• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of Gurney flap on SFYT15thick airfoil

    2017-01-06 08:47:00XiHeJinjunWngMuqingYngDongliChoYnPeiqingLiu
    關(guān)鍵詞:蟲族頭車愛美

    Xi He,Jinjun Wng,?,Muqing Yng,Dongli M,Cho Yn,Peiqing Liu

    aFluid Mechanics Key Laboratory of Education Ministry,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bInstitute of Aircraft Design,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    Numerical simulation of Gurney flap on SFYT15thick airfoil

    Xi Hea,Jinjun Wanga,?,Muqing Yangb,Dongli Mab,Chao Yana,Peiqing Liua

    aFluid Mechanics Key Laboratory of Education Ministry,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bInstitute of Aircraft Design,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    H I G H L I G H T S

    ·Gurney flap can improve aerodynamic performance of SFYT15thick airfoil.

    ·The mechanism for Gurney flap lift-enhancement is revealed.

    ·Gurney flap can reduce the wall friction drag at a certain angle of attack.

    ·Gurney flap can largely increase the pressure drag of the flow around the airfoil.

    A R T I C L E I N F O

    Article history:

    沒想到這個(gè)蟲族還挺愛美的,安潔西嘆息著,跳上最后一輛貨車。四輛貨車排成一行前進(jìn),雷狼和亞虎等人跟著頭車,雨馳和安潔西他們則在最后壓陣。

    Received 29 June 2016

    Received in revised form

    3 September 2016

    Accepted 8 September 2016

    Available online 2 October 2016

    Lift enhancement

    Airfoil

    Gurney flap

    A two-dimensional steady Reynolds-averaged Navier–Stokes(RANS)equation was solved to investigate the effects of a Gurney flap on SFYT15thick airfoil aerodynamic performance.This airfoil was designed for flight vehicle operating at 20 km altitude with freestream velocity of 25 m/s.The chord length(C)is 5 m and the Reynolds number based on chord length is Re=7.76×105.Gurney flaps with the heights rangingfrom0.25%C to3%C wereinvestigated.Theshearstresstransport(SST)k-ωturbulencemodelwas used to simulate the flow structure around the airfoil.It is showed that Gurney flap can enhance not only the prestall lift but also lift-to-drag ratio in a certain range of angles of attack.Specially,at cruise angle of attack(α=3°),Gurney flap with 0.5%C height can increase lift-to-drag ratio by 2.7%,and lift coefficient by 12.9%,respectively.Furthermore,the surface pressure distribution,streamlines and trailing-edge flow structure around the airfoil are illustrated,which are helpful to understand the mechanisms of Gurney flaponairfoilaerodynamicperformance.Moreover,itisfoundthattheincreaseofairfoildragwithGurney flap can be attributed to the increase of pressure drag between the windward and the leeward sides of Gurney flap itself.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Gurney flap(GF)is a small flat tab mounted perpendicular to the pressure surface of the airfoil in the vicinity of the trailing edge,which can effectively increase airfoil lift and aerodynamic performance.Because of the significant effect of GF on airfoil aerodynamic performance,a lot of researches were conducted in recent 20 years.

    Initial research of GF lift enhancement was conducted by Liebeck[1].Then,numerous studies showed that GF is a simple and efficient aircraft high-lift device[2–9].Wang et al.[10]in the review paper showed that GF can increase the lift coefficient of airfoils,wings,and aircraft both at subsonic and transonic speeds. The use of GF is especially useful during takeoff and landing of aircraft.For optimum aerodynamic performance,the GF should be mounted at the trailing edge perpendicular to the chord line of the airfoil or root chord line of the wing,where its height must be less than the local boundary layer thickness.In addition,they alsoanalyzedandsummarizedlift-enhancementmechanismofGF. Now,GF is widely used to improve the airfoil lift-to-drag ratio, stall control,flutter control,and other aspects.The installation form of GF has transformed from conventional fixed type to active variable type.Amini et al.[11]pointed out that though GF can enhance lift,it increases drag simultaneously.Their numerical simulationusedtheadjointshapeoptimizationprocesstodecrease unfavorable effects on the drag coefficient,which can strongly improve the aerodynamic performance of airfoils with GF by maintaining the lift coefficient and reducing the drag coefficient. Chandrasekhara[12]used a variable droop leading edge(VDLE) airfoil to control compressible dynamic stall,but the price was a10%loss of lift.GF was used for recovering this loss,and the airfoil with GF height of 1%chord length(C)was an optimal choice.Hak-Tae et al.[13]and Stefan and Ilan[14]used miniature trailing edge effectors(MiTEs)which are small movable control surfaces similar to GF.The effectors were mounted at or near the trailing edge to provide high bandwidth and robust control.They illustrated that the MiTEs can inhibit the occurrence of flutter from the perspective of numerical analysis and experiments.Yen et al.[15] mounted micro-electro-mechanical(MEM)translational tabs near the trailing edge of Newman airfoil.The tab is equivalent to a variable GF and able to control the wing load.Through numerical simulation and wind tunnel experiments,they pointed out that this active GF can replace bulky ailerons in the future,so it will reduce the structural weight,complexity and costs.

