• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    2016-12-07 08:58:59LIUWeiLIBiwenLIZhenweiWANGGan
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:劉煒食餌微分

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    In this paper,we mainly study the Hopf-bifurcation and the stability of differentialalgebraic biological economic system with predator harvesting.By using the method of stability thoery and Hopf bifurcation theorem dynamical systems and differential algebraic system,we find some related conclusions about stability and Hopf-bifurcation.We have improved the ratio-dependent predator-prey system,take economic effectμas the bifurcation parameter and make a numerical simulation by using Matlab at last,so the conclusions are made more practical.

    stability;economic system;Hopf bifurcation;harvesting

    2010 MR Subject Classification:34D20;34K18

    Document code:AArticle ID:0255-7797(2016)06-1160-13

    1 Introduction

    According to the lack of biological resources on the earth,more and more people increasingly realized the importance of the modelling and research of biological system.The predator-prey was one of the most popular models that many researchers[1-8]studied and acquired some valuable characters of dynamic behavior.For example,the stability of equilibrium,Hopf bifurcation,flip bifurcation,limit cycle and other relevant conducts.At the same time,the development and utilization of biological resources and artificial arrest was researched commonly in the fields of fishery,wildlife and forestry management by some experts[9-11].Most of them choose differential equations and difference equations to research biological models.It is well known that economic profit become more and more important and take a fundamental gradually situation in social development.In recent years,biological economic systems were researched by many authors[12-16],who describe the system by differential-algebraic equations or differential-difference-algebraic equations.

    Basic analysis model which applied by differential-algebraic equations and differentialdifference-algebraic equations are familiar at present.However,there still exist some disadvantages in many systems such as harvesting function.In this paper,the main research isthe stability and Hopf bifurcation of a biological-algebraic biological economic system,which is changed in some details and meaningful.

    Our basic model is based on the following ratio-dependent predator-prey system with harvest

    where u and v represent the predator density and prey density at time t,respectively,∈,θ and α are all positive constants,and r1and r2stand for the densities of predator and prey populations,and E represents harvesting effort.αEv denotes that the harvests for predator population are proportional to their densities at time t.

    In 1954,Gordon[17]studied the effect of the harvest effort on ecosystem form an economic perspective and proposed the following economic principle:

    Associated with system(1.1),an algebraic equation which considers the economic profit m of the harvest effort on predator can be established as follows

    where E(t)represents the harvest effort,p denotes harvesting reward per unit harvesting effort for unit weight,c represents harvesting cost per unit harvesting effort.Combining the economic theory of fishery resources,we can establish a differential algebraic biological economic system

    Nevertheless,the capture effect to predator is not always shown in the liner in nature based on many factors that can affect the predation such as the ability of search,illness and death.Therefore,the harvesting function of system(1.2)is modified as follows

    To simplify system(1.2),we use these dimensionless variables

    and then obtain the following system

    For simplicity,let

    where Z=(x,y)T,μis a bifurcation parameter,which will be defined in the follows.

    In this paper,we discuss the effects of the economic profit on the dynamics of system (1.4)in the region={(x,y,E)|x>0,y>0,E>0}.

    Next,the paper will be organized as follows.In Section 2,the stability of the positive equilibrium point is discussed by corresponding characteristic equation of system(2.2).In Section 3,we provide Hopf bifurcation analysis of system(1.4).In Section 4,we use numerical simulations to illustrate the effectiveness of result.Then give a brief conclusion in Section 5.

    2 Local Stability Analysis of System(1.4)

    It is obvious that there exists an equilibrium inif only if this point χ0:=(x0,y0,E0)Tis a real solution of the equations

    By the calculation,we get

    where

    According to this analysis procedure,this essay only concentrate on the interior equilibrium of system(1.4).Based on the ecology meaningful of the interior equilibrium,the predator and the harvest effort to predator are all exist that it is the key point to the study. Thus,a simple assumption that the inequality 0<μ<r2G0holds in this paper.Following, we use the linear transformation χT=QMT,where

    From Section 1,we obtain

    For system(2.2),we consider the local parametric ψ,which defined as follows

    where

    h:R2→R3is a smooth mapping.Then we can obtain the parametric system(2.2)as follows:

    More details about the definition can be found in[18].Based on system(2.3),we can get Jacobian matrix E(M0),which takes the form of

    Then the following theorem summarizes the stability of the positive equilibrium point of system(1.4).

