• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平面向量題解法的切入點(diǎn)探究

    2016-12-23 18:17:13寧衛(wèi)兵
    關(guān)鍵詞:平面向量解題探究

    寧衛(wèi)兵

    【摘要】平面向量是高中數(shù)學(xué)中重要的、基本的概念,它是溝通代數(shù)、幾何與三角函數(shù)的一種工具.在高考中常以兩種形式出現(xiàn):其一,小題的形式出現(xiàn)時(shí),主要圍繞向量的基本運(yùn)算和利用向量研究角、模長(zhǎng)、平行和垂直等問題,考查向量的基礎(chǔ)知識(shí);其二,解答題形式出現(xiàn)時(shí),向量與三角函數(shù)、解析幾何等其他知識(shí)的綜合問題,考查運(yùn)用平面向量解決問題的能力,凸顯平面向量的工具作用.

    【關(guān)鍵詞】平面向量;解題;探究

    平面向量的小題大多涉及知識(shí)點(diǎn)少,題目入口寬,思路靈活多變.如何靈活運(yùn)用已有的平面向量知識(shí),選擇有效的方法,快速準(zhǔn)確地解決問題,困擾了不少學(xué)生.本文試圖通過對(duì)一道平面向量問題的多角度分析,來總結(jié)平面向量問題常用的解題切入點(diǎn)予以歸納,為大家提供參考.

    題目已知向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|2+|b|2+|c|2的值是.

    切入點(diǎn)一:數(shù)量積的直接運(yùn)用

    求解模長(zhǎng)是平面向量的常見問題,應(yīng)用數(shù)量積是容易入手的方法.對(duì)于數(shù)量積的應(yīng)用,學(xué)生較易入手,此類解題思路最為常用.這個(gè)切入點(diǎn)需要在解題進(jìn)行中不斷調(diào)整,對(duì)于數(shù)量積的公式變換應(yīng)用,如何將問題轉(zhuǎn)化為已知條件的數(shù)量積表示是解題成功關(guān)鍵.

    方法一(數(shù)量積的合理變換)

    想求解|a|2+|b|2+|c|2可從a+b+c=0變換開始尋找思路.

    由a+b+c=0可推出(a+b+c)2=02=0,即

    a2+b2+c2+2a·b+2b·c+2c·a=0.(*)

    只要解得三組數(shù)量積就能得出答案.

    開始分析已知條件:

    由a⊥b可得a·b=0,①

    由(a-b)⊥c可得(a-b)·c=0,

    即a·c-b·c=0.②

    由a+b+c=0可知a·(a+b+c)=a·0=0,

    即a2+a·c=0.③

    上述三式聯(lián)立可得a·c=b·c=-1.

    代入(*)中可得|a|2+|b|2+|c|2=4.

    方法二(數(shù)量積的合理變換)

    由a+b+c=0可得c=-(a+b),結(jié)合(a-b)⊥c可知(a-b)⊥(a+b),即

    (a-b)·(a+b)=a2-b2=0,

    于是a2=b2=1.

    由a⊥b可得a·b=0,

    結(jié)合c=-(a+b)可知

    c2=(a+b)2=a2+2a·b+b2=a2+b2=2.

    于是|a|2+|b|2+|c|2=4.

    切入點(diǎn)二:平面向量的坐標(biāo)運(yùn)算

    平面向量的坐標(biāo)是平面向量基本定理數(shù)量化體現(xiàn),將平面向量統(tǒng)一標(biāo)準(zhǔn)度量.坐標(biāo)運(yùn)算能把學(xué)生從復(fù)雜的化簡(jiǎn)中解放出來,快速簡(jiǎn)捷地達(dá)成解題目標(biāo).對(duì)于條件中包含向量夾角與長(zhǎng)度的問題,都可以考慮建立適當(dāng)?shù)淖鴺?biāo)系,應(yīng)用坐標(biāo)法來統(tǒng)一向量表示,達(dá)到轉(zhuǎn)化問題,簡(jiǎn)單求解的目的.