    Fig.1.Grid system.

    To meet the high altitude,low energy consumption,long flight time,highload,andotherrequirementsofnearspaceflightvehicle, the SFYT15thick airfoil was designed.The purpose of this paper is to install GF on this specially designed airfoil,and analyze its ability to improve the aerodynamic characteristics of the airfoil, thus improving the aerodynamic performance of near space flight vehicle.

    The governing equations are the Reynolds-averaged Navier–Stokes(RANS)equations.Fortwo-dimensionalsteadyincompressible flow,the conservation of mass and momentum equations can be written as:

    Allthe numericalsimulations wereperformedwith theFLUENT commercial computational fluid dynamics(CFD)software,in which the solution methods were set to solve the RANS equations. The governing equations have a precision of second-order,and pressure–velocity coupling adopts the semi-implicit method for pressure-linked equations consistent(SIMPLEC)algorithm.The pressure term,the momentum term,the turbulent kinetic energy term,and the specific dissipation term are all discretized using the second-order upwind scheme.

    The turbulence model adopted in this study is the shear stress transport(SST)k-ωtwo-equation turbulence model proposed by Menter[16].The core idea of this model is to use the robustness ofk-ωmodel to capture the flow of viscous sublayer and to usek-?model in the mainstream area to avoid the disadvantage ofk-ωturbulence model which performs too sensitive in entrance turbulence parameters.SSTk-ωmodel combines the advantages of the standardk-ωmodel and the standardk-?model by mixing functions.Therefore,SSTk-ω model has higher accuracy and reliability in a wide range of flow fields.

    In the previous researches of Yu et al.[17]and Zhang et al.[18], thesimulationresultssolvedbySpalart–Allmaras(S–A)turbulence model are in good agreement with experimental data.Moreover, Menter[16]and Rogers et al.[19]found out that for most part of the high-lift problems,the predictions of the S–A and SSTk-ω models are similar.However,it was proposed that SSTk-ωmodel is superior in accurately predicting pressure-induced separation. Therefore,theSSTk-ωmodelcanbemoresuitableinpresentstudy than the S–A model,whose accuracy was verified by Yu et al.[20] and Zhang et al.[21].

    At the altitude of 20 km in present study,C=5 m,freestream velocityV=25m/s,ρ=8.8×10-2kg/m3,andμ=1.418×10-5 Pa·s,which result inRe=7.76×105.The H-type mesh generated by elliptical method in ICEM CFD is more suitable,and its accuracy was verified by Ma et al.[22].The computational grid,shown in Fig.1,constitutes 320 grid points on the airfoil surface.The respective distance of the inlet and outlet boundaries away from the leading edge is 20Cand 30C,respectively.The top and bottom boundaries are both 16Caway from the chord.The total grid number is 1.2× 105.In order to capture the boundary layer preciously,thegridmusthaveay+approximatetoone.y+isanondimensional distance which indicates the degree of grid fineness in near-wall region.In the present simulation,the first grid node above the surface is 1.5×10-5times of chord length,which leads toy+=0.5.

    Fig.2.The dependence on the grids.

    Fig.3.Aerodynamic coefficients.

    As for boundary conditions,the inlet,top and bottom boundaries are defined as the velocity inlet boundary condition.The outlet boundary is defined as the outflow boundary condition. The surface of the airfoil and the GF are set as the no-slip wall condition.

    Four types of grids are used in the present simulation to check the dependence of the results on the grids.The grid numbers are 8×104,1×105,1.2×105,and 1.5×105,respectively.As is shown in Fig.2,the lift coefficient(CL)and lift-to-drag ratio(L/D)are in reasonable agreement for different grids,which indicates that thesimulation results are independent on the grid numbers for the four cases selected.Therefore,it is convincing to adopt the grid number of 1.2×105in the present simulation.

    Fig. 4. Pressure coefficient (CP) distribution on the airfoil with/without GF at different α.

    Figure3 presentsthe aerodynamicforcecoefficientof SFYT15thick airfoil with and without a GF.In the present simulation,the data marked with‘No GF’show the aerodynamic coefficients curves of the clean airfoil,and the curves marked with‘h=x%’indicate the aerodynamic coefficients curves of the SFYT15thick airfoil with GF height ofx%C.As is shown in Fig.3(a),with the increase of GF height,the lift curves gradually shift upward.The larger the GF height is,the greater magnitude the curve shifts.At the designed cruise angle of attack(α= 3°),CLis enhanced by 12.9%and 32.8%forh= 0.5%and 2%, respectively.

