• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the role of piezoelectricity in phonon properties and thermal conductivity of GaN nanofilms

    2017-01-06 08:46:58LinliZhuHaonanLuo

    Linli Zhu,Haonan Luo

    Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    On the role of piezoelectricity in phonon properties and thermal conductivity of GaN nanofilms

    Linli Zhu?,Haonan Luo

    Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    H I G H L I G H T S

    ·The impact of piezoelectricity on the phonon properties and thermal conductivity of gallium nitride(GaN)nanofilms is studied theoretically.

    ·The elastic model combining with the piezoelectric constitutive relation is applied to describe the confined-phonon properties.

    ·The piezoelectric effect leads to the change of the temperature-and size-dependence of thermal conductivity.

    A R T I C L E I N F O

    Article history:

    Received 28 September 2016

    Received in revised form

    1 November 2016

    Accepted 1 November 2016

    Available online 11 November 2016

    GaN nanofilm

    Phonon properties

    Elastic model

    Piezoelectricity

    Phonon thermal conductivity

    The effect of piezoelectricity on phonon properties and thermal conductivity of gallium nitride(GaN) nanofilms is theoretically investigated.The elasticity model is utilized to derive the phonon properties in spatially confined GaN nanofilms.The piezoelectric constitutive relation in GaN nanofilms is taken into account in calculating the phonon dispersion relation.The modified phonon group velocity and phonon density of state as well as the phonon thermal conductivity are also obtained due to the contribution of piezoelectricity.Theoretical results show that the piezoelectricity in GaN nanofilms can change significantly the phonon properties such as the phonon group velocity and density of states, resulting in the variation of the phonon thermal conductivity of GaN nanofilms remarkably.Moreover, the piezoelectricity of GaN can modify the dependence of thermal conductivity on the geometrical size and temperature.These results can be useful in modeling the thermal performance in the active region of GaN-based electronic devices.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Gallium nitride(GaN),as one of the wurtzite nitride semiconductors,has been regarded as the state of the art materials for the next generation of high-power optoelectronics devices and ultrapower switches[1,2].It is because that the wurtzite nitride semiconductors(GaN,AlN,InN)possess the electrical,optical,and thermal properties at high temperatures[3,4].Thermal properties of GaN play an important role in the applications of optoelectronic/microelectronic devices due to that the self-heating in the active regions strongly influences the performance and reliability of the devices.Experiments proved that the piezoelectric effects can significantly affect the performance of micro/nanoelectronic devicessuchastheefficiencydroopinwurtzitenitride-basedlightemitting diodes(LEDs)[5].Consequently,the accurate value of the thermaltransportpropertyofGaNnanostructuresbecomesimportantindesigningtheGaN-basedelectronicdevicesandkeepingthe performance of corresponding devices reliable.

    Since the heat in semiconductors is,in principle,transported by phonons,it becomes essential to investigate the phonon properties and phonon thermal conductivity in semiconductor nanostructures[6,7].A few groups have studied the phonon thermal conductivity of GaN in the bulk and nanostructure forms both in experiment and in theory.Sichel and Pankove[8]firstly measured the thermal conductivity of GaN film,and Guthy et al.[9]obtained the thermal conductivity of the GaN nanowires with different diameters from 97 to 181 nm in experiment.Theoretically,Slack[10]predicted the bulk thermal conductivity of GaN as 170 W/(m·K)at room temperature.Al-Shaikhi et al.[11]applied the Callaway’s relaxation-time theory to achieve the thermal conductivity of GaN bulks and films.Moreover,the Boltzmann transport equation approach was also adopted to calculate the thermal conductivity of GaN nanowires and GaN nanotubes[12,13],and the atomic method are also often carried out to simulate the thermal conductivity of GaN bulks and GaN nanostructures[11,14,15].However,these studies have not accounted for the influence of the piezoelectricity on the thermal conductivity of GaN materials. Even though Sahoo studied the effects of piezoelectric polarization and macroscopic polarization on phonon group velocity and thermal conductivity of bulk nitride wurtzites[16,17],the study of the piezoelectric effect on the phonon properties and thermal conductivity in spatially confined GaN nanofilms is still in lack.