    Theorem 2.1 For system(2.2)

    (ii)If(r2-μ)2<4r1andμ<minthe positive equilibrium point of system(1.4)is a sink;otherwise when<μ<r2G0,the positive equilibrium point of system(1.4)is a source.

    Proof First,the characteristic equation of the matrix E(M0)can be written as

    Now donate?by

    Remark 1 The local stability of χ0is equivalent to the local stability of M0.

    Remark 2 When the roots of eq.(2.4)exist zero real parts,system(1.4)will occur bifurcation,which will be discussed in Section 3.

    3 Hopf Bifurcation Analysis of the Positive Equilibrium

    In this section,we discuss the Hopf bifurcation from the equilibrium point χ0by choosing μas the bifurcation parameter.Based on the Hopf bifurcation theorem in[19],we need find some sufficient conditions.

    According to the definition of?,we obtain

    where

    here,we assume that A2+B≥0 in this paper.

    Thus,for eq.(2.4),if B>0 and 0<μ<min{r2G0,J+}.Eq.(2.4)has one pair of imaginary roots.When B>0,A>0,J-<r2G0and J-<μ<min{r2G0,J+},eq.(2.4) has one pair of imaginary roots.

    In the case of meet the above conditions,we can get the roots as follows:

    where

    By calculating,we obtain

    Eq.(3.1)indicates that eq.(2.2)occurs Hopf bifurcation atμ0.

    In order to calculate the Hopf bifurcation,we need to lead the normal form of system (2.2)as follows

    From eq.(2.3),we have

    Then we can easily obtain

    where

    and

    Then we get

    Thus we have

    Then we obtain

    Substituting M0,μ0into above,we have

    Now,we get

    Finally,we obtain

    Thus we have eq.(3.3)

    Comparing with the normal form(3.2),we chosse the nonsingular matrix

    then we use the linear transformation H=N,noticing ω0=,we derive the normal form as follows

    where H=(u1,u2)T.Then

    According to the Hopf bifurcation theorem in[19],now we only need to calculate the value of a

    Next,there are two cases should be discussed.That is a>0 and a<0.Based on the Hopf bifurcation theorem in[19],we obtain Theorem 3.1.

    Theorem 3.1 For the system(2.2),there exist an ε>0 and two small enough neighborhoods P1and P2of χ0(μ),where P1?P2.

    (i)If

    then

    (1)whenμ0<μ<μ0+ε,χ0(μ)is unstable,and repels all the points in P2;

    (2)whenμ0-ε<μ<μ0,there exist at least one periodic solution in1,which is the closure of P1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is locally asymptotically stable.

    (ii)If

    then

    (1)whenμ0-ε<μ<μ0,χ0(μ)is locally asymptotically stable,and repels all the points in P2;

    (2)whenμ0<μ<μ0+ε,there exist at least one periodic solution in1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is unstable.

    Proof Theorem 3.1 can be similarly proved as the Hopf bifurcation theorem in[19],so we omit the process here.

    4 Numerical Simulations

    In this section,we give a numerical example of system(1.4)with the parameters r1= 3,r2=1,c=1,β=0.195,then system(1.4)becomes

    By simple computing,the only positive equilibrium point of above system is

    and the Hopf bifurcation valueμ0=

    Therefore,by Theorem 3.1,we can easily show that the positive equilibrium point χ0(μ) of system(4.1)is locally asymptitically stable whenμ=0.505<μ0as is illustrated by computer simulations in Fig.1;periodic solutions occur from χ0(μ)whenμ=0.5195<μ0as is illustrated in Fig.2;the positive equilibrium point χ0(μ)of system(4.1)is unstable whenμ=0.535>μ0as is illustrated in Fig.3.