    Figure 3(b)shows the variation of drag with angles of attack at different GF heights.Obviously,GF also increases drag,and the largertheGFheightis,themorethedragincreasewillbe.Similarly, at the designed cruise angle of attack,drag coefficient(CD)is increased by 10.0%and 41.7%forh=0.5%and 2%,respectively. Thus,when the GF height is large,compared to the increase of lift,the drag increase becomes more significant.As the lift-to-drag ratio is an important factor in the flight range and endurance of theaircraft,analyzing the lift and drag merely is not comprehensive enough.It is needed to investigate the effect of GF on lift-to-drag ratio.

    Fig.5.(Color online)Flow structure and pressure contours on trailing edge of SFYT15thick airfoil with/without GF atα=3°.

    As is shown in Fig.3(c),for a given lift-to-drag ratio,the lift coefficientis enhancedwiththeincrease ofGF height.Ontheother hand,when the lift coefficient is in the range ofCL=1.2–1.7,the lift-to-drag ratio of airfoil with GF is increased compared with the clean airfoil.Specifically,when the lift coefficientCLis between 1.2 and 1.45,airfoil withh=0.5%GF has the optimal effect on the lift-to-drag ratio.Meanwhile,whenCLis between 1.45 and 1.7, airfoilwithh=1.0%GFisanoptimalchoice.Figure3(d)showsthe variation of lift-to-drag ratio withα,it can be seen that at a small angle of attack,GF can increase the lift-to-drag ratio of the airfoil. Atα=3°,the installation ofh=0.5%GF is an optimal design,in this case,the lift-to-drag ratio can be increased by 2.7%with a lift increment of 12.9%.

    Figure 4 illustrates the pressure distribution on the airfoil with/without a GF.The Kutta condition of the trailing edge is changed when deploying a GF.The suction force of the upper surface of the airfoil is enhanced,and the lower surface pressure is increased.This effect raises the load capacity of the airfoil,and thenresultsinanincreasedCLoftheairfoil.ThelargertheGFheight is,the more the lift enhancement is.As is shown in Fig.4(a),when α=0°,the front 35%Cof the upper surface undergoes favorable pressure gradient.After that,the air flows smoothly along the upper surface of the airfoil without separation.In Fig.4(b),due to the increase ofα,the leading edge suction is increased,but the range of the favorable pressure gradient is reduced.In Fig.4(c), theleadingedgesuctionisfurtherincreased,andtheuppersurface of the airfoil undergoes adverse pressure gradient after 4%Cof the uppersurfaceatα=8°.Underthelargeadversepressuregradient, the flow tends to separate.It can be seen that the flow separation occurs at about 80%C.In the separation zone,the pressure remains constant and the pressure increment caused by the GF seems to be smaller.In the lower surface near the trailing edge and in front of the GF,the flow is also separated,forming a large recirculation zone,which makes the pressure of trailing edge increased.

    In the present simulation,a comparison is made on the timeaveraged streamlines and pressure contours near trailing edge of the airfoil with/without GF atα = 3°.Figure 5(a)shows that there is a small separation bubble near the trailing edge without GF.However,in Fig.5(b),it is obvious that GF eliminates the small separation bubble on the upper surface,so that the air can flow smoothly along the upper surface.Thus,GF can increase the lift by delaying the flow separation in the trailing edge of the airfoil.

    Table 1 Analysis of drag coefficient.

    Simultaneously,a similar comparison is made atα=8°.As is shown in Fig.6(a),flow has separated at the position of 85%Cfrom the leading edge,resulting in a large separation bubble, which greatly reduces the suction on the upper surface of airfoil. However,Fig.6(b)illustrates that the flow separation on the upper surface is suppressed and the position of the separation is delayed to 90%Cfrom the leading edge when the GF is installed.As a result,the suction is larger than the clean airfoil and the lift is increased.At the same time,from the perspective of vortex,there is a wake region downstream of the leeward of GF,where a couple of counter-rotating vortex pairs exist.GF acts as a point vortex, which enlarges the circulation of the airfoil.The Kutta condition shifts from trailing-edge point of the airfoil to the lower edge of the GF,which results in lift enhancement.Moreover,the pressure contour shows that the windward side of the GF endures positive pressure and the leeward side endures the negative one,resulting in the drag increase of the airfoil.These are consistent with the results of Yu et al.[17].

    In general,the drag of flow over airfoil includes friction drag, pressure drag,shock drag,and induced drag.In this paper,a twodimensional airfoil is considered at low speed,thus,it is enough to consider friction drag and pressure drag only.The total drag coefficientiscalculatedwithFluentsoftware,aswellasthespecific friction drag coefficient(Cf)and pressure drag coefficient(CDP). The results are shown in Table 1.