    In this letter,the phonon properties and thermal conductivities of wurtzite–GaN nanofilm accounting for the piezoelectric effect aresimulatedtheoretically.Weapplytheelasticmodeltocalculate the phonon properties such as the phonon group velocity and phonon density of state in spatially confined GaN nanofilms.The influenceofpiezoelectricityistakenintoaccountincalculatingthe phonon properties and thermal conductivity through combining the piezoelectric constitutive relation in elastic model.Theoretical results show that the piezoelectricity in GaN nanofilms can change the phonon velocity and density of state of GaN nanostructures significantly,resulting in the modification of the phonon thermal conductivity in GaN nanofilms.

    The elasticity model has been always used to calculate the acoustic phonon properties of spatially confined nanostructures since the particle motion in the crystals can be well described by vibration equation[18–20].So,we can begin from the vibration equations based on the elasticity theory as

    whereuiis the particle displacement vector,i,j,k,l=1,2,3 are the indices of the three Cartesian coordinate axes.ρis the density of the natural state,σijis the stress tensor.Due to the piezoelectric effect,thestress–strainrelationshipinvolvesthecouplingbetween the elastic strain and electric field,given by

    whereeijkis the third rank piezoelectric tensor,Ekis the electric field tensor andCijklis the four-order modulus tensor.As a result, the vibration equation can be rewritten as

    For isotropic materials,the elastic modulus tensor only depends on the elastic constantsC11andC44.Here,we use the general rules to contract the indices:(iijj)→ (ij),and(12)→ (6),(13)→(5),(23)→ (4).Moreover,the constitutive relation between the electric displacement and the elastic strain can be presented as

    whereDiis the electric displacement,εijis the dielectric tensor. From the Maxwell equation,we also have the relation?·D=ρ0, whereρ0is the density of free charges.Then,according to Eq.(3), we have

    Due to theρ0small enough for GaN,it can be safe to assume that?·D≈0[16].

    Suppose that thex3direction is the transverse direction of the thickness of the GaN nanofilm,andx1andx2are the in-plane directions of the film.The acoustic waves propagate along thex1direction when the heat energy is along thex1direction.Thereby, the displacements of the nanofilm in Eq.(3)are the functions ofx1andx3in the form of

    whereωis the frequency andqis the wave vector.ˉu(x3)is the amplitude of displacement vector andiis imaginary unit.The solution of electric field can also follow the form of

    The boundary conditions can be written as

    Then,the phonon dispersion relations of GaN nanofilm can be calculated numerically based on the eigenvalue equation with the boundary conductions.Once the phonon dispersion relations are obtained for the nanofilms,the phonon frequency can be determined by using the finite difference method.From the determined vibrational spectrum of nanofilm,the phonon group velocity of various modes can be written as[12]

    where the subscriptnis the quantum number of the modes.With a given polarization,nis equal to the ratioa/(2?a).Here,?ais the lattice constant.The quasi-2D phonon density of state is given by[12]

    Owingtothatpiezoelectricityeffectcanchangethephonondispersion relations for different modes,the phonon group velocity and density of state are dependent on the property of piezoelectricity. The thermal performance of semiconductor nanostructures, in principle,is relevant to the phonon properties such as the phonon group velocity and the phonon density of states.When the phonon properties are determined for the GaN nanofilm with accounting for the piezoelectricity effect,the in-plane phonon thermal conductivity of nanofilm can be reached from[21]

    In order to explore the influence of piezoelectric on phonon properties and thermal performance,we simulate the phonon group velocity,phonon density of state,and the phonon thermal conductivity of wurtzite–GaN nanofilms.The material parameters related to the phonon scattering rates are taken from the literatures[8,12].The bulk elastic parametersCijklandCijklmnof wurtzite–GaN areC11=293 GPa,C12=159 GPa,C44=155 GPa,C111= -1213 GPa,C112= -867 GPa,C123= -253 GPa,C144=-46 GPa,andC155=-606 GPa[22,23],and the dielectric parameters areε11=ε22=9.5,ε33=12[16].