    Figure 1:Whenμ=0.505<μ0,that show the positive equilibrium point χ0(μ)is locally asymptotically stable.

    Figure 2:Periodic solutions bifurcating from χ0(μ)whenμ=0.5195<μ0.

    Figure 3:Whenμ=0.535>μ0,that show the positive equilibrium point χ0(μ)is unstable.

    5 Conclusions

    Based on the above inference and calculation,we find that economic effect will influence the stability of differential-algebraic biological economic system.For instance,according to those statistics and graphs,if people fix the economic index at a high level,over the bifurcation value of Hopf-bifurcation,the system will become unstable that means people have destroyed the economic balance even led to the extinction of ecologic species.Therefore, with an aim to realize the harmonious sustainable development co-existence between man and nature,we should not seek economic effect blindly and control it within a certain limit, such as less than bifurcation value.

    In addition,we can make some improvements in our model.For example,we do not consider the influence of time delays and double harvesting that is,human harvesting will harvest predator and prey at the same time.So it is necessary for us to go on with our research in these aspects in the future.

    References

    [1]Chen B S,Liu Y Q.On the stable periodic solutions of single sepias models with hereditary effects[J]. Math.Appl.,1999,12:42-46.

    [2]Xiao D M,Li W X,Han M A.Dynamics in ratio-dependent predator-prey model with predator harvesting[J].J.Math.Anal.Appl.,2006,324(1):14-29.

    [3]Zhang Y,Zhang Q L.Chaotic control based on descriptor bioeconomic systems[J].Contr.Dec., 2007,22(4):445-452.

    [4]Pan K,Li B W.Existence of positive periodic solution for two-patches predator-prey impulsive diffusion delay system with functional response[J].J.Math.,2010,30(1):183-190.

    [5]Li P L,Yu C C,Zeng X W.The qualitative analysis of a class of predator-prey system with functional response[J].J.Math.,2006,26(2):217-222.

    [6]Qu Y,Wei J J.Bifurcation analysis in a predator-prey system with stage-structure and harvesting[J]. J.Franklin Institute,2010,347:1097-1113.

    [7]Rebaza J.Dynamical of prey threshold harvesting and refuge[J].J.Comput.Appl.Math.,2012, 236:1743-1752.

    [8]Gupta R P,Chandra P.Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting[J].J.Math.Anal.Appl.,2013,398:278-295.

    [9]Liu C,Zhang Q L,Zhang Y,Duan X D.Bifurcation and control in a differential-algebraic harvested prey-predator model with stage structure for predator[J].Int.J.Bifurcation Chaos,2008,18:3159-3168.

    [10]Chen L N,Tada Y,Okamoto H,Tanabe R,Ono A.Optimal operation solutions of power systems with transient stability constraints[J].IEEE Trans.Circuits Syst.,2001,48:327-339.

    [11]Liu X X,Li B W,Chen B S.Global stability for a predator-prey model with disease in the prey[J]. J.Math.,2013,33(1):69-73.

    [12]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation and stability for a differential-algebraic biological economic system[J].Appl.Math.Comput.,2010,217:330-338.

    [13]Chen B S,Chen J J.Bifurcation and chaotic behavior of a discrete singular biological economic system[J].Appl.Math.Comput.,2012,219:2371-2386.

    [14]Liu W,Fu C J,Chen B S.Hopf bifurcation for a predator-prey biological economic system with Holling type II functional response[J].J.Franklin Institute,2011,348:1114-1127.

    [15]Liu W,Fu C J.Hopf bifurcation of a modified Leslie-Gower predator-prey system[J].Cogn Comput., 2013,5:40-47.

    [16]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation in a delayed differential-algebraic biological economic system[J].Nonl.Anal.:Real World Appl.,2011,12:1708-1719.

