胡仕剛,吳笑峰,席在芳,唐志軍,劉云新
?
Dy3+對(duì)NaLaF4:Yb3+/Er3+/Dy3+雙功能納米晶的上轉(zhuǎn)換發(fā)光及順磁性調(diào)制作用
胡仕剛1,吳笑峰1,席在芳1,唐志軍1,劉云新2
(1. 湖南科技大學(xué)信息與電氣工程學(xué)院,湖南湘潭,411201;2. 湖南科技大學(xué)物理與電子科學(xué)學(xué)院,湖南湘潭,411201)
利用熱溶劑法制備NaLaF4:Yb3+/Er3+/Dy3+光磁雙功能納米晶。結(jié)合能級(jí)躍遷圖,闡述Dy3+的6FJ和6HJ系列能級(jí)與Er3+之間的能量傳遞及由此引起的特殊光調(diào)制現(xiàn)象。研究結(jié)果表明:樣品在波長(zhǎng)為980 nm的紅外光子激發(fā)下可以發(fā)射中心波長(zhǎng)為522 nm和547 nm的綠光;隨著激發(fā)光功率增大,綠光發(fā)射強(qiáng)度也相應(yīng)增強(qiáng);調(diào)節(jié)Dy3+的摻雜摩爾百分比,可以同時(shí)調(diào)制樣品的上轉(zhuǎn)換發(fā)光和順磁特性;隨著Dy3+的摩爾百分比從0增加到5%,樣品的522 nm發(fā)光相對(duì)于547 nm發(fā)光峰逐漸增強(qiáng);若進(jìn)一步增加Dy3+的摩爾百分比到10%,其相對(duì)強(qiáng)度反而減弱。隨著Dy3+的摩爾百分比從0增大到10%,樣品的順磁性單調(diào)提升,但伴隨著總體發(fā)光強(qiáng)度衰減。
光磁;雙功能;稀土離子;摻雜
上轉(zhuǎn)換材料在低能量紅外光子的激發(fā)下可以發(fā)射從紅光到紫外波長(zhǎng)的高能量光子,在傳感器、生物高清成像及紅外探測(cè)等領(lǐng)域得到廣泛應(yīng)用[1?6]。上轉(zhuǎn)換發(fā)光材料通常由基體材料和摻雜的發(fā)光離子組成[7?9],如單一的NaLaF4基體材料并不發(fā)光,但摻雜稀土Er3+之后能發(fā)射紅光和綠光。上轉(zhuǎn)換材料的發(fā)光效率高度與基體材料的聲子能量、晶體場(chǎng)特性及晶體缺陷有關(guān),選擇合適的基體材料對(duì)于實(shí)現(xiàn)高效上轉(zhuǎn)換發(fā)光至關(guān)重要。到目前為止,NaLnF4(Ln即鑭系)被公認(rèn)為具有最高上轉(zhuǎn)換發(fā)光效率的基體材料[10?12],其中,人們對(duì)NaYF4的研究最多。本文作者對(duì)NaLaF4體系的上轉(zhuǎn)換發(fā)光特性進(jìn)行研究。La3+與Y3+屬于元素周期表的同一族,物理化學(xué)性質(zhì)相近。但由于La3+比Y3+的半徑更大,電負(fù)性更高,因此,對(duì)應(yīng)的NaLaF4基體材料與NaYF4相比,具有更低的晶格點(diǎn)對(duì)稱性和熱傳導(dǎo)性。晶格點(diǎn)對(duì)稱性越低,在該類格點(diǎn)上的發(fā)光中心離子可以獲得更高的上轉(zhuǎn)換發(fā)光效率;而低的熱傳導(dǎo)性有利于光熱聚集。上轉(zhuǎn)換納米探針用于腫瘤細(xì)胞的探測(cè)和熱效應(yīng)治療領(lǐng)域具有廣闊的應(yīng)用前景。常用的摻雜離子為Yb3+/Er3+和Yb3+/Tm3+對(duì),可以實(shí)現(xiàn)紅、綠、藍(lán)三基色上轉(zhuǎn)換發(fā)光[13?19]。Yb3+/Er3+/Tm3+最外層都是由非飽和電子填充,具有順磁或鐵磁性。本文擬引入稀土Dy3+同時(shí)調(diào)制Yb3+/Er3+對(duì)摻雜的NaLaF4上轉(zhuǎn)換納米顆粒的發(fā)光與磁性。
1.1 原材料
原材料為:油酸,十八烯和三氟醋酸鈉,購(gòu)于阿法埃莎并直接使用;環(huán)己烷、氯化鉺、氯化鐿、氯化鏑、氯化鑭等,購(gòu)于國(guó)藥集團(tuán)并直接使用;去離子水,自制。
1.2 樣品制備
1)將0.4 mL濃度為2 mol/L的氯化稀土溶液與 7 mL油酸和7 mL十八烯混合,在氮?dú)饬鞅Wo(hù)下,于150 ℃的溫度中加熱0.5 h去除水分,然后升溫到 305 ℃,得樣品A,備用。
