn)運的影響,及其與斑塊形成發(fā)展之間的關(guān)系提供了客觀、有效的方法。
2.1 MR成像序列 最常用的脈沖序列為快速自旋回波(fast spin echo, FSE)序列,三維FSE T1WI較二維FSE T1WI具有更高的敏感度及特異度[8]。亮血技術(shù)常用時間飛躍法(time of flight, TOF),可顯示斑塊內(nèi)低信號的纖維帽、鈣化及中等信號的LRNC,優(yōu)勢為采集時間短。相比TOF,黑血技術(shù)的優(yōu)勢為可顯示斑塊的形態(tài)及其組成成分,但采集時間相對較長。以章動作為選擇激勵的延遲交替(delay alternating with nutation for tailored excitation, DANTE)黑血技術(shù),縮短了檢查時間、擁有更高的信噪比,并可全方位覆蓋管壁病灶,且三維動態(tài)DANTE黑血技術(shù)可實現(xiàn)外周血管壁快速全方位等分辨率成像[9];三維運動敏感驅(qū)動平衡準備快速梯度回波(3D-MERGE)序列血流抑制的效果好,可清晰顯示頸動脈管壁內(nèi)外邊界及斑塊內(nèi)鈣化,對頸動脈粥樣硬化斑塊負荷的測量更準確[10],可于2 min內(nèi)覆蓋全部頸動脈,保證了患者的依從性和圖像質(zhì)量[11]。三維彌散預備快速自旋回波DWI上LRNC呈高信號、低ADC,纖維帽、血栓和鈣化則呈低信號,且LRNC的ADC值明顯小于纖維帽和正常管壁的ADC值,有助于區(qū)分斑塊內(nèi)的LRNC與纖維帽[12]。Ota等[13]研究證實T1加權(quán)三維磁化強度預備梯度回波序列檢測頸動脈IPH的敏感度和特異度可達到80%和97%。Wang等[14]認為厚層塊選擇性相位敏感反轉(zhuǎn)恢復序列識別高鐵血紅蛋白的特異度及準確率較T1加權(quán)三維磁化強度預備梯度回波序列更高。各向同性容積三維快速自旋回波成像具有空間分辨率高和良好的血流抑制功能,能可靠地測量顱內(nèi)血管壁的厚度并描繪斑塊形態(tài),于3.0T MR上掃描時間約7 min,可評估頸動脈及其遠端顱內(nèi)血管斑塊的負荷,預測腦卒中的風險[15]。
2.2 MR常規(guī)增強掃描 目前臨床常用的對比劑為Gd-DTPA,MR增強成像(contrast enhanced magnetic resonance imaging, CE-MRI)可用于量化評估斑塊內(nèi)新生血管的形成及炎癥反應(正性相關(guān))。LRNC和IPH于CE-MRI上無強化,而斑塊內(nèi)的纖維帽因富含新生血管而出現(xiàn)強化。CE-MRI還可直觀地顯示纖維帽的厚度及其連續(xù)性。Cai等[16]采用CE-MRI定量測量斑塊內(nèi)整體纖維帽沿管腔的周長和LRNC的大小,并與組織病理學檢查結(jié)果行對照研究,發(fā)現(xiàn)二者具有高度一致性。準確評估纖維帽的厚度對判斷斑塊穩(wěn)定性具有重要的臨床意義。三維對比增強磁共振血管成像(three-dimensional dynamic contrast-enhanced magnetic resonance angiography, 3D-DCE-MRA)可顯示頸動脈管腔狹窄程度、管壁厚度及其與管腔的關(guān)系,還可顯示重度狹窄或閉塞管腔的側(cè)支循環(huán)建立情況并測量狹窄范圍,在一定程度上彌補了DSA的不足。與3D-DCE-MRA相比,3D-TOF-MRA和相位對比法MRA的優(yōu)勢為不需注射對比劑,無創(chuàng)傷;不足為易受血流動力學影響,于評價狹窄程度方面存在一定程度的夸大效應[17]。
2.3 MR特異性靶向分子對比劑 超小超順磁性氧化鐵(ultra small superparamagnetic iron oxide, USPIO)納米顆粒CE-MRI是一種可量化斑塊內(nèi)炎癥的影像學成像方法,可特異性識別頸動脈斑塊內(nèi)炎癥反應,USPIO納米顆粒通過受損的內(nèi)皮細胞進入斑塊后被巨噬細胞特異性吞噬,當其聚集于巨噬細胞內(nèi)的時間大于24~36 h時,其本身的順磁效應會導致相應區(qū)域T2WI信號降低,因此可從信號減低程度判斷斑塊易損性的程度[18]。Chen等[19]研究認為采用對比劑為高密度脂蛋白螯合釓(gadolinium-based contrast agent using high density lipoproteins, GBCA-HDL)的CE-MRI可監(jiān)測斑塊內(nèi)巨噬細胞與膠原蛋白的含量,有利于臨床分析斑塊內(nèi)成分的轉(zhuǎn)歸,并為尋求相應干預措施提供參考依據(jù)。Shen等[20]發(fā)現(xiàn)改變GBCA-HDL顆粒成分的組成和形狀可進一步提高CE-MRI檢測頸動脈斑塊的有效性,將含載脂蛋白A-I的改良GBCA-HDL顆粒應用于CE-MRI,可提高富含巨噬細胞型頸動脈易損斑塊的早期診斷率,評估療效更加準確。同時還發(fā)現(xiàn)圓盤形GBCA-HDL粒子主要由腎臟排泄清除;而球形GBCA-HDL粒子主要由肝臟排泄并可削弱葡萄糖對腎功能的影響,從而降低患者患葡萄糖相關(guān)腎源性系統(tǒng)性纖維化的風險,并可應用于肝臟MRI造影。對比劑P947可用于檢測和表征富含基質(zhì)金屬蛋白酶的動脈粥樣硬化斑塊,亦可作為檢測活體內(nèi)不穩(wěn)定斑塊中血管緊張素轉(zhuǎn)化酶、金屬蛋白酶環(huán)和氨肽酶N的有效對比劑[21]。