    [17]Gordon H S.Economic theory of a common property resource:the fishery[J].J.Polit.Econ.,1954, 62(2):124-142.

    [18]Chen B S,Liao X X,Liu Y Q.Normal forms and bifurcations for the differential-algebraic systems[J]. Acta Math.Appl.Sinica,2000,23(3):429-443(in Chinese).

    [19]Gukenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983.

    一類捕食食餌微分經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性與Hopf分支

    劉煒,李必文,李震威,汪淦

    (湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,湖北黃石435002)

    本文主要研究了一個帶有對捕食者進(jìn)行捕獲的微分代數(shù)經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性和Hopf分支問題.利用了動力系統(tǒng)和微分代數(shù)系統(tǒng)中的穩(wěn)定性理論和分支理論的方法,得到了穩(wěn)定性和Hopf分支穩(wěn)定性的相關(guān)結(jié)論.本文對Ratio-Dependent捕食食餌模型進(jìn)行了一定程度的完善,并且選取經(jīng)濟(jì)效益μ為分支參數(shù)進(jìn)行研究,最后利用Matlab進(jìn)行數(shù)值模擬,這樣使得到的結(jié)論更符合現(xiàn)實意義.

    穩(wěn)定性;經(jīng)濟(jì)系統(tǒng);Hopf分支;捕獲

    MR(2010)主題分類號:34D20;34K18O29;O193

    ?date:2014-04-03Accepted date:2014-11-11

    Supported by the Research Project of Hubei Provincial Department of Education of China under Grant(T201412).

    Biography:Liu Wei(1989-),female,born at Taiyuan,Shanxi,master,major in ordinary differential equations and control theory.

