崔昌萌 郭鑫 宋思新 劉振剛 江沛
維生素D在創(chuàng)傷性腦損傷中神經(jīng)保護作用的研究進展
崔昌萌1郭鑫2宋思新3劉振剛2江沛4
創(chuàng)傷性腦損傷(TBI)是神經(jīng)外科最常見的疾病之一,是45歲以下人群中最具威脅的致殘、致死因素。TBI能夠?qū)е禄颊叩恼J知功能缺損和精神障礙。近年來,動物實驗和臨床試驗表明,活性形式的維生素D3(VDH)治療能夠改善TBI導致的認知功能缺損和精神障礙。因此,本文就維生素D的生理作用及VDH在TBI治療中可能的作用機制進行綜述。
維生素D; 創(chuàng)傷性腦損傷; 治療
創(chuàng)傷性腦損傷(traumatic brain injury,TBI)是神經(jīng)外科最常見的疾病之一,目前全球發(fā)病人數(shù)約140萬/年,是45歲以下人群中最具威脅的致殘、致死因素[1]。TBI能夠?qū)е禄颊叩恼J知功能缺損和精神障礙,包括記憶功能、學習能力、情緒和睡眠障礙(嗜睡)等方面[2-3]。生理狀態(tài)下,維生素 D(Vitamin D,VD)是人體必需的脂溶性維生素,主要來源于食物攝入和皮膚合成。隨著對VD研究的日益深入,其已從經(jīng)典的鈣磷穩(wěn)態(tài)調(diào)節(jié)劑逐步演變成多功能的開環(huán)甾體激素,在肥胖、心血管疾病、神經(jīng)變性疾病、抑郁等疾病的病理過程中發(fā)揮著至關重要的作用[4-7]。最近,越來越多的學者開始關注VD在TBI病理生理過程中的作用,有研究發(fā)現(xiàn)活性形式的維生素D3(vitamin D hormone,VDH)治療能夠改善TBI患者的認知功能缺損和精神障礙,提高其生活質(zhì)量[8-11]。因此,本文就VD的生理作用及VDH在TBI治療中可能的作用機制進行綜述。
VD作為人體必需的脂溶性維生素,與外周血鈣穩(wěn)態(tài)密切相關[12]。然而,近來的研究證實VD有著更廣泛的生理作用,包括對免疫功能的調(diào)節(jié)及對細胞周期的調(diào)控等[13,14]。同時,VD作為新型的神經(jīng)活性甾體,也影響著中樞神經(jīng)系統(tǒng)(central nervous system,CNS)的發(fā)育與功能[15]。
VD的外源形式主要有2種:植物來源的維生素D2(麥角鈣化醇)和動物來源的維生素D3(膽鈣化醇)。與維生素D2相比,維生素D3的補充對人體更為有效[16]。人和動物代謝產(chǎn)生的維生素D3主要在皮膚由7-脫氫膽固醇經(jīng)紫外線照射轉(zhuǎn)化而來,還有少量通過食物直接攝取[17]。維生素D3具有生物學惰性,在肝臟25-羥化酶和腎臟1α-羥化酶的作用下,經(jīng)兩步羥基化反應后,轉(zhuǎn)化生成VDH,即1,25(OH)2D3。VDH是維生素D3發(fā)揮生理學效應的基本形式,通過激活VDR發(fā)揮內(nèi)分泌功能[18,19]。
Stumpf等[20]首次在動物的大腦中檢測到高親和力VD受體的表達,提出VDH或許能夠在CNS中發(fā)揮生理學效應。同時,Parviainen等[21]通過鑒定健康患者腦脊液中VDH的代謝產(chǎn)物,進一步證實了這一假設。最初的觀點認為,CNS中VDH的濃度的高低與其通過血腦屏障的轉(zhuǎn)運方式有關[22]。然而,后續(xù)的研究發(fā)現(xiàn)25-羥化酶和1α-羥化酶廣泛分布于人類大腦中,說明維生素D的生物活化過程發(fā)生在CNS中[23]。另一方面,生理條件下CNS中的VDH濃度與血漿中VDH水平不存在相關性,但在口服補充維生素D3后,二者呈密切相關[24]。