    Fig.6.(Color online)Flow structure and pressure contours on trailing edge of SFYT15thick airfoil with/without GF atα=8°.

    Fig.7.Cfof upper/lower surface atα=8°.

    It can be seen from Table 1 that it is the dramatic increase of pressure drag which results in the increase of total drag of airfoil with GF.According to the analysis of the trailing edge flow,the windwardsideoftheGFendurespositivepressureandtheleeward sideenduresthenegativeone,andthepressuredragincreasesalot compared to the clean airfoil,which leads to the increase of total drag.From the data of frictional drag,it can be seen that the GF has a tendency to decrease the friction drag at a certain angle of attack. A comparison is made on the skin friction coefficient of the upper and lower surfaces with/without GF atα=8°.In Fig.7,on the upper surface,the leading edge suction is increased because of the GF so that the local flow rate is larger than that of the clean airfoil, whichmeansthefrictioncoefficientbecomeslarger.Meanwhile,at the trailing edge of the lower surface,the existence of GF leads to the flow separation.The flow is no longer attached to the entire lower airfoil surface,and the skin friction coefficient decreases. Combined with these two factors,the decrease of drag coefficient of the lower airfoil surface is dominant,resulting in the reduction of total friction coefficient.

    This study further shows that even the carefully designed airfoil,GF can also be used to effectively improve the aerodynamic performance of the airfoil,i.e.,increasing lift coefficient as well as the lift-to-drag ratio.The larger the GF height is,the more obvious the lift-enhancement will be.When the lift coefficientCLis ranged from 1.2 to 1.7,airfoil with GF can provide higher lift-to-drag ratio at a fixed lift coefficient.Whenαis low,airfoil with GF can also improve the lift-to-drag ratio at a fixedα.In addition,this paper further reveals the mechanism of GF lift-enhancement and drag increase,and the drag increase can mainly be attributed to the pressure drag increment for flow around the GF.

    [1]R.H.Liebeck,Designofsubsonicairfoilsforhighlift,J.Aircr.15(1978)547–561. http://dx.doi.org/10.2514/3.58406.

    [2]R.Myose,M.Papadakis,I.Heron,Gurney flap experiments on airfoils,wings, and reflection plane model,J.Aircr.35(1998)206–211.http://dx.doi.org/10. 2514/2.2309.

    [3]D.R.Jeffrey,X.Zhang,D.W.Hurst,Aerodynamics of Gurney flaps on a singleelement high-lift wing,J.Aircr.37(2000)295–301.http://dx.doi.org/10.2514/ 2.2593.

    [4]Y.C.Li,J.J.Wang,P.F.Zhang,Effect of Gurney flaps on a NACA0012 airfoil,Flow Turbul.Combust.68(2002)27–39.http://dx.doi.org/10.1023/A: 1015679408150.

    [5]Y.C.Li,J.J.Wang,P.F.Zhang,Influencesofmountinganglesandlocationsonthe effects of gurney flaps,J.Aircr.40(2003)494–498.http://dx.doi.org/10.2514/ 2.3144.

    [6]R.Meyer,W.Hage,D.W.Bechert,et al.,Drag reduction on Gurney flaps by three-dimensional modifications,J.Aircr.43(2006)132–140. http://dx.doi.org/10.2514/1.14294.

    [7]L.W.Traub,A.C.Miller,O.Rediniotis,Preliminary parametric study of Gurney flap dependencies,J.Aircr.43(2006)1242–1244.http://dx.doi.org/10.2514/1. 13852.

    [8]T.S.Liu,J.Montefort,Thin airfoil theoretical interpretation for Gurney flap lift enhancement,J.Aircr.44(2007)667–671.http://dx.doi.org/10.2514/1.27680.

    [9]L.Lee,T.Lee,Effect of Gurney flap on unsteady wake vortex,J.Aircr.44(2007) 1398–1401.http://dx.doi.org/10.2514/1.29555.

    [10]J.J.Wang,Y.C.Li,K.S.Choi,Gurney flap–liftenhancement,mechanisms and applications, Prog. Aerosp. Sci. 44 (2008) 22–47. http://dx.doi.org/10.1016/j.paerosci.2007.10.001.

    [11]Y.Amini,H.Emdad,M.Farid,Adjoint shape optimization of airfoils with attached Gurney flap,Aerosp.Sci.Technol.41(2015)216–228. http://dx.doi.org/10.1016/j.ast.2014.12.023.

    [12]M.S.Chandrasekhara,Optimum Gurney flap height determination for‘lostlift’recovery in compressible dynamic stall control,Aerosp.Sci.Technol.14 (2010)551–556.http://dx.doi.org/10.1016/j.ast.2010.04.010.