    猜你喜歡
    劉煒食餌微分
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
    一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
    雪韻
    擬微分算子在Hp(ω)上的有界性
    具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    冬天,走丟了
    上下解反向的脈沖微分包含解的存在性
    一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
    我有一個夢
    知之為知之,不知為不知
    岛国在线免费视频观看| 97热精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜福利久久久久久| 日韩视频在线欧美| 午夜福利成人在线免费观看| 性色avwww在线观看| 免费电影在线观看免费观看| av国产免费在线观看| 2022亚洲国产成人精品| 伦理电影大哥的女人| 欧美极品一区二区三区四区| 男女视频在线观看网站免费| 国产精品爽爽va在线观看网站| 日本免费在线观看一区| 欧美一级a爱片免费观看看| 中文字幕人妻熟人妻熟丝袜美| 男女视频在线观看网站免费| 免费观看人在逋| 精品久久久久久电影网 | 日日摸夜夜添夜夜爱| 国产亚洲91精品色在线| 精品一区二区免费观看| 我的老师免费观看完整版| 欧美人与善性xxx| 干丝袜人妻中文字幕| 男女视频在线观看网站免费| 亚洲av免费在线观看| 中文字幕av成人在线电影| 91狼人影院| av黄色大香蕉| 国产美女午夜福利| 欧美激情在线99| 亚洲熟妇中文字幕五十中出| 久久这里只有精品中国| 草草在线视频免费看| 全区人妻精品视频| 免费一级毛片在线播放高清视频| 啦啦啦啦在线视频资源| 岛国在线免费视频观看| 深爱激情五月婷婷| 七月丁香在线播放| 国内揄拍国产精品人妻在线| 最新中文字幕久久久久| 日韩精品有码人妻一区| av在线观看视频网站免费| 亚洲中文字幕一区二区三区有码在线看| 中文在线观看免费www的网站| 久久久久网色| 男人的好看免费观看在线视频| 欧美成人一区二区免费高清观看| 我要搜黄色片| 中文字幕av成人在线电影| 久久精品91蜜桃| 你懂的网址亚洲精品在线观看 | 只有这里有精品99| 2022亚洲国产成人精品| ponron亚洲| 色综合色国产| 看免费成人av毛片| 麻豆一二三区av精品| 亚洲天堂国产精品一区在线| 极品教师在线视频| 成人亚洲精品av一区二区| 日韩一区二区三区影片| 亚洲av一区综合| 精品久久久久久久久av| 国产精品人妻久久久影院| 色综合亚洲欧美另类图片| 我的老师免费观看完整版| www.av在线官网国产| 欧美高清成人免费视频www| 啦啦啦观看免费观看视频高清| 99久久人妻综合| 极品教师在线视频| 少妇熟女欧美另类| 春色校园在线视频观看| 淫秽高清视频在线观看| 日本免费a在线| 黑人高潮一二区| 日本与韩国留学比较| 在线a可以看的网站| 91狼人影院| 99久久精品一区二区三区| 国产精品蜜桃在线观看| 亚洲欧美一区二区三区国产| 亚洲国产精品成人综合色| 国产私拍福利视频在线观看| 亚洲国产精品sss在线观看| ponron亚洲| 最近中文字幕2019免费版| 色5月婷婷丁香| 亚洲性久久影院| 亚洲av不卡在线观看| 少妇熟女欧美另类| 韩国高清视频一区二区三区| av女优亚洲男人天堂| 亚洲五月天丁香| 亚洲18禁久久av| 日日撸夜夜添| 国产男人的电影天堂91| 国产精品国产三级国产av玫瑰| 欧美日韩在线观看h| 久久久亚洲精品成人影院| 国产一级毛片七仙女欲春2| 看免费成人av毛片| 在线播放国产精品三级| 非洲黑人性xxxx精品又粗又长| 亚洲国产欧美人成| 91午夜精品亚洲一区二区三区| 我的老师免费观看完整版| 亚洲激情五月婷婷啪啪| 国产老妇女一区| 成人美女网站在线观看视频| 日韩欧美国产在线观看| 国产又黄又爽又无遮挡在线| 国产单亲对白刺激| 男人狂女人下面高潮的视频| 欧美高清性xxxxhd video| 欧美另类亚洲清纯唯美| 国产精品一区www在线观看| 1024手机看黄色片| 毛片一级片免费看久久久久| 国产亚洲午夜精品一区二区久久 | 99热全是精品| 最近2019中文字幕mv第一页| 国产高清有码在线观看视频| 免费大片18禁| 少妇裸体淫交视频免费看高清| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线播| 午夜精品国产一区二区电影 | 国产探花极品一区二区| 国产白丝娇喘喷水9色精品| 免费av不卡在线播放| 黄色配什么色好看| 国产老妇女一区| 成人亚洲欧美一区二区av| 一个人看的www免费观看视频| 国产成人一区二区在线| 中文字幕av在线有码专区| 欧美潮喷喷水| 成人欧美大片| 啦啦啦韩国在线观看视频| 高清毛片免费看| 