VDH能夠在CNS中發(fā)揮重要的神經(jīng)保護作用,其作用機制是復雜多樣的[25,26]。首先,已有研究證明,VDH治療可以減輕受損腦組織內(nèi)的炎癥反應,減少神經(jīng)元的凋亡和損傷,從而改善TBI大鼠的神經(jīng)功能[27,28]。其次,VDH可以通過下調(diào)L型電壓敏感的Ca2+通道和上調(diào)細胞內(nèi)Ca2+的緩沖作用,減少鈣內(nèi)流,降低細胞內(nèi)鈣離子濃度,從而使興奮性毒性谷氨酸釋放減少[25]。再次,VDH能夠通過增加細胞內(nèi)抗氧化劑谷胱甘肽的水平加速自由基的清除,以此降低腦組織內(nèi)的氧化應激反應[29,30]。最后,VDH可以維持神經(jīng)元細胞骨架的完整性,促進其結構和功能的恢復,從而促進軸突的出芽和再生[31]。此外,VDH能夠上調(diào)神經(jīng)營養(yǎng)因子,促進與神經(jīng)元存活、發(fā)育和修復相關蛋白的表達[32]。
最近,為了探討VDH輔助孕酮(progesteron,PROG)治療在TBI后神經(jīng)損傷和炎癥反應中的作用。Tang等[33]通過控制性皮質(zhì)撞擊法制作大鼠模型,給予多種干預手段,觀察神經(jīng)元凋亡情況和星形膠質(zhì)細胞的活化程度,并進一步檢測炎癥因子白細胞介素1β(interleukin-1β,IL-1β)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)及核苷酸轉(zhuǎn)錄因子(nuclear factor kappa B,NF-κB)的表達水平。大鼠隨機分為3個治療組,分別為VDH(1μg/kg)組、PROG(16 mg/kg)組和VDH輔助PROG治療組,VDH和/或PROG于造模后1 h和6 h后注射。TBI引起的神經(jīng)炎癥級聯(lián)反應最初由 Toll樣受體-4(Tolllike receptor 4,TLR-4)的表達而觸發(fā),其進一步激活核因子NF-κB和核因子κB抑制因子α(NF-κB inhibitor alpha,IκBα)的表達。這些核因子的磷酸化(p-NF-κB和p-IκBα)通過調(diào)控下游基因(如TNF-α、IL-1β、COX2和iNOS)的表達,進一步加速急性炎癥級聯(lián)反應進程。該研究發(fā)現(xiàn),TBI后TLR4、p-NF-κB、p-IκBα、TNF-α、IL-1β、COX2和 iNOS的表達均升高,而在VDH輔助PROG治療后所有標記物含量均明顯下降,用VDH單獨治療則降低了IL-1β和p-IκBα的表達[33]。此外,進一步研究能夠觀察到 TBI后發(fā)生微管相關蛋白-2(microtubule associated protein-2,MAP-2)的丟失和膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)的過度激活。經(jīng)VDH和/或PROG治療后顯示,MAP-2明顯升高,同時GFAP的表達亦顯著降低,該變化在VDH輔助PROG治療后更為顯著。這項研究表明,VDH輔助治療能夠增強PROG在TBI后的神經(jīng)保護作用,而VDH單獨用藥亦可以降低大鼠TBI后神經(jīng)元損傷和炎癥反應。之后,Tang等[27]對TBI后VDH輔助治療的作用機制做了進一步研究。在大鼠造模后1 h后分別給予VDH(5μg/kg)、PROG(16 mg/kg)或VDH輔助PROG治療,后兩組大鼠PROG[16 mg/(kg·d)]治療維持一周。在TBI后10、21和22 d,對各組大鼠進行認知功能(空間記憶)、運動功能和組織學檢測。經(jīng)VDH和/或PROG治療后,雖然皮層腦組織中MAP-2的表達增加、神經(jīng)元損傷減輕,星形膠質(zhì)細胞的活化被抑制,但TBI大鼠的運動功能障礙并未得到緩解。值得注意的是,該研究發(fā)現(xiàn)VDH和/或PROG治療能夠改善TBI導致的認知功能障礙。該研究證明,盡管TBI后VDH單藥治療能夠發(fā)揮神經(jīng)保護作用,但是VDH輔助PROG治療能夠發(fā)揮更好的效果。