    Figure 1(a)shows the phonon group velocity of GaN nanofilm varying with the phonon energy under different piezoelectric constants,in which the nanofilm thickness is adopted as 5 nm. It is clearly noted that the phonon average group velocity in GaN nanofilm is significantly sensitive to the piezoelectric constant. When we do not consider the piezoelectric effect,the value of the phonon average group velocity arrives at 4500 m/s in the region of the phonon energy is close to zero,which refers to the Brillouin zone.While the piezoelectric constant of GaN nanofilm turns into 7 C/m2,the phonon average group velocity dramatically increases from 4500 to 5000 m/s.It has been demonstrated in Ref.[16]that the piezoelectricity leads to the increment of the average group velocity around one percentage for Bulk GaN.Since the piezoelectric constant of GaN nanofilm is greater than the one of bulk counterpart,the change of group velocity in GaN nanofilm is more significant than that in bulk GaN with considering the piezoelectric effect.When the piezoelectric constant is changed as 3 C/m2,theinfluence ofpiezoelectriceffect onthephononaverage group velocity becomes weaker.Figure 1(b)depicts the variation of the phonon average group velocity with phonon energy with different piezoelectric constants for the nanofilm thickness of 7 nm.Comparing with GaN nanofilm thickness of 5 nm,the piezoelectric effect also significantly changes the phonon average group velocity and the increment of velocity is greater than that in the former case.Similarly,Fig.1(c)plots the variation of the phonon average group velocity for the GaN nanofilm with the thickness of 12 nm.Owing to the increase of nanofilm thickness, the number of the phonon modes improves rapidly and the oscillation frequency of the phonon average group velocity is also enhanced dramatically.One also can find in Fig.1(c)that the wave peaks of the phonon average group velocity emerge more frequently in the region of higher energy.In addition,the piezoelectric effect also distinctly changes the phonon average group velocity.

    Fig.1. Phonon average group velocity vs.phonon energy with different piezoelectric constants for GaN nanofilm with the thickness of(a)5 nm,(b)7 nm, and(c)12 nm.

    Figure 2(a)shows the variation of the phonon density of states (DOSs)with phonon energy for GaN nanofilm with 5 nm thickness. It is clearly observed that the DOS rises step-by-step with the increment of phonon energy and then decreases step by step when the curve reaches the peak.The piezoelectric effect significantly changes the distribution of DOS vs.phonon energy with two features.On the one hand,it makes the DOS distributing around more extensive energy region and the maximum value can reach 50 MeV.It is because of the fact that the piezoelectricity can increase the phonon energy of GaN nanofilm.On the other hand, the peak of the DOS is modified obviously.The maximum value of DOSdecreasesfrom3.5×1014to2.0×1014s/m3,whichisresulting from the fact that the piezoelectric effect improves the energy difference between the adjacent modes.Figure 2(b)depicts the variation of the phonon DOS with different piezoelectric constants for GaN nanofilm with the thickness of 7 nm.It is clear to find that the peak values of phonon DOS reaches 4.0× 1014s/m3which is higher than that of GaN nanofilm with 5 nm thickness. Withconsideringthepiezoelectriceffect,theDOSdistributesalong more extensive energy regions and its peak value drops more dramatically.Figure 2(c)further shows the variation of the phonon DOS for GaN nanofilm with the thickness of 12 nm.Comparing with the thinner films,the steps in curves of 12 nm GaN nanofilmmanifests more smoothly.This is due to that thickening the nanofilm leas to the number of phonon modes increasing.

    Fig.2.Phonon density of state vs.phonon energy with different piezoelectric constants for GaN nanofilm with the thickness of(a)5 nm,(b)7 nm,and(c)12 nm.

    Fig.3.(Color online)(a)Phonon thermal conductivity vs.temperature for different nanofilm thickness and different piezoelectric constants of GaN nanofilm,and (b)thesize-dependentphononthermalconductivityofGaNnanofilmwithdifferent piezoelectric constants.κ0is the bulk phonon thermal conductivity of GaN.