2) 將1.6 mmol三氟醋酸鈉溶于2 mL油酸和2 mL十八烯,在160 ℃和氮?dú)饬鞅Wo(hù)下加熱攪拌40 min至三氟醋酸鈉完全溶于油酸和十八烯混合溶劑,得樣品B。
3) 將B注入A,并在305 ℃反應(yīng)0.5 h。反應(yīng)完畢,冷卻到室溫,加入無(wú)水乙醇析出納米晶產(chǎn)物,將產(chǎn)物用乙醇和環(huán)己烷各清洗2次,最后分散在環(huán)己烷中備用。
1.3 表征
透射電鏡成像用JEM 3010進(jìn)行表征,工作電壓為200 kV;熒光光譜測(cè)試儀器為日立F?4700,激發(fā)光源為980 nm可調(diào)功率半導(dǎo)體激光器;利用布魯克 D8 ADVANCE X線粉末衍射儀測(cè)試XRD譜,角度重現(xiàn)性為±0.000 1°;磁性測(cè)量采用Quantum Design公司的PPMS測(cè)試系統(tǒng)。
2.1 晶體結(jié)構(gòu)
NaLaF4:25%Yb3+/2%Er3+/5%Dy3+TEM像見(jiàn)圖1。從圖1可以看到:合成的NaLaF4:25%Yb3+/2%Er3+/ 5%Dy3+上轉(zhuǎn)換納米晶具有較均一的粒度,具有立方體形貌,平均直徑為10 nm。X線衍射譜見(jiàn)圖2,這種上轉(zhuǎn)換納米晶為六角相晶體結(jié)構(gòu)。利用謝樂(lè)公式
/(cos) (1)
計(jì)算的晶體粒度為9.35 nm,與TEM的觀測(cè)結(jié)果基本一致。式(1)中:為Scherrer常數(shù);為晶粒垂直于晶面方向的平均厚度;為實(shí)測(cè)樣品衍射峰半高寬度;為衍射角;為X線波長(zhǎng),為0.154 056 nm。
圖1 NaLaF4:25%Yb3+/2%Er3+/5%Dy3+光磁雙功能納米晶的TEM像
2.2 上轉(zhuǎn)換發(fā)光特性
NaLaF4:25%Yb3+/2%Er3+/5%Dy3+光磁雙功能納米晶在980 nm紅外光激發(fā)下的發(fā)射譜見(jiàn)圖3。在波長(zhǎng)為980 nm的紅外光激發(fā)下,NaLaF4:25%Yb3+/2%Er3+/ 5%Dy3+上轉(zhuǎn)換納米晶的發(fā)射強(qiáng)綠光,即使在0.2 W/mm2的低功率光源激發(fā)下,也會(huì)發(fā)現(xiàn)肉眼可見(jiàn)的閃亮綠光。綠光由2條光譜帶組成,中心波長(zhǎng)分別位于547 nm和522 nm,前者對(duì)應(yīng)Er3+4f殼層電子的4S3/2-4I15/2躍遷,后者對(duì)應(yīng)Er3+4f殼層電子的2H11/2-4I15/2躍遷。雖然發(fā)光離子為Er3+,但Yb3+在實(shí)現(xiàn)上轉(zhuǎn)換發(fā)光的過(guò)程中起重要作用。簡(jiǎn)化能級(jí)圖及可能存在的激發(fā)與發(fā)射過(guò)程見(jiàn)圖4。在一般情況下,Yb3+處于2F7/2基態(tài)的電子首先吸收980 nm紅外激發(fā)光子,向上躍遷到2F5/2能級(jí),在躍遷回2F7/2基態(tài)的過(guò)程中會(huì)將釋放的能量傳遞給位于4I15/2和4I11/2能級(jí)上的Er3+電子[4?6]。Er3+的4I15/2基態(tài)上的電子吸收Yb3+的能量后可以繼續(xù)向上躍遷到4I11/2能級(jí),4I11/2態(tài)電子吸收1個(gè)波長(zhǎng)為980 nm的光子能量后可以向上躍遷到4F7/2能級(jí)。4F7/2能級(jí)上的電子又可以向下弛豫到2H11/2和4S3/2能級(jí),而2H11/2和4S3/2能級(jí)上的電子在躍遷回基態(tài)4I15/2的過(guò)程中分別發(fā)射522 nm和547 nm的綠光。雖然Er3+的4I15/2基態(tài)和4I11/2激發(fā)態(tài)電子都可以直接吸收激發(fā)光源的980 nm光子,但是Er3+的吸收截面只有Yb3+吸收截面的幾分之一,吸收效率顯著小于Yb3+的吸收效率;另一方面,Yb3+的2F5/2態(tài)電子與Er3+的4F7/2和4I11/2態(tài)電子之間可以實(shí)現(xiàn)共振能量傳遞,因此,Yb3+在上轉(zhuǎn)換發(fā)光領(lǐng)域被廣泛用于Er3+,Tm3+和Ho3+等發(fā)光離子的敏化劑,從而提高發(fā)光離子的上轉(zhuǎn)換發(fā)光效率。