為了探討3種不同劑量(1、2.5或5μg/kg)的VDH輔助PROG(16 mg/kg)治療對TBI的神經(jīng)保護作用,Hua等[9]于TBI后1 h腹腔注射PROG和不同劑量的VDH,之后連續(xù)8 d皮下注射相同劑量的PROG維持治療,最后2 d梯度減量,并在TBI后21 d對各組大鼠進行神經(jīng)功能和組織學檢測。結果發(fā)現(xiàn),與對照組相比,所有治療組均可改善TBI大鼠的空間學習和記憶功能,而以低劑量(1μg/kg)VDH輔助PROG組的治療效果最為明顯。VDH輔助PROG治療可有效減少大鼠TBI后應激所致的焦慮樣行為,并且低劑量(1μg/kg)VDH輔助PROG的治療效果優(yōu)于中劑量(2.5μg/kg)VDH,而高劑量(5μg/kg)VDH輔助PROG組無效。雖然各治療組受損腦組織中GFAP陽性細胞數(shù)與對照組相比無明顯差異,但是低劑量VDH(1μg/kg)輔助PROG組的GFAP陽性細胞胞體明顯肥大,這或許與VDH輔助PROG治療的神經(jīng)保護作用有關。這些結果表明,VDH輔助PROG治療可以發(fā)揮神經(jīng)保護作用,改善TBI大鼠的神經(jīng)功能障礙,而低劑量VDH(1μg/kg)能夠發(fā)揮更好的效果。
為了探討VDH輔助PROG治療對臨床TBI患者的作用,Aminmansour等[34]將GCS低于8分的60名嚴重TBI患者納入試驗?;颊弑浑S機分為3組:安慰劑治療組、PROG治療組(1 mg/kg,每隔12 h 1次,連續(xù)5 d)、VDH輔助PROG治療組(5μg/kg,1次/d,連續(xù)5 d)。各組患者在TBI后8 h內(nèi)開始接受治療,并在其住院3個月后進行GCS和格拉斯哥結局量表評分(glasgow outcome scale,GOS)。結果發(fā)現(xiàn),VDH輔助PROG治療組TBI患者的死亡率為10%,顯著低于PROG組(20%)和安慰劑組(40%);在住院3個月后,3組GCS平均得分差異有統(tǒng)計學意義,VDH輔助PROG治療組、PROG組、安慰劑組的患者GCS平均得分分別為11.27、10.25和9.16;根據(jù)GOS評分將患者分為預后良好組和預后不良組,VDH輔助PROG治療組患者預后最好,預后良好率為60%,高于PROG治療組(45%)和安慰劑治療組(25%)。這些結果表明,重度TBI患者采取VDH輔助PROG治療效果顯著,能夠有效改善患者預后。
另一方面,VD缺乏在老年人中發(fā)生率較高,并且隨著年齡的增長呈上升趨勢。已有大量基礎實驗和臨床實踐證實,PROG有助于TBI后神經(jīng)功能的恢復。為了探討PROG對VD缺乏TBI大鼠神經(jīng)功能障礙的影響,國外Cekic等[35]在制作TBI模型前將老年大鼠隨機分為VD缺乏組和VD正常組,至少喂養(yǎng)21 d。與VD正常組比較,TBI后72 h VD缺乏組受損腦組織中炎癥標志物(如TNF-α、IL-6、NF-κB、COX2)表達升高,神經(jīng)元凋亡數(shù)量增多。VD缺乏大鼠在經(jīng)PROG治療后炎癥反應減輕,而進一步給予VDH(5μg/kg)可增強PROG的保護作用。盡管VD缺乏大鼠在經(jīng)VDH和PROG單藥治療后均可降低炎癥標志物的表達,但是VDH輔助PROG的治療效果更為顯著。另一方面,經(jīng)VDH輔助PROG治療后,老年TBI大鼠損傷腦組織內(nèi)凋亡因子Caspase-3活性片段及細胞周期調(diào)控蛋白P53的表達均明顯降低。此外,TBI導致了老年大鼠短期內(nèi)自發(fā)活動減少,而PROG治療能夠改善VD正常TBI大鼠的行為活動障礙。當給予VD缺乏組TBI老年大鼠PROG治療后,其行為活動障礙并未得到改善。而進一步的VDH治療則能明顯增加TBI老年大鼠短期內(nèi)的自發(fā)活動。該研究表明,TBI能夠?qū)е耉D缺乏老年大鼠較強的炎癥反應,而經(jīng)VDH單藥治療和VDH輔助PROG治療后均可抑制該現(xiàn)象,從而減少神經(jīng)元凋亡,改善大鼠的行為活動障礙。