    Figure 3(a)plots the phonon thermal conductivity varying with the temperature for different nanofilm thickness and different piezoelectric constants of GaN nanofilm.It is noticed from Fig.3(a) that the increase of piezoelectric constant improves obviously the phonon thermal conductivity of GaN nanofilm.With the small piezoelectric constants such as 1.5 C/m2or 3 C/m2close to the piezoelectric constants of the bulk GaN,the influence of piezoelectricity on phonon thermal conductivity is not significant. When the film thickness decreases to the nanometer scale, the piezoelectric constant is increased due to the size effect. For example,with the piezoelectric constant as 7 C/m2,the piezoelectric effect significantly improves the phonon thermal conductivity of GaN nanofilm and the conductivity has increased by~20%when the temperature is between 200 and 300 K.This is in accord with the simulated results for bulk InN[17]qualitatively. Figure 3(b)depicts the variation of phonon thermal conductivity with film thickness for GaN nanofilm with different piezoelectric constants.From the figure,one can note that the phonon thermal conductivity displays the size effect which is stemmed from the quantum confinement effect,indicating that the phonon thermal conductivityincreaseswiththeincrementofthethickness.Besides that,the influence of the piezoelectricity on the phonon thermal conductivity meets a linear relationship and the phonon thermal conductivity is proportional to the piezoelectric constant.

    In summary,we studied the piezoelectric effect on the phonon properties and thermal performance of GaN nanofilms theoretically.The influences of piezoelectricity on the phonon group velocity,phonon density of states,and phonon thermal conductivity of GaN nanofilms are quantitatively explored.The simulation results demonstrated that the piezoelectric effect in GaN nanofilms can notably change the phonon properties and the phonon thermal conductivity.Moreover,the piezoelectricity property can also modify the temperature and size-dependence of phonon thermal conductivity in GaN nanofilm.The results in this work will be helpful for controlling the thermal performance in GaN-based nanoelectronic devices.

    Acknowledgments

    The authors gratefully acknowledge the support received from the National Natural Science Foundation of China(11472243, 11302189,11321202)and the Doctoral Fund of Ministry of Education of China(20130101120175).

    [1]K.Chung,C.H.Lee,G.C.Yi,Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,Science 330(2010) 655–657.

    [2]M.Nazari,B.L.Hancock,E.L.Piner,et al.,Self-heating profile in an AlGaN/GaN heterojunction field-effect transistor studied by ultraviolet and visible micro-Raman spectroscopy,IEEE Trans.Electron Devices 62(2015) 1467–1472.

    [3]Y.Huang,X.Duan,Y.Cui,et al.,Gallium nitride nanowire nanodevices,Nano Lett.2(2002)101–104.

    [4]S.Grade?ak,F.Qian,Y.Li,et al.,GaN nanowire lasers with low lasing thresholds,Appl.Phys.Lett.87(2005)173111.

    [5]Y.K.Kuo,M.C.Tsai,S.H.Yen,et al.,Effect of P-type last barrier on efficiency droop of blue ingan light-emitting diodes,IEEE J.Quantum Electron.46(2010) 1214–1220.

    [6]Z.P.Xu,Heat transport in low-dimensional materials:A review and perspective,Theor.Appl.Mech.Lett.6(2016)113–121.

    [7]Y.H.Yu,Y.Y.Gao,J.Z.Song,Recent advances on thermal analysis of stretchable electronics,Theor.Appl.Mech.Lett.6(2016)32–37.

    [8]E.K.Sichel,J.I.Pankove,Thermal conductivity of GaN,25-360K,J.Phys.Chem. Solids 38(1977)330.

    [9]C.Guthy,C.Y.Nam,J.E.Fischer,Unusually low thermal conductivity of gallium nitride nanowires,J.Appl.Phys.103(2008)064319.

    [10]G.A.Slack,Nonmetallic crystals with high thermal conductivity,J.Phys.Chem. Solids 34(1973)321–335.

    [11]A.AlShaikhi,S.Barman,G.P.Srivastava,Theory of the lattice thermal conductivity in bulk and films of GaN,Phys.Rev.B 81(2010)195320.

    [12]J.Zou,Lattice thermal conductivity of freestanding gallium nitride nanowires, J.Appl.Phys.108(2010)034324.

    [13]G.Zhou,L.L.Li,Phonon thermal conductivity of GaN nanotubes,J.Appl.Phys. 112(2012)014317.

    [14]K.Jung,M.Cho,M.Zhou,Thermalandmechanicalresponseof[0001]-oriented GaN nanowires during tensile loading and unloading,J.Appl.Phys.112(2012) 083522.

    [15]L.Lindsay,D.A.Broido,T.L.Reinecke,Thermal conductivity and large isotope effect in GaN from first principles,Phys.Rev.Lett.109(2012)095901.

    [16]B.K.Sahoo,Effect of piezoelectric polarization on phonon group velocity in nitride wurtzites,J.Mater.Sci.47(2012)2624–2629.