Dy3+在Er3+的發(fā)光過(guò)程中同樣起敏化作用。Dy3+的6H7/2至6F3/2能級(jí)之間分布有非常豐富的梯形能級(jí),其能隙剛好對(duì)應(yīng)于Er3+的4F7/2與2H11/2能級(jí)的能隙,因而,可以為Er3+的4F7/2→2H11/2弛豫提供能量?jī)?chǔ)存和反饋,從而提升其轉(zhuǎn)換效率。另外,Dy3+也可以與Yb3+之間通過(guò)2F5/2(Yb)+6H15/2(Dy)→2F7/2(Yb)+6H5/2(Dy)交換能量,從而將Yb3+的無(wú)輻射能量?jī)?chǔ)存并傳遞給Er3+。值得注意的是:Dy3+也可以直接吸收980 nm激發(fā)光子,但因?yàn)槠湮战孛孢h(yuǎn)比Yb3+的小,所以,與起直接敏化作用的Yb3+相比,Dy3+起間接敏化作用。
圖2 NaLaF4:25%Yb3+/2%Er3+/5%Dy3+光磁雙功能納米晶的XRD譜
激光功率/(W·mm?2): 1—035;2—0.56;3—0.77;4—1.03;5—1.27。
從圖3可知:隨著激發(fā)功率增強(qiáng),上轉(zhuǎn)換綠光的強(qiáng)度也隨之增強(qiáng),但光譜的形狀未出現(xiàn)明顯變化。根據(jù)Auzel定律,(其中,為發(fā)光強(qiáng)度,為激發(fā)光功率,為發(fā)射1個(gè)可見(jiàn)光光子所需的紅外光子數(shù))。圖5所示為激發(fā)功率與發(fā)光強(qiáng)度的關(guān)系線性擬合,分別為1.78(對(duì)于547 nm綠光發(fā)射)和1.82(對(duì)于522 nm綠光發(fā)射)。這說(shuō)明無(wú)論發(fā)射1個(gè)522 nm綠光光子,還是發(fā)射1個(gè)547 nm綠光光子,都需要吸收2個(gè)980 nm紅外光子。由光子的能量正比于波長(zhǎng)的倒數(shù),可以推知2個(gè)980 nm紅外光子的能量大于1個(gè)522 nm或547 nm綠光光子的能量,這與根據(jù)Auzel理論計(jì)算的2光子能量完全一致。需注意的是:盡管都是雙子上轉(zhuǎn)換發(fā)光,但522 nm綠光的要比547 nm綠光帶的大,這說(shuō)明522 nm綠光對(duì)應(yīng)的Er3+2H11/2能級(jí)上的電子布居概率要比547 nm綠光對(duì)應(yīng)的4S3/2能級(jí)的電子布居概率略低。
圖4 簡(jiǎn)化能級(jí)圖及可能激發(fā)與發(fā)射過(guò)程
圖5 NaLaF4:25%Yb3+/2%Er3+/5%Dy3+光磁雙功能納米晶在980 nm紅外光激發(fā)下的發(fā)射譜與激發(fā)功率之間的擬合
Dy3+屬于重稀土離子,其電子能級(jí)相當(dāng)多。Dy3+在紫外光的激發(fā)下,本身可以發(fā)射綠光和黃光。Dy3+對(duì)980 nm的紅外光子也有一定吸收,但吸收截面遠(yuǎn)比Er3+和Yb3+的小。圖6所示為NaLaF4:25%Yb3+/2%Er3+/ Dy3+上轉(zhuǎn)換納米晶的發(fā)光強(qiáng)度隨摻雜離子Dy3+的摩爾百分比所產(chǎn)生的變化,所有光譜以547 nm發(fā)射峰為基礎(chǔ)進(jìn)行了歸一化處理。從圖6可見(jiàn):隨著Dy3+摩爾百分比從0增大到10%,522 nm發(fā)射帶相對(duì)于 547 nm發(fā)射帶先逐漸增強(qiáng),然后減弱。這說(shuō)明Dy3+與Er3+之間存在顯著的能量交換。從圖3可知:522 nm發(fā)射帶對(duì)應(yīng)2H11/2?4I15/2電子躍遷,而2H11/2能級(jí)上的電子布居數(shù)取決于4F7/2能級(jí)上的電子向下弛豫的概率。在沒(méi)有Dy3+摻雜的情況下,Er3+的4F7/2能級(jí)上電子向下躍遷到2H11/2能級(jí)的概率比4S3/2能級(jí)的概率略低,由此導(dǎo)致522 nm發(fā)射峰的強(qiáng)度比547 nm發(fā)射峰的強(qiáng)度低。