    [13]L.Hak-Tae,K.Ilan,B.Stefan,Flutter suppression for high aspect ratio flexible wings using microflaps,AIAA 2002-1717,in:43rd Conference of AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials, 2002.http://dx.doi.org/10.2514/6.2002-1717.

    [14]B.Stefan,K.Ilan,Flutter suppression using micro-trailing edge effectors, AIAA 2003-1941,in:44th Conference AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials,2003.http://dx.doi.org/10.2514/6.2003-1941.

    [15]D.T.Yen,C.Van Dam,F.Br?euchle,et al.Active load control and lift enhancement using MEM translational tabs,AIAA 2000-2422,2000. http://dx.doi.org/10.2514/6.2000-2242.

    [16]F.R.Menter,Two-equation eddy-viscosity turbulence models for engineering applications,AIAAJ.32(1994)1598–1605.http://dx.doi.org/10.2514/3.12149.

    [17]T.Yu,J.J.Wang,P.F.Zhang,Numerical simulation of Gurney flap on RAE-2822 supercritical airfoil,J.Aircr.48(2011)1565–1575.http://dx.doi.org/10.2514/ 1.C031285.

    [18]P.F.Zhang,A.B.Liu,J.J.Wang,Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap,AIAA J.47(2009)2467–2474. http://dx.doi.org/10.2514/1.43379.

    [19]S.E.Rogers,F.R.Menter,P.A.Durbin,et al.A comparison of turbulence models in computing multi-element airfoil flows,AIAA-94-0291,in:32nd Aerospace Sciences Meeting&Exhibit,Reno,NV,USA,1994.

    [20]T.Yu,J.J.Wang,P.F.Zhang,Numericalsimulation ofGurney flap on RAE-2822 supercriticalairfoil,J.Aircr.48 (2011) 1565–1575. http://dx.doi.org/10.2514/1.C031285.

    [21]P.F.Zhang,A.B.Liu,J.J.Wang,Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap,AIAA J.47(2009)2467–2474. http://dx.doi.org/10.2514/1.43379.

    [22]D.L.Ma,Y.P.Zhao,Y.H.Qiao,et al.,Effects of relative thickness on aerodynamic characteristicsofairfoilatalowReynoldsnumber,Chin.J.Aeronaut.28(2015) 1003–1015.http://dx.doi.org/10.1016/j.cja.2015.05.012.

    ?Corresponding author.

    E-mail addresses:hx1605106@buaa.edu.cn(X.He),jjwang@buaa.edu.cn (J.Wang),qingfengrumu@163.com(M.Yang),madongli@buaa.edu.cn(D.Ma), chyan@vip.sina.com(C.Yan),lpq@buaa.edu.cn(P.Liu).