    [17]B.K.Sahoo,Effect of macroscopic polarization on thermal conductivity of InN, J.Alloys Compd.603(2014)217–221.

    [18]A.Balandin,K.L.Wang,Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well, Phys.Rev.B 58(1998)1544–1549.

    [19]L.L.Zhu,H.H.Ruan,Influence of prestress fields on ther phonon thermal conductivity of GaN nanostructures,ASME J.Heat Transfer 36(2014)102402.

    [20]L.L.Zhu,H.N.Luo,Phonon properties and thermal conductivity of GaN nanofilm under prestress and surface/interface stress,J.Alloys Compd.685 (2016)619–625.

    [21]P.Martin,Z.Aksamija,E.Pop,et al.,Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires,Phys.Rev.Lett.102 (2009)125503.

    [22]S.P.?epkowski,J.A.Majewski,G.Jurczak,Nonlinear elasticity in III-N compounds:Ab initio calculations,Phys.Rev.B 72(2005)245201.

    [23]S.P.?epkowski,I.Gorczyca,Ab initio study of elastic constants in InxGa1-xN and InxAl1-xN wurtzite alloys,Phys.Rev.B 83(2011)203201.

    ?Correspondence to:Department of Engineering Mechanical,Zhejiang University,Hangzhou 310027,China.

    E-mail address:llzhu@zju.edu.cn(L.Zhu).