采用MRI定量分析斑塊成分以預測患者預后為目前研究熱點。Takaya等[22]研究發(fā)現(xiàn)IPH面積每增加10 mm2,斑塊風險比(hazard ratio, HR)增加2.6(P=0.006);LRNC最大百分比每增加10%,HR增加1.6(P=0.004);管壁纖維帽的最大厚度每減少1 mm,HR增加1.6(P=0.008)。Gupta等[23]采用Meta分析評價MR頸動脈斑塊成像與腦卒中風險發(fā)現(xiàn)頸動脈斑塊內(nèi)IPH、LRNC和TRFC與同側(cè)缺血性事件密切相關(guān)(斑塊HR的范圍增大),LRNC的HR≈3、IPH的HR≈4.59和TRFC的HR≈6,雖然3組HR結(jié)果比較差異無統(tǒng)計學意義,但該順序卻與動脈粥樣硬化斑塊病理學發(fā)展順序一致,即在頸動脈粥樣硬化斑塊的發(fā)生發(fā)展過程中LRNC常發(fā)生于IPH之前,然后進一步發(fā)展為TRFC,最后形成栓子栓塞同側(cè)遠端動脈導致缺血或卒中。Ota等[24]研究發(fā)現(xiàn)在頸動脈粥樣硬化斑塊的發(fā)展過程中,IPH、LRNC%與TRFC獨立相關(guān),并證實MRI評估斑塊內(nèi)變薄纖維帽厚度的閾值與患者發(fā)生腦血管事件顯著相關(guān)。Van Den Bouwhuijsen等[25]發(fā)現(xiàn)頸動脈粥樣硬化斑塊中鈣化、IPH和脂質(zhì)核心之間的關(guān)系復雜,具有較高鈣化負荷的斑塊內(nèi)含有更多的出血性成分,但此類斑塊內(nèi)脂質(zhì)核心較少,于高度狹窄患者中更為明顯,提示鈣化可能為不穩(wěn)定因素。
綜上所述,隨著MR成像技術(shù)的發(fā)展,為進一步明確頸動脈斑塊生物力學機制及臨床評價頸動脈不穩(wěn)定斑塊破裂風險提供了客觀的生物力學及影像學指標。MRI對頸動脈斑塊形態(tài)、組成成分和局部血流動力學的綜合評估,不僅有助于認識發(fā)病機制,還為評價斑塊的穩(wěn)定性與缺血性卒中的關(guān)系提供了依據(jù)。
[1] Fairhead JF, Rothwell PM. The need for urgency in identification and treatment of symptomatic carotid stenosis is already established. Cerebrovasc Dis, 2005,19(6):355-358.
[2] Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf), 2015,213(3):539-553.
[3] Lovett JK, Rothwell PM. Site of carotid plaque ulceration in relation to direction of blood flow: An angiographic and pathological study. Cerebrovasc Dis, 2003,16(4):369-375.
[4] Marshall I, Zhao S, Papathanasopoulou P, et al. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J Biomech, 2004,37(5):679-687.
[5] Cheng C, Tempel D, van Haperen R, et al. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines. J Clin Invest, 2007,117(3):616-626.
[6] Teng Z, Sadat U, Brown AJ, et al. Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations. J Biomech, 2014,47(4):847-858.
[7] Lu J, Duan W, Qiao A. Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis. Biomed Eng Online, 2015,14(Suppl 1):S3.
[8] Narumi S, Sasaki M, Miyazawa H, et al. T1-weighted magnetic resonance carotid plaque imaging: A comparison between conventional and fast spin-echo techniques. J Stroke Cerebrovasc Dis, 2017,26(2):273-279.
[9] Xie G, Zhang N, Xie Y, et al. DANTE-prepared three-dimensional FLASH: A fast isotropic-resolution MR approach to morphological evaluation of the peripheral arterial wall at 3 Tesla. J Magn Reson Imaging, 2016,43(2):343-351.
