• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method

    2017-01-06 08:47:03ShizhoWngBeijiShiYuhngLiGuoweiHe

    Shizho Wng,Beiji Shi,b,Yuhng Li,b,Guowei He,b,?

    aThe State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method

    Shizhao Wanga,Beiji Shia,b,Yuhang Lia,b,Guowei Hea,b,?

    aThe State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bSchool of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    H I G H L I G H T S

    ·The velocity self-similarity of wake is predicted by using large-eddy simulation.

    ·Diffuse interface immersed boundary method is coupled with large eddy simulation.

    ·The flow solver with IB method shows nearly linear parallel scalabilities.

    A R T I C L E I N F O

    Article history:

    Received 2 November 2016

    Accepted 7 November 2016

    Available online 22 November 2016

    Underwater vehicle

    SUBOFF

    Immersed boundary method

    Large eddy simulation

    Adaptive mesh refinement

    A large eddy simulation(LES)of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0×105.An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries.The adaptive mesh refinement is utilized to resolve the flows near the hull.The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion.The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model.The present simulation captures the essential features of the vortex structures near the hull and in the wake. Both of the time-averaged pressure coefficients and streamwise velocity profiles obtained from the LES areconsistent with the characteristics of the flows pass an appended axisymmetric body.The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The modern underwater vehicles have untraditional appendages to achieve high maneuverability at intermediate to high Reynolds numbers[1,2].This raises two challenges for a full-scale simulation of the flows around the underwater vehicles:the first one is to handle the complex geometric and moving boundaries; the second one is to calculate the characteristics of viscous flows near the boundaries and in the wake[3,4].Recently,the immersed boundary(IB)method in combination with large eddy simulation has been developed to simulate turbulent flows with complex geometric and moving boundaries[5–7].The IB method is a nonbody conformal method and circumvents the generation of bodyfitting grids,where an artificial force is added to the Navier–Stokes equations to represent the boundary effect on flows,This method has been widely used in cardiovascular flows,bio-locomotion,and wind-turbines[8–10]with great successes.

    Recently,Posa and Balaras[11]have used the hybrid immersed boundary method and large eddy simulation to simulate the wake of an axisymmetric body with appendages.They choose a sharp interface IB method to simulate the turbulent wakes.The sharp interface IB method treats the boundaries on the Eulerian meshes by using complex local flow field reconstructions or the cut cell techniques,which are usually time consuming for a body with complex geometry.Instead of reconstructing the cell near boundaries,the diffuse interface IB method spreads the effects of solid boundaries onto a band of cells near boundaries.This method ensures the efficiency and robustness of the implementation. The diffuse interface IB method has been successfully utilized in laminar flows,but the grid resolution near the wall often limits its application to turbulent flows.The diffuse interface IBmethodcannotrefinethegridonlyalongthewallnormaldirection, since it is a non-body conformal method.The adaptive mesh refinement is an efficient way to locally refine the mesh,and can be utilized to reduce the number of mesh cells in the diffusive IB method.Furthermore,the diffusive IB method needs to be combinedwiththelargeeddysimulationtoavoidresolvingallflow structures in turbulence.However,the combinations of the diffuse interface IB method,adaptive mesh refinement,and large eddy simulationmightnotguaranteetheiraccuracyandefficiency,since they have different theoretical bases and numerical implement techniques.The simulations of turbulent flows with complex geometric boundaries are required to investigate the validation and efficiency of the combinations of the diffuse interface IB method,adaptive mesh refinement,and the large eddy simulation.

    Fig.1.DARPA SUBOFF with full appendages(a)and the Lagrangian mesh near the sail(b)and fins(c).

    The objective of the present work is to investigate the validation and efficiency of the hybrid diffuse interface IB method, adaptive mesh refinement and large eddy simulation for turbulent flows with complex geometric boundaries.The advantages and disadvantages of the method will also be reported.The simulated model is taken as the flows around an underwater vehicle.We will use the moving-least-squares reconstruction on a block structured mesh with the adaptive mesh refinement technique.We will first introduce the underwater vehicle model and the numerical method that will be used.The efficiency of our code will be discussed and numerical results will be presented.Finally,we will summarize the results and future work.

    In the present work,the DARPA SUBOFF is used as the underwater vehicle model.The model consists of an axisymmetric hull,a sail and four fins,as shown in Fig.1.The axisymmetric hull is composed of a bow forebody,a parallel middle body section,and a curved stern.The hull has a maximum diameterDand a lengthL/D=8.6.The details of the used model can be found in the Ref.[12].The appendages raise the challenges in both handling with the complex geometric boundaries and capturing the flow features(such as boundary layer,junction flows,tip flows,and their interactions),which provide a sufficient complex model for investigating the capability of the diffuse interface IB method in combination of large eddy simulation and the adaptive mesh refinement.