從圖3可知:Dy3+存在密集的6FJ和6HJ系列梯形能級(jí)分布,而這2個(gè)系列能級(jí)之間的間隔剛好與4F7/2?2H11/2弛豫的能量相當(dāng),可以有效耗散4F7/2?2H11/2弛豫產(chǎn)生的能量,這有利于加速4F7/2?2H11/2弛豫過(guò)程,由此導(dǎo)致2H11/2能級(jí)上的電子數(shù)顯著提升及2H11/2?4I15/2躍遷效率提高。圖6表明:522 nm綠光發(fā)射強(qiáng)度并不是隨著Dy3+摩爾百分比的增大而單調(diào)增大,當(dāng)Dy3+摩爾百分比為5%時(shí),其發(fā)射強(qiáng)度達(dá)到最大值;但在Dy3+摩爾百分比從5%繼續(xù)提升到10%的過(guò)程中,522 nm發(fā)射光的強(qiáng)度減弱。結(jié)合文獻(xiàn)[20]和[21]的報(bào)道,這主要是猝滅效應(yīng)所致。當(dāng)Dy3+摩爾百分比達(dá)到1 0%時(shí),Dy3+之間的熱振動(dòng)會(huì)顯著提升,從而大量耗散Er3+和Yb3+所儲(chǔ)存的光子能量。
Dy3+摩爾百分比/%:1—0;2—1;3—5;4—10。
2.3 室溫順磁性
圖7所示為NaLaF4:25%Yb3+/2%Er3+納米晶的室溫順磁特性。這種順磁特性主要是稀土磁性離子Yb3+和Er3+存在所致?;w材料NaLaF4并無(wú)順磁特性。在NaLaF4:25%Yb3+/2%Er3+納米晶中摻雜Dy3+可以顯著調(diào)制其順磁特性。隨著Dy3+摩爾百分比從0增大到10%,在12×105A/m外加磁場(chǎng)強(qiáng)度作用下,其磁化強(qiáng)度最高可達(dá)到1.33 Am2/kg,見(jiàn)圖8。這主要是由于Dy3+具有優(yōu)異順磁特性。若繼續(xù)提高Dy3+的摻雜摩爾百分比,其磁化強(qiáng)度還會(huì)進(jìn)一步提高,但其總體發(fā)光強(qiáng)度會(huì)衰減,且對(duì)522 nm發(fā)射光的相對(duì)調(diào)制效果也會(huì)有所下降。
圖7 NaLaF4:25%Yb3+/2%Er3+納米晶的順磁特性
圖8 NaLaF4:25%Yb3+/2%Er3+/x%Dy3+ (x=0,1,5,10)納米晶的順磁特性與摻雜離子Dy3+的摩爾百分比關(guān)系曲線
1) 利用熱溶劑法制備了光磁雙功能納米晶NaLnF4:25%Yb3+/2%Er3+/%Dy3+(=0,1,5,10)。該光磁雙功能納米晶具有立方體形貌,屬六角相晶體,平均尺寸為10 nm。
2) 樣品在980 nm紅外光子的激發(fā)下可以發(fā)射中心波長(zhǎng)為522 nm和547 nm的綠光。隨著激發(fā)光功率增大,綠光發(fā)射強(qiáng)度也相應(yīng)增大。
3) 調(diào)節(jié)Dy3+的摻雜摩爾百分比,可以同時(shí)調(diào)制樣品的上轉(zhuǎn)換發(fā)光和順磁特性。隨著Dy3+摩爾百分比從0增加到5%,樣品的522 nm發(fā)光相對(duì)于547 nm發(fā)光峰逐漸增強(qiáng);若進(jìn)一步增大Dy3+的摩爾百分比到10%,其相對(duì)強(qiáng)度反而減弱。結(jié)合能級(jí)躍遷圖,可闡述Dy3+的6FJ和6HJ系列能級(jí)與Er3+之間的能量傳遞,即由此引起的特殊光調(diào)制現(xiàn)象。
4) 隨著Dy3+摩爾百分比從0增大到10%,樣品的順磁性單調(diào)提升,但伴隨著總體發(fā)光強(qiáng)度衰減。
[1] LIU Yunxin, WANG Dingsheng, LI Lingling, et al. Energy upconversion in lanthanide-doped core/porous-shell nanoparticles[J]. Inorganic Chemistry, 2014, 53(7): 3257?3259.
[2] LI Li, CAO Xueqin, ZHANG You, et al. Synthesis and upconversion luminescence of Lu2O3:Yb3+,Tm3+nanocrystals[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 373?379.