国产久久久一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 久热久热在线精品观看| 久久精品国产99精品国产亚洲性色| 国产精品一区www在线观看| av女优亚洲男人天堂| 乱系列少妇在线播放| 亚洲精品影视一区二区三区av| 99国产精品一区二区蜜桃av| 最近视频中文字幕2019在线8| 91在线精品国自产拍蜜月| 美女内射精品一级片tv| 国产精品熟女久久久久浪| 精品无人区乱码1区二区| 少妇熟女欧美另类| 日韩 亚洲 欧美在线| 久久人人爽人人片av| 亚洲av不卡在线观看| 久久久a久久爽久久v久久| 可以在线观看毛片的网站| 久久久久免费精品人妻一区二区| av天堂中文字幕网| 国产极品天堂在线| 日本wwww免费看| 七月丁香在线播放| www日本黄色视频网| 成人三级黄色视频| 久久久久精品久久久久真实原创| 国产男人的电影天堂91| 成人午夜高清在线视频| 中文乱码字字幕精品一区二区三区 | 国产单亲对白刺激| 成人鲁丝片一二三区免费| 欧美3d第一页| 国产色爽女视频免费观看| 久久久欧美国产精品| 黄色日韩在线| 91久久精品电影网| 中文天堂在线官网| 久久久久久九九精品二区国产| 村上凉子中文字幕在线| 久久久久精品久久久久真实原创| 亚洲av成人av| 国产高清有码在线观看视频| 国产精品久久久久久精品电影小说 | 我的老师免费观看完整版| 亚洲精品aⅴ在线观看| 国产午夜精品久久久久久一区二区三区| 2022亚洲国产成人精品| 2021天堂中文幕一二区在线观| 久久精品国产自在天天线| 日韩三级伦理在线观看| 综合色丁香网| 亚洲aⅴ乱码一区二区在线播放| 欧美成人一区二区免费高清观看| 日本欧美国产在线视频| 麻豆精品久久久久久蜜桃| 99久国产av精品| 国产成人精品一,二区| 99久久精品一区二区三区| 精品不卡国产一区二区三区| 在线观看av片永久免费下载| 2022亚洲国产成人精品| 色噜噜av男人的天堂激情| 99久久中文字幕三级久久日本| 床上黄色一级片| av在线天堂中文字幕| 毛片一级片免费看久久久久| 午夜精品在线福利| 99热全是精品| 蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人精品一区久久| 精品久久久久久久人妻蜜臀av| 日韩欧美在线乱码| 亚洲最大成人中文| 国产女主播在线喷水免费视频网站 | 亚洲精品国产av成人精品| 在线免费观看不下载黄p国产| 亚洲国产精品久久男人天堂| 久久久久九九精品影院| 日韩一区二区三区影片| 99热这里只有精品一区| 亚洲,欧美,日韩| 午夜日本视频在线| 亚洲av成人av| 国产免费视频播放在线视频 | 亚洲va在线va天堂va国产| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 全区人妻精品视频| 男女啪啪激烈高潮av片| 精品国产三级普通话版| 激情 狠狠 欧美| 中文乱码字字幕精品一区二区三区 | 国产精品人妻久久久影院| 麻豆国产97在线/欧美| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 直男gayav资源| 国产又色又爽无遮挡免| 你懂的网址亚洲精品在线观看 | 成人鲁丝片一二三区免费| 国产伦精品一区二区三区四那| 久久鲁丝午夜福利片| 在线观看av片永久免费下载| av又黄又爽大尺度在线免费看 | 能在线免费观看的黄片| 欧美另类亚洲清纯唯美| 日日摸夜夜添夜夜添av毛片| 亚洲第一区二区三区不卡| 日韩中字成人| 久久久久久久久久黄片| 国国产精品蜜臀av免费| 最后的刺客免费高清国语| 国产91av在线免费观看| 搞女人的毛片| 国产亚洲5aaaaa淫片| 在线免费观看的www视频| 乱人视频在线观看| 国内精品宾馆在线| 婷婷色av中文字幕| 欧美97在线视频| 91狼人影院| 亚洲精品aⅴ在线观看| 免费电影在线观看免费观看| 国产一区二区在线av高清观看| 搡老妇女老女人老熟妇| 亚洲va在线va天堂va国产| 三级国产精品片| 国产亚洲av片在线观看秒播厂 | 大香蕉97超碰在线| 国产精品永久免费网站| 亚洲精华国产精华液的使用体验| 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 少妇猛男粗大的猛烈进出视频 | 国产激情偷乱视频一区二区| 欧美激情国产日韩精品一区| 亚洲激情五月婷婷啪啪| 亚洲国产欧洲综合997久久,| 亚洲va在线va天堂va国产| 青春草国产在线视频| 亚洲在线观看片| 高清午夜精品一区二区三区| 久久这里只有精品中国| 99久久无色码亚洲精品果冻| 日本黄色片子视频| 国产精品久久久久久久久免| 亚洲精品乱码久久久v下载方式| 欧美潮喷喷水| 身体一侧抽搐| 爱豆传媒免费全集在线观看| 一级毛片我不卡| 精品99又大又爽又粗少妇毛片| 中文字幕久久专区| 亚洲成色77777| 精品国产三级普通话版| 国产黄片视频在线免费观看| 免费黄色在线免费观看| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av涩爱| 