    Table 1 Strong scalability of the flow solver on a mesh of about 50 million cells.The notations‘Ncore’and‘Ncell’denote the number of cores and the number of cells, respectively.‘Tstep’denotes the wall-clock time cost per step.

    Table 2 Weak scalability of the flow solver with a mesh of about 0.26 million cells per core. The notations‘Ncore’and‘Ncell’denote the number of cores and the number of cells,respectively.‘Tstep’denotes the wall-clock time cost per step.

    The present work focuses on deep-submergence underwater vehicle,where the effects of free surface on the flows near the model are ignored.The flows around the model are governed by theNavier–Stokesequationsforsinglephaseincompressibleflows. The governing equations for large eddy simulation are given by where?ui(i=1,2,3)and?pare the filtered velocity components and pressure,respectively.The sub-grid stresses?τijis represented by the wall-adapting local eddy-viscosity model withCw= 0.6[13].fi(i=1,2,3)are the volume forces that represent the effects of boundaries on the flows in the IB method.Re is the Reynolds number.

    Equations(1)and(2)are discretized on a Cartesian Eulerian mesh and solved by using a projection method.The secondorder central difference is used for the spatial derivatives,and the second-order Adams–Bashforth method is used for the time advance.Figure 1 presents the Lagrangian mesh near the sail and fins on the SUBOFF.A diffuse interface IB method based on the moving-least-squares reconstruction is used to represent the effects of the model surface on flows.[14,15].The computational domain is[-4.3D,4.3D]×[-4.3D,4.3D]×[-2.6D,23.2D].The uniformupstreamflowboundaryconditionisusedattheinlet,and convective outflow boundary condition is used at the outlet.The non-slip boundary conditions are used on the immersed surfaces. The slip boundary conditions are used at the outer boundaries.A trip wire is located at the 0.25Ddownstream of the model nose. The Reynolds number based on the upstream flow velocity and the length of the model isReL=U∞L/ν=1.0×105,corresponding to a Reynolds number based on the maximum diameter ofReD=U∞D(zhuǎn)/ν≈ 1.16×104.HereU∞is the uniform free stream flow velocity andνis the kinematic viscosity of the fluid.

    In the present simulation,we utilize the block-structured mesh with adaptive mesh refinement.The parallel scalability of the flow solver is tested on meshes with different levels of refinement. Table 1 gives the wall-clock time cost of the flow solver on a mesh of about 50 million cells,which decreases as increasing the number of cores;Table 2 gives the wall-clock time cost of the flow solver on a mesh of about 0.26 million cells per core,which keeps nearly constant as increasing the number of cores.They show the strong and weak scalabilities of the parallel solver,respectively. In this letter,we report the preliminary results on the mesh of 50 million cells with a minimum grid length ofdh=0.0336. The minimum grid length is about 300 wall units,where the wall unit is estimated based on the turbulent boundary layer over a flat plate.The grid independence is checked to guarantee the sufficient resolution for the time-averaged pressure coefficient on the hull and the streamwise velocity profiles in the wake.It is worth to mention that the grid resolution is not fine enough to directly calculate the wall shear stress.A wall model is usually utilized to correctly obtain the wall shear stress in the LES with such a near-wallgridresolution.Wecalculatethetime-averagedpressure coefficient on the hull and the streamwise velocity profiles in the wake in the present letter.The simulations with wall models and the distribution of wall shear stress will be carried on in future.

    Fig.2.(Color Online)The snapshots of the instantaneous vorticity magnitude(a,c)and pressure(b)at the symmetric plane(x=0).The notations‘TV’and‘BL’denote‘Tip Vortex’and‘Boundary Layer’,respectively.

    Figure 2 plots the contours of vorticity magnitude and pressure at the symmetric plane(x=0).The essential features of flows can be observed,such as boundary layer,tip flows,shear layers and their interactions:(1)the pressure increases in front of the hull due to the decreasing velocities near the stagnation point at the nose;(2)the boundary layer develops from the stagnation point. The flow separates at the trip wire and reattaches to the hull in the rear of the trip wire;(3)the boundary layer and upstream flows interact with the leading edge of the sail,which causes a local pressure peak in front of the sail;(4)the tip flow origins from the top of the sail and moves downstream in the form of tip vortex;(5)the tip vortex(denoted as TV in Fig.2)interacts with the boundary layer(denoted as BL in Fig.2)in the middle of the hull;(6)the adverse pressure gradient occurs near the stern due to the contraction of hull and contributes to the boundary layer separation;(7)the boundary layer from the hull interacts with the fins,resulting in local pressure peaks in front of the fins;(8)the free shear layers shed from the fins and the hull are convected downstream into the wake;(9)the bimodal behavior of vorticity magnitudes can be observed in the wake,which is caused by the boundary layer separation and the interactions of the shear layers from both hull and fins.The pressure is consistent with the observed vortex structures[11,16,17],which can be found in the discussion on Fig.3.