    http://dx.doi.org/10.1016/j.taml.2016.11.001

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Solid Mechanics

    亚洲最大成人中文| 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 精品久久久噜噜| 欧美最新免费一区二区三区| 亚洲天堂av无毛| 国产欧美另类精品又又久久亚洲欧美| av国产久精品久网站免费入址| 91精品国产九色| 18+在线观看网站| 日韩欧美 国产精品| 一本—道久久a久久精品蜜桃钙片| 久久99热这里只频精品6学生| 99热全是精品| 国产成人午夜福利电影在线观看| 高清黄色对白视频在线免费看 | 高清日韩中文字幕在线| 少妇猛男粗大的猛烈进出视频| 性色av一级| 久久毛片免费看一区二区三区| 在线看a的网站| 一区二区av电影网| 能在线免费看毛片的网站| 久久久久久久国产电影| 黄色配什么色好看| 亚洲国产av新网站| 成人无遮挡网站| 国产爽快片一区二区三区| 日韩国内少妇激情av| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 久久久久久伊人网av| 国产成人a∨麻豆精品| 国产一级毛片在线| 岛国毛片在线播放| 精品一区二区免费观看| 高清欧美精品videossex| 乱码一卡2卡4卡精品| 国产男女超爽视频在线观看| 久久久久视频综合| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 男女啪啪激烈高潮av片| 噜噜噜噜噜久久久久久91| 中国国产av一级| 日韩亚洲欧美综合| 丝瓜视频免费看黄片| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 国产真实伦视频高清在线观看| 亚洲av电影在线观看一区二区三区| 国产美女午夜福利| 欧美激情国产日韩精品一区| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 午夜精品国产一区二区电影| 国产精品一区二区三区四区免费观看| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频| 成年av动漫网址| 精品酒店卫生间| 少妇人妻 视频| av卡一久久| 高清毛片免费看| 波野结衣二区三区在线| 一本色道久久久久久精品综合| 一本久久精品| 另类亚洲欧美激情| 免费观看a级毛片全部| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| .国产精品久久| 菩萨蛮人人尽说江南好唐韦庄| 18禁在线无遮挡免费观看视频| 久久久久久久久久久丰满| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 日本黄色片子视频| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频 | 老师上课跳d突然被开到最大视频| 国产熟女欧美一区二区| 国产精品免费大片| 三级国产精品片| 欧美+日韩+精品| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| av天堂中文字幕网| 亚洲国产欧美人成| 极品教师在线视频| 欧美三级亚洲精品| 欧美一区二区亚洲| 国产乱人偷精品视频| 插逼视频在线观看| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 亚洲av中文字字幕乱码综合| 3wmmmm亚洲av在线观看| 午夜福利影视在线免费观看| 免费看不卡的av| 久久99蜜桃精品久久| 国产91av在线免费观看| 身体一侧抽搐| 午夜免费鲁丝| 亚洲美女搞黄在线观看| 国产精品一区二区性色av| 一级a做视频免费观看| 99热6这里只有精品| 人妻一区二区av| 日本色播在线视频| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 亚洲伊人久久精品综合| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 精品久久国产蜜桃| 99热这里只有精品一区| 久久久久久九九精品二区国产| 一级毛片电影观看| 免费看av在线观看网站| 在线天堂最新版资源| 国产精品免费大片| 欧美极品一区二区三区四区| 边亲边吃奶的免费视频| 亚洲色图综合在线观看| 男女无遮挡免费网站观看| 亚洲精品亚洲一区二区| 好男人视频免费观看在线| 一级爰片在线观看| 深夜a级毛片| 91精品伊人久久大香线蕉| 99久久人妻综合| 男女免费视频国产| 精品少妇久久久久久888优播| 亚洲图色成人| 亚洲一区二区三区欧美精品| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 成人国产麻豆网| 2021少妇久久久久久久久久久| 日本午夜av视频| 在线观看美女被高潮喷水网站| 内地一区二区视频在线| 日韩人妻高清精品专区| 美女内射精品一级片tv| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| 下体分泌物呈黄色| 久久久久久久久久久免费av| av一本久久久久| 中文字幕制服av| 全区人妻精品视频| 午夜免费鲁丝| 美女中出高潮动态图| 久久99精品国语久久久| 中文字幕精品免费在线观看视频 | 91在线精品国自产拍蜜月| 又爽又黄a免费视频| 欧美精品人与动牲交sv欧美| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 丝袜脚勾引网站| 在线精品无人区一区二区三 | 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 国产精品伦人一区二区| 交换朋友夫妻互换小说| 99久久综合免费| 免费人成在线观看视频色| 日本av免费视频播放| 午夜老司机福利剧场| 午夜视频国产福利| 色婷婷av一区二区三区视频| 韩国高清视频一区二区三区| 午夜福利在线观看免费完整高清在| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 视频区图区小说| 在线免费十八禁| 国产伦在线观看视频一区| 