    方法三(平面向量的坐標(biāo)應(yīng)用,將向量問題轉(zhuǎn)化為坐標(biāo)問題)

    由a⊥b可以考慮借助坐標(biāo)系,把向量問題坐標(biāo)化.

    由|a|=1,不妨設(shè)a=(1,0),b=(0,y)(y∈R),

    則由a+b+c=0可得c=(-1,-y).

    由(a-b)⊥c可得(1,-y)·(-1,-y)=0,即y2=1,

    那么|a|2+|b|2+|c|2=1+y2+1+y2=4.

    切入點(diǎn)三:圖形運(yùn)算與數(shù)形結(jié)合

    向量的圖形法則與數(shù)形結(jié)合切入點(diǎn),適用于能將多個(gè)向量的計(jì)算問題轉(zhuǎn)化為一個(gè)圖形中的某個(gè)量計(jì)算.此類方法建立在學(xué)生熟悉平面幾何中常見圖形:三角形、平行四邊形的相關(guān)性質(zhì),能夠?qū)D形中反映的幾何度量問題與向量的圖形運(yùn)算有效結(jié)合起來,達(dá)到轉(zhuǎn)化問題,減少運(yùn)算,進(jìn)而達(dá)成解題目標(biāo).

    方法四(向量運(yùn)算的圖形法則運(yùn)用,數(shù)形結(jié)合思想應(yīng)用)

    由a+b+c=0可得c=-(a+b),結(jié)合(a-b)⊥c可知(a-b)⊥(a+b),于是將圖1中的矩形可進(jìn)一步確定為正方形.(如圖2)

    至此,題目中所涉及的向量均已在圖中體現(xiàn),由|a|=1可推得|b|=1,|c|=2.

    于是所求|a|2+|b|2+|c|2=1+1+2=4.

    單獨(dú)考查平面向量的問題多為選擇、填空題,要求學(xué)生能達(dá)到快速準(zhǔn)確解答.這就要求學(xué)生整合個(gè)人知識(shí)方法,根據(jù)題目條件靈活選擇數(shù)形結(jié)合法、坐標(biāo)轉(zhuǎn)化法、數(shù)量積的應(yīng)用等方法,完成問題的等價(jià)轉(zhuǎn)化之后進(jìn)行求解.在日常練習(xí)中進(jìn)行多角度思維訓(xùn)練,不斷總結(jié)知識(shí)方法的應(yīng)用情境,增強(qiáng)分析問題、轉(zhuǎn)化問題、解決問題的能力.

    猜你喜歡
    平面向量解題探究
    用“同樣多”解題
    設(shè)而不求巧解題
    一道探究題的解法及應(yīng)用
    用“同樣多”解題
    一道IMO預(yù)選題的探究
    探究式學(xué)習(xí)在國(guó)外
    快樂語文(2018年13期)2018-06-11 01:18:16
    一道IMO預(yù)選題的探究及思考
    體驗(yàn)式教學(xué)在平面向量章節(jié)中的使用探討
    成才之路(2016年35期)2016-12-12 12:30:01
    體驗(yàn)式教學(xué)在平面向量章節(jié)中的使用探討
    成才之路(2016年24期)2016-09-22 10:27:06
    例談平面向量在解析幾何中的應(yīng)用
    考試周刊(2016年45期)2016-06-24 13:23:46
    阿勒泰市| 隆德县| 鹤庆县| 泾川县| 井研县| 江门市| 三江| 南昌县| 如东县| 唐河县| 井冈山市| 昌邑市| 左贡县| 井冈山市| 旬阳县| 忻州市| 合阳县| 白沙| 涟源市| 万山特区| 吐鲁番市| 理塘县| 青浦区| 方正县| 故城县| 抚松县| 南投县| 思茅市| 凤翔县| 新津县| 乐业县| 海兴县| 天柱县| 江口县| 门源| 大足县| 浦江县| 台北县| 景德镇市| 和田市| 惠州市|