    The distributions of the time-averaged pressure coefficients at the bottom and top meridians of the model are shown in Fig.3.The pressure coefficient is computed in terms of

    Fig.3.(Color Online)Time-averaged pressure coefficients on the top and bottom meridians of the model.

    where?p∞and 0.5ρU2∞are the static and dynamic pressures at the inlet,respectively.ρis the density of the fluid.The overall distribution of the time-averaged pressure coefficient is consistent with the experimental result of Jiménez et al.[16]and the numerical simulation of Posa and Balaras[11].The differences between the current simulation and the Refs.[11,16]are caused by the different Reynolds numbers.The Reynolds number in the present simulations isReL=U∞L/ν= 1.0× 105,which is only about 1/10 of those from the experiment(ReL=U∞L/ν= 1.1×106)[16]and the numerical simulation(ReL=U∞L/ν= 1.2×106)[11].The detailed features of the pressure coefficient are as follows:(1)the pressure coefficient has a maximum value at the stagnation point(z/L=0),and decreases sharply before it reaches the trip wire(0 <z/L< 0.03);(2)the pressure coefficient increases in the rear of the trip wire,and reaches a local maximum at the top meridian in front of the sail(0.03<z/L< 0.2).The present simulation has a lower pressure region right behind the trip wire.The low pressure is caused by the size of the trip wire,in addition to the low Reynolds number effects.The diameter of the trip wire in the present simulation is about 10 times as large as those in the previous experiment and numerical simulation[11,16],which ensures the boundary layer transition at a lower Reynolds number;(3)the pressure coefficient at the bottom meridian varies slowly in the middle of the hull(0.2 <z/L< 0.7),since there is a parallel section in the model;the pressure coefficient at the top meridian varies slowly only in the region 0.4<z/L< 0.7,because the wake of sail affects the pressure beforez/L=0.4;(4)The adversed pressure gradient appears near the stern(0.7 <z/L< 0.9). The pressure coefficient near the stern is higher than those in the Refs.[11,16].This is caused by the lower Reynolds number in the present simulation.The lower Reynolds number is corresponding to a thicker boundary layer along the hull.The thicker boundary layer reduces the effect of the geometry contraction of the hull; (5)the pressure coefficient reaches the local peak in front of the fins(z/L≈0.9),which corresponds to the interaction of boundary layers with fins.Notice that no fin is used in the experiment[16]. Instead, the full appendages are used in the present simulation.We also checked the effect of refinement levels on the distribution of pressure coefficients.The results show that the diffuse interface IB method reproduces the essential features of the distribution of pressure coefficient.

    Figure 4 plots the time-averaged streamwise velocity profiles in the wake.The time-averaged streamwise velocity is normalized bythelocaldefectvelocityu0andhalf-wakewidthl0,whichsatisfy the following power law[18],respectively,

    Fig.4.(Color Online)Self-similar behaviors of the time-averaged streamwise velocity profiles in the wake.The labels‘6D’,‘9D’,and‘12D’indicate the velocity profiles at 6D,9D,and 12D downstream from the model tail.

    whereA,B,andx0are the coefficients dependent on the behaviors of the flow.The coefficients in Eqs.(4)and(5)for the present simulations areA=0.902,B=0.245,andx0=1.908.The velocity defects at three different locations in the wake are selfsimilar,since they nearly collapse into one single curve at the scaled vertical distances.The time-averaged velocity profile in the side of the sail(y/l0>0)is lower than that in the experiment[16]. The lower time-averaged velocity profile is also reported by Posa and Balaras[11].This is caused by the blockage of the support in the experiment, since a long sail to support the model is used in the experiment.The time-averaged velocity defects without the effect of support are obtained by Jiménez et al.[16]and an analytical model for the axisymmetric wake provided by Pope[19]are also plotted in Fig.4.The velocity defects in the present simulation are consistent with the experimental and analytical results.