日日啪夜夜撸| 国产一区二区在线av高清观看| 最近手机中文字幕大全| 国产亚洲av片在线观看秒播厂 | 禁无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 大香蕉久久网| 只有这里有精品99| 一级毛片电影观看 | 亚洲精品一区蜜桃| 91狼人影院| 国产爱豆传媒在线观看| 免费av毛片视频| 亚洲av熟女| 蜜桃久久精品国产亚洲av| 久久久久国产网址| 久久国产乱子免费精品| 国产精品一区二区三区四区久久| 六月丁香七月| 蜜桃久久精品国产亚洲av| 国产免费男女视频| 久久欧美精品欧美久久欧美| 国产亚洲91精品色在线| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| av在线亚洲专区| 亚洲精品成人久久久久久| 一边亲一边摸免费视频| 日韩亚洲欧美综合| 国产大屁股一区二区在线视频| 免费看光身美女| 国产乱人视频| 国产高清视频在线观看网站| 美女内射精品一级片tv| 特大巨黑吊av在线直播| 成人午夜精彩视频在线观看| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 乱人视频在线观看| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 在线观看av片永久免费下载| 九色成人免费人妻av| 国产在视频线精品| 成年av动漫网址| 欧美激情国产日韩精品一区| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 国产成人freesex在线| 2021天堂中文幕一二区在线观| 成年女人永久免费观看视频| 免费在线观看成人毛片| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 日韩强制内射视频| 亚洲av免费高清在线观看| 午夜精品国产一区二区电影 | 夫妻性生交免费视频一级片| 亚洲av.av天堂| 亚洲精品国产av成人精品| 国产在线一区二区三区精 | 天堂中文最新版在线下载 | 久久午夜福利片| 在线播放国产精品三级| 熟女电影av网| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 午夜日本视频在线| 亚洲av一区综合| 亚洲av电影不卡..在线观看| 在线播放无遮挡| 中文字幕av成人在线电影| 国产高清国产精品国产三级 | 亚洲成人久久爱视频| 日本三级黄在线观看| 国产伦在线观看视频一区| 亚洲自拍偷在线| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 伦理电影大哥的女人| av免费观看日本| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 伦理电影大哥的女人| 精品久久久久久电影网 | 久久精品国产亚洲av涩爱| 免费观看a级毛片全部| 日韩av在线大香蕉| 亚洲精品一区蜜桃| 欧美区成人在线视频| 久久久久久伊人网av| videossex国产| 久久精品熟女亚洲av麻豆精品 | 人妻系列 视频| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区三区| 乱系列少妇在线播放| 天堂av国产一区二区熟女人妻| 久久久亚洲精品成人影院| 九九热线精品视视频播放| 99热6这里只有精品| 欧美日本视频| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 国产v大片淫在线免费观看| 久久久久国产网址| 哪个播放器可以免费观看大片| 亚洲国产精品成人综合色| 午夜精品国产一区二区电影 | 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 国产av一区在线观看免费| 22中文网久久字幕| 国产黄片视频在线免费观看| 女人被狂操c到高潮| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 国产 一区精品| 亚洲精品国产av成人精品| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 精品欧美国产一区二区三| av在线亚洲专区| 亚洲综合色惰| 亚洲人与动物交配视频| 女人久久www免费人成看片 | 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 日韩中字成人| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 午夜福利高清视频| 久久久久久久久久久免费av| 最近最新中文字幕免费大全7| 简卡轻食公司| 日本熟妇午夜| 长腿黑丝高跟| 久久草成人影院| 亚洲国产高清在线一区二区三| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产一级毛片七仙女欲春2| 国产精品精品国产色婷婷| 高清毛片免费看| 你懂的网址亚洲精品在线观看 | 老司机福利观看| 亚洲av日韩在线播放| 欧美成人a在线观看| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 男人舔女人下体高潮全视频| 成人av在线播放网站| 天天一区二区日本电影三级| 在线免费观看的www视频| 久久久久性生活片| 人人妻人人澡人人爽人人夜夜 | 老司机影院毛片| 舔av片在线| 亚洲av成人精品一区久久| 日本色播在线视频| 亚洲精品国产av成人精品| 国产亚洲精品av在线| eeuss影院久久| 国产精品久久久久久精品电影小说 | 成人漫画全彩无遮挡| 亚洲av电影不卡..