[3] CHEN Lei, WEI Xianhua, FU Xu. Effect of Er substituting sites on upconversion luminescence of Er3+-doped BaTiO3films[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1156?1160.
[4] XU Wei, GAO Xiaoyang, ZHENG Longjiang, et al. An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+co-doped oxyfluoride glass ceramic[J]. Sensors and Actuators B: Chemical, 2012, 173(12): 250?253.
[5] ZHENG Kezhi, LIU Zhenyu, Lü Changjian, et al. Temperature sensor based on the UV upconversion luminescence of Gd3+in Yb3+–Tm3+–Gd3+co-doped NaLuF4microcrystals[J]. Journal of Materials Chemistry C, 2013, 1(35): 5502?5507.
[6] GU Xiaorong, HUANG Kun, PAN Haifeng, et al. Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts[J]. Laser Physics Letters, 2013, 10(5): 527?535.
[7] BüNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging[J]. Chemical Reviews, 2010, 110(5): 2729?2755.
[8] CHEN Guangying, QIU Hailong, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161?5214.
[9] YIN P T, SHAH S, CHHOWALLA M, et al. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications[J]. Chemical Reviews, 2015, 115(7): 2483–2531.
[10] ZHAO G, TONG L, CAO P, et al. Functional PEG–PAMAM- tetraphosphonate capped NaLnF4nanoparticles and their colloidal stability in phosphate buffer[J]. Langmuir, 2014, 30(23): 6980?6989.
[11] HU Rongxuan, YE Song, WANG Huiyun, et al. Upconversion luminescence properties of phase and size controlled NaLnF4: Yb3+,Er3+(Ln=Y,Gd) Nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 368?372.
[12] SARAKOVSKIS A, KRIEKE G, DOKE G, et al. Comprehensive study on different crystal field environments in highly efficient NaLaF4:Er3+upconversion phosphor[J]. Optical Materials, 2015, 39: 90?96.
[13] NIU Na, YANG Piaoping, HE Fei, et al. Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+(Ln=Er,Tm,Ho,Er/Tm,Tm/Ho) microstructures[J]. Journal of Materials Chemistry, 2012, 22(21): 10889?10899.