    In summary,the large eddy simulation of DARPA SUBOFF with the full appendages is performed by using a diffuse interface immersed boundary method.Particularly,the IB method is implemented through the moving-least-squares reconstruction and the block structured meshes with adaptive mesh refinement. The parallel scalabilities of the flow solver are tested on meshes at different levels of refinement with the total cells number varying from 50 million to 3.2 billion.It is shown that the parallel solver has the nearly linear strong and weak scalabilities for the present configuration.The numerical results provide the overall features of the flows near the hull surfaces and in the wake. The time-averaged pressure coefficients on the hull surface are consistent with the model configuration.The defects of time-averaged streamwise velocities exhibit the self-similarities as predicted by the power law.

    The diffuse interface IB method used in this work is robust and efficient for simulating intermediate Reynolds number flows aroundunderwatervehicles.However,itremainsagreatchallenge that the IB method is used to predict the shear stresses on hull surfaces.The shear stresses are dependent on the velocity gradients near surfaces so that the finer meshes in the wallnormal direction are needed.It is noted that the meshes in the IB method cannot be refined only in the wall-normal direction. Two possible approaches to overcome this defeat are to increase the grid numbers near wall and use the wall models.The nearly linear scalability of the present flow solver allows us to use tens of thousands of cores with billions of grid points in National Center of Supercomputer.Meanwhile,we will use the wall models for the IB method to reduce the computational cost and provide a feasible approach for the simulation-based studies of underwater vehicles.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11302238,11232011 and 11572331).The authors would like to acknowledge the support from the Strategic Priority Research Program(XDB22040104)and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)and the National Basic Research Program of China(973 Program 2013CB834100:Nonlinear science).

    [1]P.R. Bandyopadhyay, Trends in biorobotic autonomous undersea vehicles, IEEE J. Ocean. Eng. 30 (2005) 109–139

    [2]X.C. Wu, Y.W. Wang, C.G. Huang, et al., An effective CFD approach for marine-vehicle maneuvering simulation based on the hybrid reference frames method, Ocean Eng. 109 (2015) 83–92.

    [3]Y.Yang,D.I.Pullin,Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows,J.Fluid Mech.685(2011)146–164.

    [4]Y.M.Zhao,Y.Yang,S.Y.Chen,Vortex reconnection in the late transition in channel flow,J.Fluid Mech.802(2016)R4.http://dx.doi.org/10.1017/jfm. 2016.492.

    [5]J.M.Yang,E.Balaras,An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries,J.Comput. Phys.215(2006)12–40.

    [6]X.L.Yang,G.W.He,X.Zhang,Large-eddy simulation of flows past a flapping airfoil using immersed boundary method,Sci.China Phys.Mech.Astron.53 (2010)1101–1108.

    [7]C.Yan,W.X.Huang,G.X.Cui,et al.,A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries,Int.J.Comput.Fluid Dyn.29(2015)1–14.

    [8]C.S.Peskin,The immersed boundary method,Acta Numer.11(2001)479–517.

    [9]R.Mittal,G.Iaccarino,Immersed boundary methods,Annu.Rev.Fluid Mech. 37(2005)239–261.

    [10]F.Sotiropoulos,X.L.Yang,Immersed boundary methods for simulating fluid–structure interaction,Prog.Aerosp.Sci.65(2014)1–21.

    [11]A.Posa,E.Balaras,A numerical investigation of the wake of an axisymmetric body with appendages,J.Fluid Mech.792(2016)470–498.

    [12]N.C.Groves,T.T.Huang,M.S.Chang,Geometric Characteristics of the DARPA SUBOFF Models,Tech.Rep.No.DTRC/SHD-1298-01,David Taylor Research Center,Bethesda,MD,1989.

    [13]F.Nicoud,F.Ducros,Subgrid-scale stress modelling based on the square of the velocity gradient tensor,Flow Turbul.Combust.62(1999)183–200.

    [14]M.Vanella,P.Rabenold,E.Balaras,A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems,J.Comput.Phys.229(2010)6427–6449.

    [15]M.Vanella,E.Balaras,A moving-least-squares reconstruction for embeddedboundary formulations,J.Comput.Phys.228(2009)6617–6628.

    [16]J.M.Jiménez,R.T.Reynolds,A.J.Smits,The intermediate wake of a body of revolution at high Reynolds numbers,J.Fluid Mech.659(2010)516–539.

    [17]J.M.Jiménez,R.T.Reynolds,A.J.Smits,The effects of fins on the intermediate wake of a submarine model,J.Fluids Eng.132(2010)031102.