    http://dx.doi.org/10.1016/j.taml.2016.09.002

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    猜你喜歡
    蟲族頭車愛美
    兩種不同蜂窩防爬裝置的城軌頭車耐撞性分析
    愛美也需適度而為
    中老年保健(2022年3期)2022-08-24 02:59:52
    丁輝:閱兵坦克“頭車”駕駛員
    晚晴(2020年8期)2020-12-03 13:49:57
    頭車半自動(dòng)鉤緩裝置傾斜問題研究
    星際獵人·陷阱
    星際獵人·反擊
    星際獵人·追擊
    愛美之心人皆有之
    沒有忘記愛美
    什么也不能阻擋我們愛美
    av在线app专区| 色视频在线一区二区三区| 亚洲五月婷婷丁香| 成在线人永久免费视频| 捣出白浆h1v1| 男的添女的下面高潮视频| 成人亚洲精品一区在线观看| 久久久久久久久久久久大奶| 男人操女人黄网站| 大码成人一级视频| 欧美久久黑人一区二区| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 国产在线免费精品| 亚洲男人天堂网一区| 国产又色又爽无遮挡免| 久久毛片免费看一区二区三区| 91麻豆精品激情在线观看国产 | 精品少妇久久久久久888优播| svipshipincom国产片| 精品第一国产精品| 丝袜美足系列| 侵犯人妻中文字幕一二三四区| 国产精品一二三区在线看| 亚洲五月色婷婷综合| 久久狼人影院| 久久天躁狠狠躁夜夜2o2o | av在线app专区| 看十八女毛片水多多多| 精品国产乱码久久久久久小说| 久久久久精品国产欧美久久久 | 久久精品久久久久久久性| 精品一区二区三卡| 男女下面插进去视频免费观看| 两人在一起打扑克的视频| 丝袜美足系列| 国产日韩欧美在线精品| 国产免费福利视频在线观看| 亚洲综合色网址| 中文字幕精品免费在线观看视频| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸 | av片东京热男人的天堂| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 国产熟女欧美一区二区| 午夜激情久久久久久久| 亚洲一区中文字幕在线| 成人午夜精彩视频在线观看| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 一边摸一边抽搐一进一出视频| 丝瓜视频免费看黄片| 一二三四社区在线视频社区8| 日本黄色日本黄色录像| 中文欧美无线码| 精品国产一区二区久久| 精品一区二区三区av网在线观看 | 亚洲av电影在线观看一区二区三区| 男人爽女人下面视频在线观看| 91成人精品电影| 亚洲九九香蕉| 国产精品三级大全| 亚洲精品第二区| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 91精品国产国语对白视频| 飞空精品影院首页| 久久中文字幕一级| 两人在一起打扑克的视频| 咕卡用的链子| 久久亚洲精品不卡| 婷婷色麻豆天堂久久| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 人妻一区二区av| 最新的欧美精品一区二区| 国产视频首页在线观看| 超碰97精品在线观看| 国产91精品成人一区二区三区 | 欧美日韩综合久久久久久| 一区二区av电影网| 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 在线天堂中文资源库| 你懂的网址亚洲精品在线观看| 黄片小视频在线播放| 亚洲人成网站在线观看播放| 另类亚洲欧美激情| 欧美黑人欧美精品刺激| 国产不卡av网站在线观看| 欧美黑人精品巨大| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 国产欧美亚洲国产| 男的添女的下面高潮视频| 成人国产av品久久久| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 久久人妻熟女aⅴ| 色综合欧美亚洲国产小说| 下体分泌物呈黄色| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 久久久久久久精品精品| 好男人电影高清在线观看| 色网站视频免费| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 三上悠亚av全集在线观看| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 亚洲五月色婷婷综合| 99re6热这里在线精品视频| 成年人黄色毛片网站| 国产成人免费无遮挡视频| 亚洲av在线观看美女高潮| 亚洲成色77777| 国产精品秋霞免费鲁丝片| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 日本a在线网址| 夫妻午夜视频| 欧美成人精品欧美一级黄| 看免费成人av毛片| 亚洲国产欧美在线一区| 亚洲精品一卡2卡三卡4卡5卡 | 91精品三级在线观看| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 熟女av电影| av福利片在线| 老司机影院成人| 成年动漫av网址| 亚洲人成电影观看| 午夜日韩欧美国产| 热99久久久久精品小说推荐| 99热网站在线观看| 欧美日韩av久久| 国产成人一区二区在线| 波多野结衣一区麻豆| 午夜日韩欧美国产| 国产91精品成人一区二区三区 | 最近最新中文字幕大全免费视频 | 在线天堂中文资源库| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 黄片小视频在线播放| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| 人妻 亚洲 视频| 日本av免费视频播放| 亚洲欧美一区二区三区久久| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 黄色视频在线播放观看不卡| 欧美人与善性xxx| 久久这里只有精品19| 男人爽女人下面视频在线观看| 久久毛片免费看一区二区三区| 成人手机av| 国产成人精品久久二区二区免费| 青春草视频在线免费观看| 色精品久久人妻99蜜桃| netflix在线观看网站| av欧美777| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 午夜免费观看性视频| 一区二区三区精品91| 男男h啪啪无遮挡| 