亚洲国产精品专区欧美| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 亚洲人成网站高清观看| 精品国产乱码久久久久久小说| 国内精品宾馆在线| 精品酒店卫生间| 国产男女内射视频| av黄色大香蕉| av免费观看日本| 日本欧美国产在线视频| 亚洲中文av在线| 久久人人爽人人爽人人片va| 高清在线视频一区二区三区| 亚洲精品日韩av片在线观看| 51国产日韩欧美| 性高湖久久久久久久久免费观看| 欧美性感艳星| 美女中出高潮动态图| 最黄视频免费看| av女优亚洲男人天堂| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 日日啪夜夜爽| 婷婷色综合大香蕉| 少妇 在线观看| 欧美最新免费一区二区三区| 免费观看性生交大片5| 亚洲人成网站高清观看| 免费观看a级毛片全部| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 搡老乐熟女国产| videos熟女内射| 国产精品偷伦视频观看了| 美女cb高潮喷水在线观看| 亚洲在久久综合| 777米奇影视久久| 极品教师在线视频| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 亚洲国产最新在线播放| www.av在线官网国产| 欧美另类一区| 99热这里只有是精品50| 亚洲国产av新网站| 国产精品久久久久久精品古装| 国产免费福利视频在线观看| 天天躁日日操中文字幕| 精品少妇黑人巨大在线播放| 激情五月婷婷亚洲| 夜夜爽夜夜爽视频| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 成人毛片60女人毛片免费| 毛片一级片免费看久久久久| 蜜桃在线观看..| 99久久中文字幕三级久久日本| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 一级爰片在线观看| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 日本一二三区视频观看| av天堂中文字幕网| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 久久久久久久久久久丰满| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 性高湖久久久久久久久免费观看| 久久青草综合色| 日韩欧美一区视频在线观看 | 一本久久精品| av天堂中文字幕网| 天天躁日日操中文字幕| 精品酒店卫生间| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| videos熟女内射| 黄片wwwwww| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 国产精品熟女久久久久浪| 女人久久www免费人成看片| 美女xxoo啪啪120秒动态图| 男人添女人高潮全过程视频| 大码成人一级视频| 观看免费一级毛片| 亚洲国产精品专区欧美| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 国产91av在线免费观看| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 国产精品熟女久久久久浪| 久久国产精品大桥未久av | 国产91av在线免费观看| 国产真实伦视频高清在线观看| 少妇 在线观看| 我的老师免费观看完整版| 国模一区二区三区四区视频| 亚洲最大成人中文| 一区二区三区四区激情视频| 国产在线视频一区二区| 啦啦啦中文免费视频观看日本| 国产精品国产av在线观看| 国产精品人妻久久久影院| 伊人久久国产一区二区| 日日撸夜夜添| 中文字幕人妻熟人妻熟丝袜美| 精品国产乱码久久久久久小说| 日本黄色片子视频| 国产精品福利在线免费观看| 性色av一级| 这个男人来自地球电影免费观看 | 精品久久久精品久久久| 精品国产露脸久久av麻豆| 男男h啪啪无遮挡| 看免费成人av毛片| 久久97久久精品| 亚洲,欧美,日韩| 久久ye,这里只有精品| 美女中出高潮动态图| 一本—道久久a久久精品蜜桃钙片| 直男gayav资源| 少妇丰满av| 超碰97精品在线观看| freevideosex欧美| 国产亚洲一区二区精品| 中文欧美无线码| 国产中年淑女户外野战色| 两个人的视频大全免费| a 毛片基地| 国产精品一区二区性色av| 99久久精品国产国产毛片| 欧美区成人在线视频| 美女福利国产在线 | 舔av片在线| 国产又色又爽无遮挡免| 久久影院123| 欧美变态另类bdsm刘玥| 久久久久人妻精品一区果冻| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 精品一区在线观看国产| 亚洲无线观看免费| 色视频在线一区二区三区| 久久久久久久久久成人| 女人十人毛片免费观看3o分钟| 看免费成人av毛片| 美女内射精品一级片tv| 全区人妻精品视频| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 免费高清在线观看视频在线观看| 美女高潮的动态| 免费高清在线观看视频在线观看| 亚洲av综合色区一区| 精品人妻视频免费看| 久久精品久久久久久久性| av播播在线观看一区| 建设人人有责人人尽责人人享有的 | 国产精品国产三级国产av玫瑰| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 国产成人a区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av欧美aⅴ国产| 男人爽女人下面视频在线观看| 1000部很黄的大片| 亚洲精品成人av观看孕妇| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 亚洲人成网站在线播| 日本wwww免费看| 99久久人妻综合| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 午夜激情久久久久久久| 免费看不卡的av| 欧美性感艳星| 少妇高潮的动态图| 日韩免费高清中文字幕av| 永久网站在线| 日韩 亚洲 欧美在线| 午夜日本视频在线| 