    [18]P.B.V.Johansson,W.George,M.Gourlay,Equilibrium similarity,effects of initial conditions and local Reynolds number on the axisymmetric wake,Phys. Fluids 15(2003)603–617.

    [19]S.B.Pope,Turbulent Flows,Cambridge University,United Kingdom,London, 2010(Chapter 5).

    ?Corresponding author.

    E-mail address:hgw@lnm.imech.ac.cn(G.He).

    http://dx.doi.org/10.1016/j.taml.2016.11.004

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    国产在线男女| 亚洲av.av天堂| 熟妇人妻久久中文字幕3abv| 超碰97精品在线观看| 午夜福利视频1000在线观看| 少妇裸体淫交视频免费看高清| 国产精品国产三级国产av玫瑰| av在线蜜桃| kizo精华| 真实男女啪啪啪动态图| 免费看av在线观看网站| 国产中年淑女户外野战色| 日韩强制内射视频| 在线免费观看的www视频| 又大又黄又爽视频免费| av在线蜜桃| 人人妻人人澡人人爽人人夜夜 | 久久久久久久国产电影| 五月天丁香电影| 99热网站在线观看| 日韩av在线免费看完整版不卡| 日本黄大片高清| 国产白丝娇喘喷水9色精品| 国产亚洲精品av在线| 久久精品国产亚洲av天美| 国产淫片久久久久久久久| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区久久| 国产爱豆传媒在线观看| 网址你懂的国产日韩在线| 国产欧美日韩精品一区二区| 狠狠精品人妻久久久久久综合| 好男人在线观看高清免费视频| 亚洲国产精品成人综合色| 搡老乐熟女国产| 99久久中文字幕三级久久日本| 26uuu在线亚洲综合色| 22中文网久久字幕| 精品国产一区二区三区久久久樱花 | 在线免费观看的www视频| 少妇高潮的动态图| 伦精品一区二区三区| 国产久久久一区二区三区| 国产成人aa在线观看| 免费看美女性在线毛片视频| 日日撸夜夜添| 午夜福利高清视频| 精品国产露脸久久av麻豆 | 国产黄片美女视频| 欧美变态另类bdsm刘玥| 国产精品麻豆人妻色哟哟久久 | 人体艺术视频欧美日本| 看免费成人av毛片| a级一级毛片免费在线观看| 九九爱精品视频在线观看| 亚洲欧美中文字幕日韩二区| 国产亚洲精品久久久com| 69人妻影院| 天美传媒精品一区二区| 免费看美女性在线毛片视频| 亚洲国产欧美人成| 高清av免费在线| 国产精品无大码| 亚洲精品日韩在线中文字幕| 亚洲精品视频女| 亚洲精品亚洲一区二区| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区黑人 | 美女cb高潮喷水在线观看| 卡戴珊不雅视频在线播放| 日本爱情动作片www.在线观看| 最近视频中文字幕2019在线8| 色综合站精品国产| 青春草亚洲视频在线观看| 视频中文字幕在线观看| 国产精品日韩av在线免费观看| 五月玫瑰六月丁香| 亚洲18禁久久av| 美女黄网站色视频| 少妇丰满av| 看非洲黑人一级黄片| 在线观看一区二区三区| 日本wwww免费看| 国产精品国产三级国产av玫瑰| 精品久久久久久电影网| 我的女老师完整版在线观看| 亚洲欧美精品专区久久| 久久这里只有精品中国| 国产黄a三级三级三级人| 777米奇影视久久| 久久这里只有精品中国| 菩萨蛮人人尽说江南好唐韦庄| 国产精品无大码| 在线观看一区二区三区| 日韩不卡一区二区三区视频在线| 少妇丰满av| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 日韩三级伦理在线观看| 亚洲综合色惰| 亚洲18禁久久av| 国产精品女同一区二区软件| 舔av片在线| 听说在线观看完整版免费高清| 一级毛片久久久久久久久女| 18禁在线播放成人免费| 国产一区二区亚洲精品在线观看| 欧美精品国产亚洲| 国产亚洲91精品色在线| 日韩av免费高清视频| av在线天堂中文字幕| 91久久精品国产一区二区三区| 激情 狠狠 欧美| 久久久久久久午夜电影| 免费看美女性在线毛片视频| 69人妻影院| 91久久精品国产一区二区成人| 久久午夜福利片| 午夜精品在线福利| 成人二区视频| 日日啪夜夜爽| 精品久久久噜噜| 国产成人午夜福利电影在线观看| 亚洲av中文字字幕乱码综合| 赤兔流量卡办理| 99久久九九国产精品国产免费| 人人妻人人澡人人爽人人夜夜 | 日本色播在线视频| 精品久久久久久久久亚洲| 亚洲伊人久久精品综合| 日韩欧美三级三区| 