国产xxxxx性猛交| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 日韩视频在线欧美| 欧美精品一区二区免费开放| 高清欧美精品videossex| 人妻 亚洲 视频| 99香蕉大伊视频| 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 在线观看免费午夜福利视频| 9热在线视频观看99| 久久精品国产亚洲av涩爱| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 欧美激情极品国产一区二区三区| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播 | 午夜福利影视在线免费观看| 久久精品国产亚洲av涩爱| 老司机午夜十八禁免费视频| 九色亚洲精品在线播放| 夫妻性生交免费视频一级片| 丰满人妻熟妇乱又伦精品不卡| 美女视频免费永久观看网站| 老鸭窝网址在线观看| 脱女人内裤的视频| 久久久欧美国产精品| 日韩伦理黄色片| 日韩免费高清中文字幕av| 1024香蕉在线观看| 亚洲综合色网址| 国产成人欧美| 久久免费观看电影| av电影中文网址| 亚洲男人天堂网一区| 亚洲成国产人片在线观看| 日韩一区二区三区影片| 国产精品av久久久久免费| 精品一区在线观看国产| 新久久久久国产一级毛片| 久久99精品国语久久久| 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 一区二区av电影网| 一区二区三区激情视频| 国产成人精品无人区| 啦啦啦中文免费视频观看日本| 乱人伦中国视频| 中国美女看黄片| 亚洲成人手机| 亚洲,欧美,日韩| 成年女人毛片免费观看观看9 | 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 午夜福利影视在线免费观看| 一二三四社区在线视频社区8| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 一级,二级,三级黄色视频| av国产久精品久网站免费入址| 在线观看免费视频网站a站| bbb黄色大片| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 国产一区二区在线观看av| 中国国产av一级| 99国产精品99久久久久| 午夜免费成人在线视频| 日本色播在线视频| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 黄色a级毛片大全视频| 欧美在线黄色| 视频区图区小说| 又紧又爽又黄一区二区| 亚洲国产精品一区二区三区在线| 亚洲中文日韩欧美视频| 1024香蕉在线观看| svipshipincom国产片| 国产野战对白在线观看| 观看av在线不卡| 亚洲欧美精品综合一区二区三区| 麻豆久久精品国产亚洲av| 91av网站免费观看| 国产精品电影一区二区三区| 亚洲男人天堂网一区| 在线看三级毛片| 精品国产亚洲在线| 免费看十八禁软件| 激情在线观看视频在线高清| 制服丝袜大香蕉在线| 99精品在免费线老司机午夜| 亚洲男人天堂网一区| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 欧美色视频一区免费| 免费无遮挡裸体视频| 成在线人永久免费视频| 国产成人精品久久二区二区免费| 男女床上黄色一级片免费看| 制服人妻中文乱码| 午夜福利18| 别揉我奶头~嗯~啊~动态视频| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 亚洲九九香蕉| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 91大片在线观看| 啦啦啦免费观看视频1| 国产成人av教育| 国产一区二区三区视频了| 精品久久久久久久末码| 国产精品1区2区在线观看.| 免费观看人在逋| 久久 成人 亚洲| 亚洲av美国av| 国内久久婷婷六月综合欲色啪| 久久久久亚洲av毛片大全| 久9热在线精品视频| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 免费高清视频大片| 91大片在线观看| 草草在线视频免费看| 亚洲成国产人片在线观看| 午夜视频精品福利| 久99久视频精品免费| 久久精品91蜜桃| 一级片免费观看大全| 日日夜夜操网爽| 色在线成人网| 在线永久观看黄色视频| 黄网站色视频无遮挡免费观看| 精品人妻1区二区| 久久中文字幕人妻熟女| 国产v大片淫在线免费观看| 欧美成人午夜精品| 国产91精品成人一区二区三区| 久久亚洲真实| av片东京热男人的天堂| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 亚洲,欧美精品.| 嫩草影院精品99| 色av中文字幕| 午夜两性在线视频| 久久中文看片网| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 色综合婷婷激情| 一区二区日韩欧美中文字幕| 国产精华一区二区三区| 欧美乱码精品一区二区三区| 草草在线视频免费看| 欧美日韩福利视频一区二区| 精品高清国产在线一区| 动漫黄色视频在线观看| 久久久久久大精品| 国产欧美日韩一区二区精品| 免费观看精品视频网站| 欧美av亚洲av综合av国产av| 午夜免费激情av| 欧美 亚洲 国产 日韩一| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| www.www免费av| 桃色一区二区三区在线观看| 一级黄色大片毛片| 变态另类丝袜制服| 日本撒尿小便嘘嘘汇集6| 曰老女人黄片| 免费看a级黄色片| 久久这里只有精品19| 少妇粗大呻吟视频| 国产精品美女特级片免费视频播放器 | 69av精品久久久久久| 日本熟妇午夜| 国产精品 国内视频| 又黄又爽又免费观看的视频| 亚洲五月天丁香| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人| 国产成人系列免费观看| 一级作爱视频免费观看| 亚洲国产精品合色在线| 99国产精品一区二区蜜桃av| 少妇 在线观看| 免费看十八禁软件| 夜夜夜夜夜久久久久| av天堂在线播放| 国产视频内射| 中文字幕人成人乱码亚洲影| 精品久久久久久久久久久久久 | 非洲黑人性xxxx精品又粗又长| 丝袜在线中文字幕| av福利片在线| 999久久久国产精品视频| 精品欧美国产一区二区三| 国产99白浆流出| 一本一本综合久久| 精品电影一区二区在线| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网| 