[14] GAO Yu, ZHAO Qian, XU Zhenhe, et al. Hydrothermally derived NaLuF4:Yb3+,Ln3+(Ln3+=Er3+,Tm3+,Ho3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties[J]. New Journal of Chemistry, 2014, 38(6): 2629?2638.
[15] XU Zhenhe, ZHAO Qian, REN Baoyi, et al. Facile synthesis and luminescence properties of Y2O3:Ln3+(Ln3+=Eu3+,Tb3+,Dy3+,Sm3+, Er3+,Ho3+,Tm3+,Yb3+/Er3+,Yb3+/Tm3+,Yb3+/Ho3+) microspheres[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(8): 5781?5789.
[16] HU Shigang, LIU Yunxin, WU Xiaofeng, et al. Remarkable red-shift of upconversion luminescence and anti-ferromagnetic coupling in NaLuF4:Yb3+/Tm3+/Gd3+/Sm3+bifunctional microcrystals[J]. Journal of Rare Earths, 2016, 34(2): 166?173.
[17] CHEN Zenghui, WU Xiaofneg, HU Shigang, et al. Upconversion NaLuF4fluorescent nanoprobes for jellyfish cell imaging and irritation assessment of organic dyes[J]. Journal of Materials Chemistry C, 2015, 3(23): 6067?6076.
[18] HU Pan, WU Xiaofeng, HU Shigang, et al. Enhanced upconversion luminescence through core/shell structures and its application for detecting organic dyes in opaque fishes[J]. Photochemical & Photobiological Sciences, 2016, 15(2): 260?265.
[19] CHEN Zenghui, WU Xiaofneg, HU Shigang, et al. Multicolor upconversion NaLuF4fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein[J]. Journal ofMaterials Chemistry C, 2015, 3(1): 153?161.
[20] KUMAR K, RAI S B, RAI D K. Upconversion and concentration quenching in Er3+-doped TeO2-Na2O binary glasses[J]. Journal of Non-crystalline Solids, 2007, 353(13): 1383?1387.
[21] DAI Shixun, YU Chunlei, ZHOU Gang, et al. Concentration quenching in erbium-doped tellurite glasses[J]. Journal of Luminescence, 2006, 117(1): 39?45.
(編輯 陳燦華)
Tuning upconversion luminescence and paramagnetic property of NaLaF4:Yb3+/Er3+/Dy3+bifunctional nanocrystals by Dy3+
HU Shigang1, WU Xiaofeng1, XI Zaifang1, TANG Zhijun1, LIU Yunxin2
(1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;2. Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China)
NaLaF4:Yb3+/Er3+/Dy3+bifunctional magnetic-optical nanocrystals were synthesized by solvothermal method. Combined with the energy level transition diagram, the energy transfer between the6FJand6HJseries level of Dy3+and Er3+was discussed. The results show that the energy transfer can cause a special magnetic-optical modulation phenomenon. Green light is emitted which is centered at 522 nm and 547 nm under the excitation of 980 nm infrared light. With the increase of the laser power, the intensity of the green emission increases. The upconversion luminescence and paramagnetic characteristics of the samples can be modulated by adjusting the doping concentration of Dy3+.As the concentration of Dy3+increases from 0 to 5%, emission peaks centered at 522 nm gradually increase with respect to the 547 nm emission peaks. If the concentration of Dy3+is further increased to 10%, the relative intensity decreases. With the increase of the concentration of Dy3+from 0 to 10%, the paramagnetic properties of the sample are enhanced, but the overall emission intensity is attenuated.
magnetic-optical; bifunctional; rare earth ions; doping
10.11817/j.issn.1672-7207.2016.11.014
TB34
A
1672?7207(2016)11?3715?06
2015?11?22;
2016?01?26
國(guó)家自然科學(xué)基金資助項(xiàng)目(61376076, 61274026, 21301058, 61377024);湖南省教育廳資助項(xiàng)目(14B060);湖南省科技計(jì)劃項(xiàng)目(2014FJ2017, 2013FJ2011) (Projects(61376076, 61274026, 21301058, 61377024) supported by the National Natural Science Foundation of China; Project(14B060) supported by the Scientific Research Fund of Education Department of Hunan Province; Projects(2014FJ2017, 2013FJ2011) supported by the Science and Technology Plan Foundation of Hunan Province)
劉云新,博士,副教授,從事光電信息材料與器件研究;E-mail:lyunxin@163.com