99九九线精品视频在线观看视频| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 97在线视频观看| 国产黄片视频在线免费观看| videossex国产| 婷婷色综合www| 日韩 亚洲 欧美在线| 国产精品国产三级国产专区5o| 午夜爱爱视频在线播放| 亚洲精品成人av观看孕妇| 91精品国产九色| 免费黄频网站在线观看国产| 日韩一区二区视频免费看| 夜夜爽夜夜爽视频| 国产成人一区二区在线| 少妇高潮的动态图| av在线蜜桃| 中文天堂在线官网| 欧美日韩精品成人综合77777| 久久精品久久久久久噜噜老黄| 午夜激情久久久久久久| 国产亚洲91精品色在线| 深夜a级毛片| 精品一区二区免费观看| 五月玫瑰六月丁香| 深爱激情五月婷婷| 国产成人a∨麻豆精品| 最近中文字幕高清免费大全6| 国产高清国产精品国产三级 | 丝袜喷水一区| 精品国内亚洲2022精品成人| 亚洲怡红院男人天堂| 80岁老熟妇乱子伦牲交| 日韩欧美一区视频在线观看 | 夫妻性生交免费视频一级片| 午夜福利在线观看免费完整高清在| 成年女人看的毛片在线观看| 全区人妻精品视频| 日本黄大片高清| 神马国产精品三级电影在线观看| 国产亚洲5aaaaa淫片| 哪个播放器可以免费观看大片| 亚州av有码| 久久久久久国产a免费观看| 校园人妻丝袜中文字幕| 免费观看的影片在线观看| 能在线免费观看的黄片| 免费看av在线观看网站| 免费少妇av软件| 亚洲最大成人中文| 黄色日韩在线| 成人亚洲欧美一区二区av| 欧美日韩综合久久久久久| 国产男女超爽视频在线观看| 中文天堂在线官网| 最新中文字幕久久久久| 国产精品三级大全| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 亚洲精品久久午夜乱码| 国产在视频线精品| 韩国高清视频一区二区三区| 真实男女啪啪啪动态图| 小蜜桃在线观看免费完整版高清| 国产一区二区三区综合在线观看 | 永久网站在线| 日本与韩国留学比较| 免费不卡的大黄色大毛片视频在线观看 | 欧美性猛交╳xxx乱大交人| 欧美xxxx黑人xx丫x性爽| 好男人视频免费观看在线| 国产视频内射| 国产日韩欧美在线精品| 成人午夜精彩视频在线观看| 免费无遮挡裸体视频| 精品人妻偷拍中文字幕| 亚洲精品成人久久久久久| 黑人高潮一二区| 我要看日韩黄色一级片| 亚洲高清免费不卡视频| 免费在线观看成人毛片| 极品少妇高潮喷水抽搐| 日韩国内少妇激情av| 精品国产一区二区三区久久久樱花 | 久久这里有精品视频免费| 亚洲丝袜综合中文字幕| 久久久精品免费免费高清| 久久鲁丝午夜福利片| 成人毛片a级毛片在线播放| 国产精品av视频在线免费观看| 色哟哟·www| 18禁在线无遮挡免费观看视频| 亚洲精品456在线播放app| 大又大粗又爽又黄少妇毛片口| 伦理电影大哥的女人| 久久精品国产自在天天线| 国产高清国产精品国产三级 | 午夜福利网站1000一区二区三区| 自拍偷自拍亚洲精品老妇| 黄片无遮挡物在线观看| 热99在线观看视频| 日韩av免费高清视频| 美女内射精品一级片tv| 水蜜桃什么品种好| 韩国高清视频一区二区三区| 国产v大片淫在线免费观看| 天堂影院成人在线观看| 国产探花极品一区二区| 中文天堂在线官网| 搡女人真爽免费视频火全软件| 久久人人爽人人爽人人片va| 性插视频无遮挡在线免费观看| 久久精品夜色国产| 久久精品国产亚洲av天美| 欧美高清成人免费视频www| 精品国产一区二区三区久久久樱花 | 日韩av不卡免费在线播放| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 欧美成人a在线观看| 最近2019中文字幕mv第一页| 亚洲图色成人| 搞女人的毛片| 麻豆久久精品国产亚洲av| 亚洲成人精品中文字幕电影| av又黄又爽大尺度在线免费看| 在线观看美女被高潮喷水网站| 免费在线观看成人毛片| 亚洲无线观看免费| 久久久久性生活片| 一级爰片在线观看| 在线天堂最新版资源| 久久99精品国语久久久| 综合色丁香网| 欧美xxxx黑人xx丫x性爽| 国产精品伦人一区二区| 久久这里有精品视频免费| 大话2 男鬼变身卡| 日本色播在线视频| 亚洲18禁久久av| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 亚洲av中文字字幕乱码综合| 欧美日韩综合久久久久久| 男人舔女人下体高潮全视频| 国产精品人妻久久久影院| 日日摸夜夜添夜夜爱| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 国产成人精品福利久久| 亚洲欧美精品专区久久| 国产精品三级大全| 国产亚洲精品久久久com| 内地一区二区视频在线| 午夜免费男女啪啪视频观看| 成人亚洲欧美一区二区av| 国产不卡一卡二| 国产综合精华液| 最近的中文字幕免费完整| 联通29元200g的流量卡| 亚洲国产高清在线一区二区三| 五月伊人婷婷丁香| 