免费看av在线观看网站| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 少妇的逼水好多| 一级二级三级毛片免费看| 亚洲性久久影院| 久久青草综合色| 国产白丝娇喘喷水9色精品| 六月丁香七月| 男女免费视频国产| 秋霞在线观看毛片| 亚洲熟女精品中文字幕| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 伦理电影免费视频| 国产欧美亚洲国产| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 性色av一级| 男女下面进入的视频免费午夜| 尤物成人国产欧美一区二区三区| 亚洲av福利一区| 在线观看免费视频网站a站| 国产亚洲最大av| 亚洲,欧美,日韩| 久久国产亚洲av麻豆专区| av福利片在线观看| av女优亚洲男人天堂| 亚洲内射少妇av| 97超碰精品成人国产| 综合色丁香网| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 久热久热在线精品观看| 久久久久久久久大av| 黄色欧美视频在线观看| 国产精品爽爽va在线观看网站| 亚洲在久久综合| 99久久综合免费| 亚洲欧美精品自产自拍| 国产精品国产三级国产专区5o| av国产免费在线观看| 尤物成人国产欧美一区二区三区| 国产男女内射视频| 内射极品少妇av片p| 亚洲高清免费不卡视频| 国产精品免费大片| 中国美白少妇内射xxxbb| 高清不卡的av网站| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说 | 大片免费播放器 马上看| 亚洲第一区二区三区不卡| 下体分泌物呈黄色| 日本色播在线视频| tube8黄色片| 亚洲国产欧美人成| 免费大片黄手机在线观看| 日韩欧美精品免费久久| 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 99久久中文字幕三级久久日本| 国产欧美日韩精品一区二区| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 国产黄色视频一区二区在线观看| 亚洲天堂av无毛| 涩涩av久久男人的天堂| 国产视频首页在线观看| 三级经典国产精品| 女性被躁到高潮视频| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 一区二区三区免费毛片| 人妻夜夜爽99麻豆av| 99热6这里只有精品| 男女下面进入的视频免费午夜| 国产高清三级在线| 黑人猛操日本美女一级片| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 精品少妇黑人巨大在线播放| 午夜老司机福利剧场| 国产av精品麻豆| 大片免费播放器 马上看| 大话2 男鬼变身卡| 国产一级毛片在线| 五月玫瑰六月丁香| 亚洲在久久综合| 夜夜骑夜夜射夜夜干| 亚洲一区二区三区欧美精品| 亚洲不卡免费看| 麻豆国产97在线/欧美| 久久久久久久久久成人| 亚洲综合精品二区| 国产黄频视频在线观看| 老女人水多毛片| 中国国产av一级| 成人亚洲欧美一区二区av| 最近的中文字幕免费完整| 久久久久精品久久久久真实原创| 国产淫语在线视频| 一区二区三区四区激情视频| 亚洲欧美精品自产自拍| 亚洲精品456在线播放app| 爱豆传媒免费全集在线观看| 91狼人影院| 一本久久精品| 久久99蜜桃精品久久| 涩涩av久久男人的天堂| 一级二级三级毛片免费看| 国产av精品麻豆| 免费在线观看成人毛片| 日日撸夜夜添| 国产毛片在线视频| 一本久久精品| 欧美精品一区二区免费开放| 久久久久久久亚洲中文字幕| 在线观看美女被高潮喷水网站| 你懂的网址亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 精品一区二区免费观看| 在线播放无遮挡| 一级毛片我不卡| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 激情五月婷婷亚洲| 成人亚洲欧美一区二区av| 麻豆乱淫一区二区| 最近最新中文字幕免费大全7| 在线播放无遮挡| 亚洲va在线va天堂va国产| 亚洲精品,欧美精品| 国产色爽女视频免费观看| 欧美日韩视频高清一区二区三区二| 肉色欧美久久久久久久蜜桃| 啦啦啦啦在线视频资源| 黑人高潮一二区| 亚洲在久久综合| 在线 av 中文字幕| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 欧美成人一区二区免费高清观看| 免费人妻精品一区二区三区视频| 国产高清三级在线| 91在线精品国自产拍蜜月| 交换朋友夫妻互换小说| 国产久久久一区二区三区| 多毛熟女@视频| 国产男女超爽视频在线观看| 久久99热6这里只有精品| 久久久久视频综合| 久久鲁丝午夜福利片| 精品一区二区三区视频在线| 精品国产三级普通话版| kizo精华| 春色校园在线视频观看| 观看av在线不卡| 国产淫语在线视频| 亚洲高清免费不卡视频| 欧美亚洲 丝袜 人妻 在线| av在线老鸭窝| 久久97久久精品| 在线观看av片永久免费下载| 亚洲图色成人| 美女xxoo啪啪120秒动态图| 亚洲欧美精品自产自拍| 欧美极品一区二区三区四区| 激情五月婷婷亚洲| 你懂的网址亚洲精品在线观看| 嘟嘟电影网在线观看| 国产男女内射视频| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 国产男人的电影天堂91| 少妇高潮的动态图| 99热全是精品| 在线观看三级黄色| 大香蕉久久网| 亚洲精品第二区| 国产一区亚洲一区在线观看| www.av在线官网国产| 少妇 在线观看| 97超视频在线观看视频| 黄色一级大片看看| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| 久久鲁丝午夜福利片| 亚洲精品第二区| 亚洲自偷自拍三级| 三级经典国产精品| 性色av一级| 一级a做视频免费观看| 人体艺术视频欧美日本| 欧美成人精品欧美一级黄| 欧美少妇被猛烈插入视频| 亚洲国产高清在线一区二区三| 欧美成人精品欧美一级黄| 丰满乱子伦码专区| 欧美三级亚洲精品| 欧美高清性xxxxhd video| 99九九线精品视频在线观看视频| 永久免费av网站大全| 伊人久久国产一区二区| 久久99热这里只频精品6学生|