在线观看| 国产免费一级a男人的天堂| 舔av片在线| 99久久成人亚洲精品观看| 男女啪啪激烈高潮av片| 免费观看性生交大片5| videos熟女内射| 国产极品天堂在线| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| av免费观看日本| 亚洲欧美一区二区三区国产| 免费看光身美女| АⅤ资源中文在线天堂| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 午夜免费激情av| 国产成人freesex在线| 精品久久国产蜜桃| 免费黄网站久久成人精品| 我的老师免费观看完整版| 欧美激情在线99| 啦啦啦韩国在线观看视频| eeuss影院久久| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 岛国在线免费视频观看| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 三级国产精品片| 天堂中文最新版在线下载 | 日本欧美国产在线视频| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 亚洲精品456在线播放app| 国产爱豆传媒在线观看| 91久久精品国产一区二区成人| 日韩在线高清观看一区二区三区| 亚洲国产欧洲综合997久久,| av黄色大香蕉| 久久久久精品久久久久真实原创| 久久久国产成人精品二区| 欧美又色又爽又黄视频| 久99久视频精品免费| 你懂的网址亚洲精品在线观看 | 久久这里有精品视频免费| 99久久中文字幕三级久久日本| 成人亚洲精品av一区二区| 婷婷色麻豆天堂久久 | 美女脱内裤让男人舔精品视频| 天美传媒精品一区二区| 午夜视频国产福利| 精品久久国产蜜桃| 欧美97在线视频| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 国产 一区精品| 国产中年淑女户外野战色| 国产高潮美女av| 国内精品宾馆在线| 三级经典国产精品| 丝袜美腿在线中文| 91狼人影院| 长腿黑丝高跟| 国产探花在线观看一区二区| 亚洲av成人av| 国产精品野战在线观看| 综合色av麻豆| 久久这里有精品视频免费| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 亚洲国产欧洲综合997久久,| 男女那种视频在线观看| 男人舔女人下体高潮全视频| 午夜精品国产一区二区电影 | 久久这里只有精品中国| 99久国产av精品| 91av网一区二区| 啦啦啦啦在线视频资源| 欧美又色又爽又黄视频| 免费黄色在线免费观看| 一区二区三区高清视频在线| 能在线免费看毛片的网站| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 亚洲无线观看免费| 嫩草影院精品99| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区久久| 久久人妻av系列| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| www.色视频.com| 精品久久久久久久久久久久久| av在线观看视频网站免费| 非洲黑人性xxxx精品又粗又长| 男女啪啪激烈高潮av片| av女优亚洲男人天堂| 国产免费福利视频在线观看| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 国产日韩欧美在线精品| 99久久中文字幕三级久久日本| 高清在线视频一区二区三区 | 视频中文字幕在线观看| 国产伦理片在线播放av一区| 最近视频中文字幕2019在线8| 久久久久久久久中文| 久久久久久国产a免费观看| 久久精品熟女亚洲av麻豆精品 | 我要搜黄色片| 国产又色又爽无遮挡免| 亚洲国产欧洲综合997久久,| 国产精品麻豆人妻色哟哟久久 | 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 亚洲乱码一区二区免费版| 国产一级毛片在线| 免费播放大片免费观看视频在线观看 | 成人av在线播放网站| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器| 日韩av不卡免费在线播放|