美女xxoo啪啪120秒动态图| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| 国产成人freesex在线| av在线观看视频网站免费| 淫秽高清视频在线观看| 在线免费十八禁| 丝袜喷水一区| 国产av码专区亚洲av| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 久热久热在线精品观看| 免费少妇av软件| 日本免费在线观看一区| 日韩中字成人| 视频中文字幕在线观看| 国产视频内射| 18+在线观看网站| 1000部很黄的大片| 亚洲熟妇中文字幕五十中出| 午夜福利视频精品| 国产精品伦人一区二区| 国产毛片a区久久久久| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 青春草国产在线视频| 亚洲精品一二三| 2022亚洲国产成人精品| 狂野欧美激情性xxxx在线观看| 亚洲人与动物交配视频| 91精品一卡2卡3卡4卡| 黄片无遮挡物在线观看| 免费观看性生交大片5| 国产人妻一区二区三区在| 久久久a久久爽久久v久久| 亚洲第一区二区三区不卡| av免费观看日本| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 建设人人有责人人尽责人人享有的 | 男女那种视频在线观看| h日本视频在线播放| 久久久午夜欧美精品| 超碰av人人做人人爽久久| 亚洲精品成人av观看孕妇| 国产欧美日韩精品一区二区| 国产黄频视频在线观看| 日韩强制内射视频| 18禁在线无遮挡免费观看视频| 免费看日本二区| 看免费成人av毛片| 全区人妻精品视频| 国产极品天堂在线| 国产精品日韩av在线免费观看| 亚洲最大成人手机在线| 日韩欧美国产在线观看| 免费av不卡在线播放| 亚洲伊人久久精品综合| 国产精品久久视频播放| 久热久热在线精品观看| 少妇熟女aⅴ在线视频| 91av网一区二区| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 久久这里只有精品中国| 亚洲欧美日韩卡通动漫| av线在线观看网站| 成人亚洲精品一区在线观看 | av女优亚洲男人天堂| 成人午夜精彩视频在线观看| 深夜a级毛片| av在线播放精品| 精品99又大又爽又粗少妇毛片| 免费看不卡的av| 国产精品无大码| 观看美女的网站| 国产一级毛片在线| 三级经典国产精品| 亚洲av福利一区| 欧美成人a在线观看| 精品人妻一区二区三区麻豆| 天堂中文最新版在线下载 | 亚洲av二区三区四区| 婷婷六月久久综合丁香| 精品久久久精品久久久| 亚洲人成网站高清观看| 久久久久性生活片| 国产伦理片在线播放av一区| 亚洲精品成人久久久久久| av卡一久久| 午夜免费观看性视频| 男女啪啪激烈高潮av片| 欧美另类一区| 亚洲一区高清亚洲精品| 日本熟妇午夜| 免费av毛片视频| 婷婷色综合www| 中文在线观看免费www的网站| 插逼视频在线观看| 色哟哟·www| 国产v大片淫在线免费观看| 伦理电影大哥的女人| 国产成年人精品一区二区| 少妇熟女欧美另类| 搞女人的毛片| 亚洲怡红院男人天堂| 毛片女人毛片| 国产成人精品一,二区| 亚洲自拍偷在线| 在线观看免费高清a一片| 亚洲在线自拍视频| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩卡通动漫| 亚洲国产日韩欧美精品在线观看| 热99在线观看视频| 午夜激情福利司机影院| 老司机影院毛片| 97在线视频观看| 亚洲av电影不卡..在线观看| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 国产免费又黄又爽又色| 亚洲自拍偷在线| 在现免费观看毛片| 亚洲欧美日韩东京热| 99久久中文字幕三级久久日本| 午夜爱爱视频在线播放| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 国产精品伦人一区二区| 欧美xxⅹ黑人| 久久综合国产亚洲精品| 十八禁国产超污无遮挡网站| 国产精品无大码| 在线 av 中文字幕| 国产成人一区二区在线| 免费av毛片视频| 国产亚洲一区二区精品| 天堂中文最新版在线下载 | 亚洲精品自拍成人| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 中文字幕av成人在线电影| 国产黄色小视频在线观看| 天堂网av新在线| 免费观看a级毛片全部| 国产精品一区www在线观看| 看十八女毛片水多多多| 我要看日韩黄色一级片| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 日本wwww免费看| 三级国产精品片| 精品一区二区三区人妻视频| 色播亚洲综合网| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 超碰97精品在线观看| 