[10] 蔡穎,陳碩,趙錫海,等.顱頸動脈三維磁共振管壁成像技術(shù)及其應用進展.中國醫(yī)學影像技術(shù),2016,32(12):1938-1942.
[11] Balu N, Yarnykh VL, Chu B, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med, 2011,65(3):627-637.
[12] Xie Y, Yu W, Fan Z, et al. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media. J Cardiovasc Magn Reson, 2014,16:67.
[13] Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: Comparison of the diagnostic performance of three T1-weighted sequences. Radiology, 2010,254(2):551-563.
[14] Wang J, Ferguson MS, Balu N, et al. Improved carotidintraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence. Magn Reson Med, 2010,64(5):1332-1340.
[15] Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. JMagn Reson Imaging, 2011,34(1):22-30.
[16] Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: Comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation, 2005,112(22):3437-3444.
[17] 謝元亮,王曦,陳發(fā)祥,等.3.0T頸動脈全景磁共振血管造影比較.中華老年心腦血管病雜志,2014,16(12):1256-1259.
[18] Metz S, Beer AJ, Settles M, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: Assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging, 2011,27(6):901-912.
[19] Chen W, Cormode DP, Vengrenyuk Y, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging, 2013,6(3):373-384.
[20] Shen ZT, Zheng S, Gounis MJ, et al. Diagnostic magnetic resonance imaging of atherosclerosis in apolipoprotein E knockout mouse model using macrophage-targeted Gadolinium-containing synthetic lipopeptide nanoparticles. PLoS One, 2015,10(11):e0143453.
[21] Ouimet T, Lancelot E, Hyafil F, et al. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging. Mol Pharm, 2012,9(4):850-861.
[22] Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: A prospective assessment with MRI—initial results. Stroke, 2006,37(3):818-823.
[23] Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: A systematic review and meta-analysis. Stroke, 2013,44(11):3071-3077.
[24] Ota H, Yu W, Underhill HR, et al. Hemorrhage and large lipid-rich necrotic cores are independently associated with thin or ruptured fibrous caps: An in vivo 3T MRI study.Arterioscler Thromb Vasc Biol, 2009,29(10):1696-1701.
[25] van den Bouwhuijsen QJ, Bos D, Ikram MA, et al. Coexistence of calcification, intraplaque hemorrhage and lipid core within the asymptomatic atherosclerotic carotid plaque: The Rotterdam study. Cerebrovasc Dis, 2015,39(5-6):319-324.
使用阿拉伯數(shù)字和漢字數(shù)字的一般原則
根據(jù)GB/T 15835《出版物上數(shù)字用法的規(guī)定》
(1)在統(tǒng)計圖表、數(shù)學運算、公式推導中所有數(shù)字包括正負整數(shù)、小數(shù)、分數(shù)、百分數(shù)和比例等,都必須使用阿拉伯數(shù)字。
(2)在漢字中已經(jīng)定型的詞、詞組、成語、縮略語等都必須使用漢語數(shù)字,例如:一次方程、三維超聲、二尖瓣、法洛四聯(lián)癥、星期一、五六天、八九個月、四十七八歲等。
(3)除了上述情況以外,凡是使用阿拉伯數(shù)字而且又很得體的地方,都應該使用阿拉伯數(shù)字。遇到特殊情況時,可以靈活掌握,但應該注意使全篇同一。
(4)如果數(shù)字的量級小于1時,小數(shù)點前面的零(0)不能省去,如0.32不能寫成.32。
ProgressesofmechanicsdevelopmentmechanismandMRtechniquesincarotidplaque
MEILan1,2,DIAOXianming2,QIULihua2*
(1.DepartmentofRadiology,theAffiliatedHospitalofSouthwestMedicalUniversity,Luzhou646000,China;2.CT/MRIDivision,theSecondPeople'sHospitalofYibin,Yibin644000,China)
Carotid plaques are closely related to strokes or transient ischemic attacks. MRI plays an important role in the diagnosis and evaluation of prognosis. At present, the study of carotid plaque MRI is mainly focused on the evaluation of plaque stability and pathological mechanism. The research progresses of development mechanism and MR techniques in the diagnosis of carotid plaque were reviewed in this article.
Carotid arteries; Plaque, atherosclerotic; Magnetic resonance imaging; Mechanics mechanism
10.13929/j.1003-3289.201703140
R543.5; R445.2
A
1003-3289(2017)10-1558-04
四川省衛(wèi)生和計劃生育委員會普及應用項目(16PJ584)。
梅蘭(1991—),女,重慶人,在讀碩士。研究方向:神經(jīng)系統(tǒng)影像學。E-mail: 1241042245@qq.com
邱麗華,宜賓市第二人民醫(yī)院CT/MRI室,644000。E-mail: 283708370@qq.com
2017-03-26
2017-06-15