近年來,動物實驗和臨床試驗表明,VDH治療在TBI后發(fā)揮了重要的神經(jīng)保護作用。VD缺乏在人群中較為普遍,且與多種創(chuàng)傷性腦損傷的合并癥有關,如認知功能障礙、抑郁焦慮等精神疾病。因此,設計合理的觀察性研究、臨床病例對照實驗,甚至是前瞻性隊列研究來考察VDH對TBI后神經(jīng)精神疾病的改善作用是十分必要的。另一方面,目前大部分學者更多的將VDR作為PROG治療的一種輔助手段進行研究,關于VDH單體治療與TBI及其合并癥的關系還存在很多疑惑,例如:VDH對TBI疾病的神經(jīng)保護分子機制研究還不夠深入;VDH缺乏與TBI及其合并癥之間具體關系尚未闡述清晰;VDH補充的最小劑量和安全范圍等問題仍不明確等。VDH作為神經(jīng)甾體,很可能成為一種頗有前景的TBI疾病治療藥物,其具有經(jīng)濟實惠、較易獲取、不良反應少和能夠長期應用等優(yōu)點,有望為TBI及其合并癥的治療打開新思路。
[1] Davis T,Ings A;National Institute of Health and Care Excellence.Head injury:triage,assessment,investigation and early management of head injury in children,young people and adults(NICE guideline CG 176)[J].Arch Dis Child Educ Pract Ed,2015,100(2):97-100.
[2] Titus DJ,Wilson NM,Freund JE,et al.Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor[J].J Neurosci,2016,36(27):7095-7108.
[3] Han K,Chapman SB,Krawczyk DC.Altered Amygdala Connectivity in Individuals with Chronic Traumatic Brain Injury and Comorbid Depressive Symptoms[J].Front Neurol,2015,6:231.
[4] Kim J,Lee Y,Kye S,et al.Association of serum vitamin D with osteosarcopenic obesity:Korea National Health and Nutrition Examination Survey 2008-2010[J].J Cachexia Sarcopenia Muscle, 2017,8(2):259-266.
[5] Chin K,Zhao D,Tibuakuu M,et al.Physical activity,Vitamin D, and Incident Atherosclerotic Cardiovascular Disease in Whites and Blacks:the ARIC Study[J].J Clin Endocrinol Metab,2017, 102(4):1227-1236.
[6] Lam V,Takechi R,Pallabage-Gamarallage M,et al.The Vitamin D,Ionised Calcium and Parathyroid Hormone Axis of Cerebral Capillary Function:Therapeutic Considerations for Vascular-Based Neurodegenerative Disorders[J].PLoS One,2015,10(4):e0125504.
[7] von Kanel R,Fardad N,Steurer N,et al.Vitamin D Deficiency and Depressive Symptomatology in Psychiatric Patients Hospitalized with a Current Depressive Episode:A Factor Analytic Study[J].PLoS One,2015,10(9):e0138550.
[8] Jamall OA,Feeney C,Zaw-Linn J,et al.Prevalence and correlates of vitamin D deficiency in adults after traumatic brain injury[J].Clin Endocrinol(Oxf),2016,85(4):636-644.
[9] Hua F,Reiss JI,Tang H,et al.Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury[J].Horm Behav,2012,61(4):642-651.
[10] Cheng Z,Lin J,Qian Q.Role of Vitamin D in Cognitive Function in Chronic Kidney Disease[J].Nutrients,2016,8(5):291.
[11] de Koning EJ,van Schoor NM,Penninx BW,et al.Vitamin D supplementation to prevent depression and poor physical function in older adults:Study protocol of the D-Vitaal study,a randomized placebo-controlled clinical trial[J].BMC Geriatr, 2015,15(1):151.
[12] DeLuca GC,Kimball SM,Kolasinski J,et al.Review:The role of vitamin D in nervous system health and disease[J].Neuropathol Appl Neurobiol,2013,39(5):458-484.
[13] Suaini NH,Zhang Y,Vuillermin PJ,etal.Immune Modulation by Vitamin D and Its Relevance to Food Allergy[J].Nutrients,2015, 7(8):6088-6108.
[14] Pilon C,Urbanet R,Williams TA,et al.1α,25-Dihydroxyvitamin D 3 inhibits the human H295R cell proliferation by cell cycle arrest:A model for a protective role of vitamin D receptor against adrenocortical cancer[J].J Steroid Biochem Mol Biol,2013,140:26-33.
[15] Miratashi Yazdi SA,Abbasi M,Miratashi Yazdi SM.Epilepsy and vitamin D:a comprehensive review of current knowledge[J]. Rev Neurosci,2017,28(2):185-201.
[16] March KM,Chen NN,Karakochuk CD,et al.Maternal vitamin D3 supplementation at 50μg/d protects against low serum 25-hydroxyvitamin D in infants at 8 wk of age:a randomized controlled trial of 3 doses of vitamin D beginning in gestation and continued in lactation[J].Am J Clin Nutr,2015,102(2):402-410.
[17] Reichrath J,Zouboulis CC,Vogt T,et al.Targeting the vitamin D endocrine system (VDES)for the management of inflammatory and malignant skin diseases:An historical view and outlook[J]. Rev Endocr Metab Disord,2016,17(3):405-417.
[18] Yu W,Ge M,Lu S,et al.Decreased expression of vitamin D receptor may contribute to the hyperimmune status of patients with acquired aplastic anemia[J].Eur J Haematol,2016,96(5):507-516.
[19] Zhou R,Chun RF,Lisse TS,et al.Vitamin D and alternative splicing of RNA[J].J Steroid Biochem Mol Biol,2015,148:310-317.
[20] Stumpf WE,Sar M,Clark SA,et al.Brain target sites for 1,25-dihydroxyvitamin D3[J].Science,1982,215(4538):1403-1405.
[21] Parviainen MT,Savolainen KE,Alhava EM,et al.25-hydroxyvitamin D2,25-hydroxyvitamin D3 and total 24,25-dihydroxyvitamin D in human serum[J].Ann Clin Res,1981,13 (1):26-33.
[22] Pardridge WM,Sakiyama R,Coty WA.Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier [J].J Neurochem,1985,44(4):1138-1141.
[23] Eyles DW,Smith S,Kinobe R,et al.Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain[J].J Chem Neuroanat,2005,29(1):21-30.
[24] Spach KM,Hayes CE.Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice[J].J Immunol, 2005,175(6):4119-4126.
[25] Sedighi M,Haghnegahdar A.Role of vitamin D.sub.3 in treatment of lumbar disc herniation-pain and sensory aspects:study protocol for a randomized controlled trial[J].Trials,2014, 15(1):373.
[26] Puzianowska-Kuznicka M,Pawlik-Pachucka E,Owczarz M,et al. Small-molecule hormones:molecular mechanisms of action[J].Int J Endocrinol,2013,2013(15):601246.
[27] Tang H,Hua F,Wang J,et al.Progesterone and vitamin D:Improvement after traumatic brain injury in middle-aged rats[J]. Horm Behav,2013,64(3):527-538.
[28] Scrimgeour AG,Condlin ML.Nutritional treatment for traumatic brain injury[J].J Neurotrauma,2014,31(11):989-999.
[29] Yan M,Nuriding H.Reversal effect of vitamin D on different multidrug-resistant cells[J].Genet Mol Res,2014,13(3):6239-6247.
[30] Rizvi A,Chibber S,Naseem I.Cu(II)-Vitamin D interaction leads to free radical-mediated cellular DNA damage:a novel putative mechanism for its selective cytotoxic action against malignant cells[J].Tumor Biology,2015,36(3):1695-1700.
[31] Wu D,Raafat A,Pak E,et al.Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro[J].Exp Neurol, 2012,233(1):555-565.
[32] Pirotta S,Kidgell DJ,Daly RM.Effects of vitamin D supplementation on neuroplasticity in older adults:a doubleblinded,placebo-controlled randomised trial[J].Osteoporos Int, 2015,26(1):131-140.
[33] Tang H,Fang H,Wang J,et al.Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury[J].Brain Inj,2015,29(10):1-10.
[34] Aminmansour B,Nikbakht H,Ghorbani A,et al.Comparison of the administration of progesterone versus progesterone and vitamin D in improvement of outcomes in patients with traumatic brain injury:A randomized clinical trial with placebo group[J]. Adv Biomed Res,2012,1(1):58.
[35] Cekic M,Cutler SM,Vanlandingham JW,et al.Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats[J].Neurobiol Aging,2011,32(5):864-874.
Review of the neuroprotective role of vitamin D in traumatic brain injury
Cui Changmeng1,Guo Xin2,Song Sixin3,Liu Zhengang2,Jiang Pei4.1Department of Neurosurgery,Affiliated Hospital of Jining Medical University,Jining 272029,China;2Graduate School in North China University of Science and Technology,Tangshan 063000,China;3Department of Neurosurgery,Affiliated Hospital of Taishan Medical University,Taian 271000,China;4Institute of Clinical Pharmacy and Pharmacology,Jining First People’s Hospital,Jining 272029,China
Jiang Pei,Email:jiangpeicsu@sina.com
Traumatic brain injury (TBI),one of the most common diseases of neurosurgery, remains high mortality and disability in the population under 45 years.TBI patients suffer permanent cognitive neurological and psychological disabilities.In recent years,basic and clinical experiments have shown that the active form of vitamin D3(vitamin D hormone,VDH)treatment can improve TBI-induced cognitive impairment and mental disorders.Therefore,in this paper,we focused on the physiological role of vitamin D and the possible mechanism of VDH supplementation following TBI.
Vitamin D;Traumatic brain injury;Treatment
2017-05-03)
(本文編輯:張麗)
10.3877/cma.j.issn.2095-9141.2017.03.012
2016年度國家自然科學基金項目(81602846)
272029 濟寧,濟寧醫(yī)學院附屬醫(yī)院神經(jīng)外科1;063000 唐山,華北理工大學研究生學院2;271000 泰安,泰山醫(yī)學院附屬醫(yī)院神經(jīng)外科3;272029 濟寧市第一人民醫(yī)院臨床藥學科4
江沛,Email:jiangpeicsu@sina.com
崔昌萌,郭鑫,宋思新,等.維生素 D在創(chuàng)傷性腦損傷中神經(jīng)保護作用的研究進展[J/CD].中華神經(jīng)創(chuàng)傷外科電子雜志,2017,3(3):175-178.