中文天堂在线官网| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 亚洲av一区综合| 成人美女网站在线观看视频| 国产精品福利在线免费观看| 色播亚洲综合网| 80岁老熟妇乱子伦牲交| 国产精品无大码| 五月天丁香电影| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 可以在线观看毛片的网站| 黑人高潮一二区| 欧美 日韩 精品 国产| 男女啪啪激烈高潮av片| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 亚洲自偷自拍三级| 久久久久久久大尺度免费视频| 国产黄色免费在线视频| 午夜爱爱视频在线播放| 久久久亚洲精品成人影院| 成人av在线播放网站| 国产精品一区二区性色av| videossex国产| 亚洲在久久综合| 国产精品日韩av在线免费观看| 欧美成人午夜免费资源| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 国产精品一区二区三区四区免费观看| 国产黄色小视频在线观看| 成年女人在线观看亚洲视频 | 国产精品无大码| 乱系列少妇在线播放| 亚洲色图av天堂| 色哟哟·www| 国产综合懂色| 2021天堂中文幕一二区在线观| 成年人午夜在线观看视频 | 精品国产三级普通话版| 国产精品一二三区在线看| 国产午夜福利久久久久久| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本wwww免费看| 亚洲一区高清亚洲精品| 日韩av不卡免费在线播放| videossex国产| 欧美+日韩+精品| 国产一区二区亚洲精品在线观看| 国产综合懂色| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免| 精品久久久久久成人av| 国产熟女欧美一区二区| 舔av片在线| 国产淫语在线视频| 国产成人免费观看mmmm| 成年av动漫网址| 街头女战士在线观看网站| 水蜜桃什么品种好| 色网站视频免费| 少妇猛男粗大的猛烈进出视频 | 国产色婷婷99| 国产成人91sexporn| 免费看日本二区| 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 天堂av国产一区二区熟女人妻| 日韩三级伦理在线观看| 干丝袜人妻中文字幕| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 中文乱码字字幕精品一区二区三区 | 国产有黄有色有爽视频| 搡老妇女老女人老熟妇| 精品少妇黑人巨大在线播放| 91久久精品国产一区二区三区| 日韩欧美国产在线观看| 中文天堂在线官网| 乱系列少妇在线播放| 亚洲电影在线观看av| 免费看美女性在线毛片视频| 亚洲av成人精品一区久久| 亚洲综合色惰| 少妇熟女欧美另类| 日韩欧美 国产精品| 在现免费观看毛片| 插逼视频在线观看| 国产综合精华液| 欧美高清成人免费视频www| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 亚洲精品视频女| 一级黄片播放器| 欧美日韩在线观看h| 午夜福利成人在线免费观看| 日韩精品有码人妻一区| 亚洲久久久久久中文字幕| 成人国产麻豆网| 午夜精品国产一区二区电影 | 不卡视频在线观看欧美| 听说在线观看完整版免费高清| 日韩电影二区| 一级毛片电影观看| 在线播放无遮挡| 亚洲av电影在线观看一区二区三区 | 简卡轻食公司| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 黄色日韩在线| 一级毛片我不卡| 两个人的视频大全免费| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 国产伦精品一区二区三区视频9| 观看免费一级毛片| 精品午夜福利在线看| 国产午夜精品一二区理论片| 最近视频中文字幕2019在线8| 特级一级黄色大片| 久久韩国三级中文字幕| av天堂中文字幕网| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 久99久视频精品免费| 久久99精品国语久久久| 99久国产av精品| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久 | 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| 综合色丁香网| 成人亚洲精品一区在线观看 | 国产在线男女| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 黄色配什么色好看| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 国产黄片视频在线免费观看| 尾随美女入室| 丰满乱子伦码专区| 在线播放无遮挡|