无人区码免费观看不卡| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 十八禁网站免费在线| 精品国产乱子伦一区二区三区| 日本精品一区二区三区蜜桃| 精品久久久久久久人妻蜜臀av| 国产一区二区激情短视频| 国产激情欧美一区二区| 国产精品av久久久久免费| 久久久久免费精品人妻一区二区 | 亚洲在线自拍视频| 视频区欧美日本亚洲| 91九色精品人成在线观看| 日本a在线网址| 午夜激情av网站| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费观看网址| 啦啦啦韩国在线观看视频| 色综合站精品国产| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 国产成人影院久久av| 亚洲五月色婷婷综合| 日本 欧美在线| 亚洲电影在线观看av| 国产欧美日韩一区二区精品| 久久精品人妻少妇| 国产v大片淫在线免费观看| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 国产黄色小视频在线观看| 国产黄片美女视频| 亚洲成av人片免费观看| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 日本 av在线| 九色国产91popny在线| 19禁男女啪啪无遮挡网站| 黑人操中国人逼视频| 满18在线观看网站| 侵犯人妻中文字幕一二三四区| 俺也久久电影网| 一进一出抽搐gif免费好疼| 久久香蕉激情| 精品久久久久久,| 日本三级黄在线观看| 久久亚洲精品不卡| 可以免费在线观看a视频的电影网站| 91麻豆精品激情在线观看国产| 久久久国产欧美日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 久久久久国内视频| 国产精品99久久99久久久不卡| 亚洲av熟女| 婷婷亚洲欧美| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 精品久久久久久久久久久久久 | 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 欧美日韩黄片免| 久久亚洲真实| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| 久久久久免费精品人妻一区二区 | 亚洲av成人一区二区三| 亚洲国产精品成人综合色| 999久久久精品免费观看国产| 可以在线观看的亚洲视频| 亚洲国产毛片av蜜桃av| 中文字幕最新亚洲高清| 在线天堂中文资源库| 99国产精品99久久久久| 人成视频在线观看免费观看| 精品国产亚洲在线| 国产亚洲欧美98| 草草在线视频免费看| 国产99久久九九免费精品| 黄片播放在线免费| 国产精品二区激情视频| 亚洲午夜理论影院| 1024视频免费在线观看| 亚洲精品国产区一区二| 性欧美人与动物交配| 欧美午夜高清在线| 热re99久久国产66热| 日本a在线网址| 日本黄色视频三级网站网址| 在线看三级毛片| 黄色女人牲交| 久久久久久久久中文| 啪啪无遮挡十八禁网站| 久久久久久九九精品二区国产 | 久久久久免费精品人妻一区二区 | 又黄又粗又硬又大视频| av超薄肉色丝袜交足视频| 一区二区三区高清视频在线| 老司机福利观看| 免费高清视频大片| www日本在线高清视频| 1024视频免费在线观看| 又黄又爽又免费观看的视频| 国产av又大| 精品国产亚洲在线| 热re99久久国产66热| 熟妇人妻久久中文字幕3abv| 中文字幕精品免费在线观看视频| 成人国产一区最新在线观看| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 精品无人区乱码1区二区| 国产成人欧美| 亚洲精品美女久久av网站| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 国产亚洲欧美精品永久| 午夜福利高清视频| 久久久久国内视频| 99国产精品一区二区三区| 亚洲成av片中文字幕在线观看| 桃色一区二区三区在线观看| 999久久久国产精品视频| 丝袜人妻中文字幕| 色综合婷婷激情| 久久久久久久午夜电影| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 麻豆成人av在线观看| 99久久国产精品久久久| 久久精品国产亚洲av香蕉五月| 高潮久久久久久久久久久不卡| 久久久精品欧美日韩精品| 久热爱精品视频在线9| 黄色片一级片一级黄色片| 久久精品aⅴ一区二区三区四区| 啦啦啦观看免费观看视频高清| 91av网站免费观看| 国产99白浆流出| 成年女人毛片免费观看观看9| 久久精品国产清高在天天线| 国产精品亚洲美女久久久| 禁无遮挡网站| 丁香欧美五月| 免费在线观看日本一区| 亚洲七黄色美女视频| 色哟哟哟哟哟哟| 色综合欧美亚洲国产小说| 久久久久久久久久黄片| 欧美 亚洲 国产 日韩一| 十八禁人妻一区二区| 欧美日本亚洲视频在线播放| 最新美女视频免费是黄的| 亚洲九九香蕉| 妹子高潮喷水视频| 特大巨黑吊av在线直播 | 亚洲中文日韩欧美视频| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看 | 美女国产高潮福利片在线看| 青草久久国产| 男女午夜视频在线观看| 一本精品99久久精品77| 欧美激情高清一区二区三区| 国产一区二区三区视频了| 校园春色视频在线观看| 日韩三级视频一区二区三区| 欧美日韩精品网址| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 波多野结衣巨乳人妻| 麻豆av在线久日| 嫩草影视91久久| 久久人妻av系列| 51午夜福利影视在线观看| 一进一出抽搐gif免费好疼| 亚洲男人的天堂狠狠| 国产精品爽爽va在线观看网站 | 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品久久久久久毛片| 99热6这里只有精品| 国产私拍福利视频在线观看| 又黄又粗又硬又大视频| 国产亚洲av嫩草精品影院| 巨乳人妻的诱惑在线观看| 久久人妻av系列| 大型av网站在线播放| 嫩草影视91久久| 人人澡人人妻人| 男女之事视频高清在线观看| 男人舔女人的私密视频| 日韩欧美在线二视频| 精品国产乱码久久久久久男人| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 亚洲精品美女久久av网站| 亚洲av五月六月丁香网| aaaaa片日本免费| АⅤ资源中文在线天堂| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡|