韓金桓,王麗霞,高洪波, 呂桂云
(河北農(nóng)業(yè)大學(xué)園藝學(xué)院,河北保定071001)
西瓜抗枯萎病相關(guān)基因ClMYB轉(zhuǎn)錄因子的克隆及表達(dá)分析
韓金桓,王麗霞,高洪波, 呂桂云
(河北農(nóng)業(yè)大學(xué)園藝學(xué)院,河北保定071001)
【目的】克隆西瓜抗枯萎病相關(guān)基因ClMYB轉(zhuǎn)錄因子,進(jìn)行生物信息學(xué)及表達(dá)模式分析,為進(jìn)一步解析ClMYB在西瓜抗枯萎病機(jī)制中的作用提供理論依據(jù)?!痉椒ā扛鶕?jù)西瓜與枯萎病菌不親和互作的抑制差減文庫(kù)和Microarray數(shù)據(jù)分析,獲得與西瓜抗枯萎病相關(guān)的基因ClMYB,采用RT-PCR技術(shù)分離克隆ClMYB cDNA全長(zhǎng)序列;應(yīng)用生物信息學(xué)方法分析該基因的保守結(jié)構(gòu)域及序列特征;使用MEGA5.0對(duì)ClMYB蛋白序列及其同源序列進(jìn)行多序列比對(duì),并構(gòu)建同源物種間系統(tǒng)進(jìn)化樹(shù);采用GFP標(biāo)記的方法進(jìn)行亞細(xì)胞定位,分析編碼蛋白表達(dá)位置;將該基因片段通過(guò)Nde I和Xba I雙酶切連接至原核表達(dá)載體pCzn1,重組質(zhì)粒轉(zhuǎn)化至大腸桿菌Arctic Express,經(jīng)終濃度為0.5 mmol·L-1IPTG誘導(dǎo)4 h,用SDS-PAGE分析融合蛋白的表達(dá);利用實(shí)時(shí)熒光定量PCR方法檢測(cè)目的基因在西瓜與枯萎病菌互作中及在茉莉酸(jasmonate,JA)誘導(dǎo)下的表達(dá)情況?!窘Y(jié)果】利用RT-PCR方法從西瓜野生材料PI296341-FR根系組織中克隆該基因片段(GenBank:KT751229),序列比對(duì)及生物信息學(xué)分析表明,其基因編碼的氨基酸序列具有MYB轉(zhuǎn)錄因子R2R3型的典型特征,其N端具有R2、R3兩個(gè)MYB結(jié)構(gòu)域,C端高度變異。多序列比對(duì)及進(jìn)化樹(shù)分析表明,該基因編碼的蛋白與甜瓜MYB(GenBank:XM_008440304)和黃瓜MYB(GenBank:XM_011652633)同源性最高,其編碼的氨基酸一致性達(dá)到86%,這與它們同屬葫蘆科植物有關(guān);亞細(xì)胞定位顯示ClMYB定位于細(xì)胞核,為典型的轉(zhuǎn)錄因子;成功構(gòu)建了該基因的原核表達(dá)載體pCzn1-ClMYB,轉(zhuǎn)化至大腸桿菌得到36 kD左右蛋白;ClMYB受枯萎病菌誘導(dǎo),在高抗枯萎病菌材料PI296341-FR中,相對(duì)感病品種表達(dá)量高峰出現(xiàn)的早,且表達(dá)量高。50 μmol·L-1的MeJA處理可以顯著提高感病材料Black diamond對(duì)枯萎病的抗病水平,同時(shí)誘導(dǎo)ClMYB表達(dá),與抗病材料PI296341-FR相比表達(dá)趨勢(shì)一致,但表達(dá)量更高?!窘Y(jié)論】ClMYB為典型的R2R3-MYB轉(zhuǎn)錄因子,亞細(xì)胞定位于細(xì)胞核中;基因的原核表達(dá)得到36 kD的融合蛋白,在西瓜中的表達(dá)受枯萎病菌和茉莉酸誘導(dǎo),推測(cè)ClMYB可能參與JA介導(dǎo)的西瓜抗枯萎病防衛(wèi)反應(yīng)的信號(hào)通路,在西瓜抗病中起一定的作用。
西瓜;枯萎??;ClMYB轉(zhuǎn)錄因子;基因克??;表達(dá)分析
【研究意義】西瓜(Citrullus lanatus)是世界第五大水果,中國(guó)西瓜的栽培面積、總產(chǎn)量與人均消費(fèi)量均居世界首位,在高效農(nóng)業(yè)中占有重要地位。西瓜枯萎病是由半知菌亞門鐮孢屬尖鐮孢(Fusarium oxysporum f. sp. niveum)寄生引起的一種真菌土傳病害,是世界范圍內(nèi)導(dǎo)致西瓜產(chǎn)量和品質(zhì)降低的最嚴(yán)重障礙,病田一般減產(chǎn)20%—30%、嚴(yán)重田塊可達(dá)50%—60%,甚至絕產(chǎn)[1]。野生西瓜材料PI296341-FR(Citrulls lanatus var. citrodes)是國(guó)際上公認(rèn)的抗枯萎病菌3個(gè)生理小種的抗源[2]。在前期研究中,通過(guò)抑制差減文庫(kù)和Microarray技術(shù)從PI296341-FR篩選出參與西瓜抗枯萎病響應(yīng)的轉(zhuǎn)錄因子ClMYB和茉莉酸代謝途徑[3-4]。明確ClMYB、茉莉酸(JA)與西瓜抗枯萎病的關(guān)系及其調(diào)控抗性反應(yīng)途徑,對(duì)解析該基因調(diào)控西瓜抗病性的機(jī)理和西瓜枯萎病的可持續(xù)控制具有重要的理論和實(shí)際意義?!厩叭搜芯窟M(jìn)展】MYB在植株中的過(guò)表達(dá)能夠顯著提高植物的抗病能力,并具有一定的廣譜效應(yīng)。YANG等[5]從煙草中分離到一個(gè)TMV誘導(dǎo)基因NtMYB1,外源水楊酸(SA)可迅速誘導(dǎo)該基因表達(dá),并且先于PR21的誘導(dǎo),該基因編碼蛋白可與PR21基因啟動(dòng)子中的MYB結(jié)合位點(diǎn)特異性結(jié)合,從而調(diào)節(jié)PR21的表達(dá)。在擬南芥和煙草中過(guò)量表達(dá)AtMYB30,可以看到轉(zhuǎn)基因植株對(duì)不同的病原細(xì)菌表現(xiàn)過(guò)敏反應(yīng)(HR)或類似過(guò)敏反應(yīng),并能增強(qiáng)對(duì)多種細(xì)菌和煙草蛙眼病菌(Cercospora nicotianae)的抗性。在反義表達(dá)AtMYB30的擬南芥株系中,能強(qiáng)烈抑制對(duì)不同病原細(xì)菌的抗性和HR細(xì)胞死亡反應(yīng),HR和防衛(wèi)反應(yīng)相關(guān)基因的表達(dá)也發(fā)生改變[6]。這些結(jié)果表明,AtMYB30是過(guò)敏性細(xì)胞死亡的正向調(diào)節(jié)子。AtMYB15與煙草(Nicotiana tabacum)的NtMYB2高度相似,它們能被創(chuàng)傷和調(diào)控PR基因表達(dá)的激發(fā)子誘導(dǎo)[7]。反義表達(dá)MYB72的株系在受到不同病原物侵染時(shí)無(wú)法形成ISR,表明MYB72作為一個(gè)新的ISR信號(hào)傳導(dǎo)成員是建立廣譜ISR所必需的[8]。偃麥草中的R2R3-MYB基因TiMYB2R-1過(guò)量表達(dá)可增強(qiáng)小麥和其他谷類作物對(duì)全蝕病的抗性[9],另一種R2R3-MYB基因TaPIMP1則表現(xiàn)出對(duì)小麥青枯病菌(Ralstonia solanacearum)病原體的抗性[10]。擬南芥MYB蛋白AtMYB30與黃單胞桿菌Ⅲ型效應(yīng)子X(jué)opD互作,通過(guò)翻譯后修飾來(lái)調(diào)控植物抗病性[11]。從華東葡萄中克隆的VpMYBR1能夠提高轉(zhuǎn)基因植株白粉病的抗性[12]?!颈狙芯壳腥朦c(diǎn)】MYB轉(zhuǎn)錄因子是植物中最大的轉(zhuǎn)錄因子之一,在植物生長(zhǎng)發(fā)育及抗逆境脅迫過(guò)程中發(fā)揮著極其重要的作用,已在擬南芥[6-8]、煙草[5]、偃麥草[8,11]、玉米[13]等多個(gè)植物抗病性方面得到證實(shí)。筆者課題組在西瓜中也檢測(cè)到和枯萎病相關(guān)MYB有cluster133Contig1、08081903T1O_95_G12、cluster377Contig1,利用Microarray進(jìn)一步分析發(fā)現(xiàn),其中08081903T1O_95_ G12 在西瓜與枯萎病菌的非親和互作前期中顯著上調(diào)表達(dá)[3-4]。李猷等[14]在西瓜與枯萎病非親和互作篩選出相關(guān)的MYB基因CH235。但這些相關(guān)的MYB都是初步篩選出的EST序列,在西瓜抗枯萎病研究中尚未見(jiàn)MYB轉(zhuǎn)錄因子克隆的報(bào)道。【擬解決的關(guān)鍵問(wèn)題】在08081903T1O_95_G12序列的基礎(chǔ)上,通過(guò)克隆西瓜ClMYB轉(zhuǎn)錄因子基因,對(duì)其序列進(jìn)行生物信息學(xué)分析、通過(guò)亞細(xì)胞定位和原核表達(dá),同時(shí)利用qRT-PCR檢測(cè)該基因在不同抗性品種及JA處理下的表達(dá)模式,為深入解析該基因調(diào)控西瓜抗枯萎病性應(yīng)答反應(yīng)的分子機(jī)理提供理論基礎(chǔ)。
試驗(yàn)于2014—2015年在河北農(nóng)業(yè)大學(xué)園藝學(xué)院進(jìn)行。
1.1 材料
以高抗枯萎病菌生理小種1 的野生西瓜種質(zhì)PI296341-FR,高感枯萎病菌西瓜品種Black diamond為材料;病源材料枯萎病菌生理小種1(race1)采自北京市通州區(qū)西瓜枯萎病病株,由北京市農(nóng)林科學(xué)院蔬菜研究中心許勇研究員惠贈(zèng)。
限制性內(nèi)切酶、SYBR?Premix Ex TaqTMⅡ(Tli RNaseH Plus)、10×PCR Buffer、dNTPs、Taq酶、蛋白質(zhì)Marker、T4DNA連接酶購(gòu)自寶生物工程(大連)有限公司;pCzn1載體、TOP10菌株、Arctic Express菌株、IPTG、SDS購(gòu)自鐘鼎生物公司;RNAprep Pure Plant Kit(Polysaccharides &Polyphenolics-rich)試劑盒、FastQuant RT Kit with gDNase試劑盒、質(zhì)粒小提中量試劑盒購(gòu)自北京天根公司;DNA膠回收試劑盒購(gòu)自生工生物工程(上海)股份有限公司。
1.2 方法
1.2.1 試材培養(yǎng) 枯萎病菌人工接種采用浸根接種法,待西瓜幼苗2—3片真葉時(shí),用枯萎病菌孢子懸浮液濃度為5×106個(gè)孢子/mL浸根15 min,中間搖動(dòng)2—3次,防止孢子沉降。浸根完成后,定植到營(yíng)養(yǎng)缽中,同時(shí)設(shè)立對(duì)照,接種清水。用50 μmol·L-1濃度茉莉酸甲酯(methyl jasmonate,MeJA)分別均勻噴灑于PI296341-FR和Black diamond葉片表面,以清水噴灑的為對(duì)照。接種后在溫室26—30℃條件下培養(yǎng),根據(jù)發(fā)病進(jìn)程統(tǒng)計(jì)病情指數(shù)=Σ(病級(jí)株數(shù)×代表數(shù)值)× 100/調(diào)查總數(shù)×發(fā)病最重級(jí)的代表數(shù)值。處理后 0、6、12、24、48、72 h分別采集各組西瓜根系組織液氮凍存。用RNA提取試劑盒提取西瓜總RNA,按FastQuant RT Kit with gDNase試劑盒說(shuō)明進(jìn)行反轉(zhuǎn)錄。
1.2.2 ClMYB克隆 以野生西瓜材料PI296341-FR接種西瓜枯萎病菌后0、6、12、24、48、72 h根系組織各時(shí)間點(diǎn)總RNA等量混合物的反轉(zhuǎn)錄產(chǎn)物為模板,根據(jù)筆者課題組前期對(duì)抑制差減文庫(kù)和Microarray數(shù)據(jù)分析得到的與枯萎病相關(guān)08081903T1O-95-G12 EST序列,設(shè)計(jì)分別帶Xba I和Sma I酶切位點(diǎn)的上下游引物T-F:5′-GCTCTAGA GCATGGTGAGAGCTCC TTGTTGTGAGA-3′(下劃線表示引入的Xba I酶切位點(diǎn)),T-R:5′-TCCCCCGGGTCCAAATACAGGGTCAT TTGGCGACCCA-3(′下劃線表示引入的Sma I酶切位點(diǎn)),克隆該基因。PCR體系為:10×PCR Buffer 2.5 μL,dNTPs(2.5)4 μL,Taq酶0.25 μL,上下游引物(10 μmol·L-1)各0.5 μL,cDNA 1.25 μL,ddH2O補(bǔ)齊至25 μL。PCR程序?yàn)椋?4℃變性3 min,然后94℃30 s,60℃30 s,72℃2 min共35個(gè)循環(huán),最后72℃延伸10 min,4℃保溫。經(jīng)2%瓊脂糖凝膠電泳,回收目標(biāo)片段,克隆至pMD19-T載體,轉(zhuǎn)化大腸桿菌DH5α,篩選出陽(yáng)性克隆進(jìn)行測(cè)序,測(cè)序正確的克隆命名為T-ClMYB,獲得目的基因序列命名為ClMYB(GenBank:KT751229)。
1.2.3 ClMYB序列的生物信息學(xué)分析 利用NCBI Blast(http://blast.ncbi.nlm.nih.gov/Blast.cgi)進(jìn)行同源性分析;利用ExPASy ProtParam(http://expasy.org/ tools/pi_tool.html)進(jìn)行蛋白理化性質(zhì)進(jìn)行預(yù)測(cè);利用SOPMA(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat. pl)在線軟件進(jìn)行蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè);采用DNAMAN軟件進(jìn)行氨基酸多序列比對(duì)分析;系統(tǒng)進(jìn)化樹(shù)采用MEGA5.0軟件構(gòu)建。
1.2.4 ClMYB蛋白的亞細(xì)胞定位 對(duì)1.2.2獲得克隆T-ClMYB提取質(zhì)粒,與PYBA1332-GFP(北京市農(nóng)林科學(xué)院張春秋博士惠贈(zèng))分別經(jīng)Xba I和Sma I雙酶切,回收目的片段并用T4 DNA連接酶過(guò)夜連接,構(gòu)建ClMYB融合表達(dá)載體,轉(zhuǎn)化大腸桿菌DH5α,篩選出陽(yáng)性克隆并進(jìn)行測(cè)序驗(yàn)證。
分別用70%乙醇和滅菌蒸餾水清洗金粉,再加入無(wú)水乙醇制成金粉懸浮液,再順序加入質(zhì)粒、氯化鈣、亞精胺振蕩。取10 μL懸浮液加到基因槍中,基因槍PDS-1000He型轟擊時(shí)真空度26 mmHg,可裂膜壓力1 100 psi。將轟擊好后的洋蔥表皮放于25℃中暗培養(yǎng)24 h。然后于激光共聚焦顯微鏡在488 nm波長(zhǎng)下觀察GFP在洋蔥表皮細(xì)胞內(nèi)的表達(dá)情況。
1.2.5 pCzn1-ClMYB原核表達(dá)載體質(zhì)粒構(gòu)建及表達(dá)根據(jù)ClMYB cDNA序列設(shè)計(jì)分別帶Nde I和Xba I酶切位點(diǎn)的上下游引物pCzn1-F:5′-CATATG GTGAGA GCTCCTTGTTGTGAGAA-3′(下劃線表示引入的Nde I酶切位點(diǎn)),pCzn1-R:5′-TCTAGA AAATACAGGGT CATTTGGCGACCCA-3′(下劃線表示引入的Xba I酶切位點(diǎn)),克隆該基因,將獲得的目的片段PCR產(chǎn)物純化后用Nde I和Xba I雙酶切,在T4 DNA連接酶的作用下將目的片段連接至以相同酶切后回收的pCzn1載體上,16℃過(guò)夜連接。將連接產(chǎn)物轉(zhuǎn)入大腸桿菌DH5α,篩選出陽(yáng)性克隆進(jìn)行測(cè)序。構(gòu)建成功的表達(dá)載體質(zhì)粒命名為pCzn1-ClMYB。將構(gòu)建成功的表達(dá)載體質(zhì)粒pCzn1-ClMYB,轉(zhuǎn)化至表達(dá)菌株大腸桿菌Arctic Express,經(jīng)50 μg·mL-1氨芐抗性篩選,挑取轉(zhuǎn)化平板上的單克隆接種至含50 μg·mL-1氨芐的LB液體培養(yǎng)基中,37℃振蕩培養(yǎng)至OD600為0.6—0.8,以終濃度為0.5 mmol·L-1的IPTG在37℃條件下誘導(dǎo)表達(dá)4 h,以不加IPTG誘導(dǎo)的pCzn1-ClMYB作為對(duì)照。誘導(dǎo)完成后,MYB-His包涵體經(jīng)過(guò)變復(fù)性的方式,重溶目標(biāo)蛋白,通過(guò)Ni柱親和純化獲得目標(biāo)蛋白,進(jìn)行12% SDS-PAGE分析。
1.2.6 基因表達(dá)分析 采用real-time PCR分析不同處理后基因的表達(dá)情況,以18S rRNA為內(nèi)參,反應(yīng)引物如表1(18S rRNA,qClMYB),按照SYBR? Premix Ex TaqTMⅡ使用說(shuō)明進(jìn)行。每個(gè)樣品設(shè)有3次重復(fù)。反應(yīng)條件為:95℃預(yù)變性30 s,95℃變性5 s, 52℃復(fù)性30 s,72℃延伸30 s,變性到延伸循環(huán)40次;END(熔解曲線):95℃ 15 s,60℃15 s,熒光檢測(cè)20 min,95℃15 s。采用2-△△CT法分析結(jié)果。
表1 ClMYB表達(dá)分析所用引物Table 1 Primers for expression analyses of ClMYB
2.1 ClMYB DNA、cDNA序列的克隆與分析
ClMYB DNA序列全長(zhǎng)955 bp,cDNA序列全長(zhǎng)792 bp,開(kāi)放閱讀框編碼263個(gè)氨基酸殘基。對(duì)其DNA和cDNA序列分析表明,該基因在其起始密碼子后第134、388位核苷酸處分別插入一段長(zhǎng)74、89 bp的內(nèi)含子,蛋白保守結(jié)構(gòu)域預(yù)測(cè)發(fā)現(xiàn),其N端第13—63、66—114位分別具有R2、R3兩個(gè)MYB結(jié)構(gòu)域(圖1),該結(jié)構(gòu)域是R2R3型MYB家族基因所特有的,推測(cè)該基因是R2R3型MYB轉(zhuǎn)錄因子。根據(jù)ProtParam預(yù)測(cè)顯示,ClMYB蛋白的理論分子量為30.5 kD,理論等電點(diǎn)為6.22,分子式為C1371H2O53N373O400S10,酸性氨基酸殘基總數(shù)為37,堿性氨基酸殘基總數(shù)為33,脂肪系數(shù)為61.52,平均親水性為-0.763,預(yù)測(cè)為親水性蛋白,不穩(wěn)定指數(shù)為50.96,預(yù)測(cè)該蛋白為不穩(wěn)定蛋白。
根據(jù)SOPMA在線軟件預(yù)測(cè)ClMYB蛋白的氨基酸序列的二級(jí)結(jié)構(gòu)包括α-螺旋、β-轉(zhuǎn)角、無(wú)規(guī)則卷曲、延伸鏈。其中構(gòu)成無(wú)規(guī)則卷曲的氨基酸數(shù)最多為108個(gè),百分比為41.06%。α-螺旋和延伸鏈次之,分別為34.22%和15.97%。β-轉(zhuǎn)角所占比例最少,僅為8.75%(圖2)。
圖1 ClMYB蛋白保守結(jié)構(gòu)域Fig. 1 The predicted conservative domains of ClMYB protein
圖2 ClMYB蛋白的二級(jí)結(jié)構(gòu)預(yù)測(cè)Fig. 2 Predicted secondary structure of ClMYB protein
2.2 ClMYB編碼氨基酸序列比對(duì)及系統(tǒng)進(jìn)化樹(shù)
將ClMYB的氨基酸序列與黃瓜(Cucumis sativus,XM_011652633)、甜瓜(Cucumis melo,XM_008440304)、煙草(Nicotiana tabacum,XM_009633531)、百脈根(Lotus japonicus,BT145262)、山崳(Eutrema,XM_006405998)、醉蝶花(Tarenaya hassieriana,XM_010534986)、葡萄(Vitis vinifera,NM_001281203)、花生(Arachis hypogaea,KF208656)、甜菜(Beta vulgaris,XM_010676764)、大豆(Glycine max,XM_006573119)、油棕(Elaeis guineensis,XM_010918867)、海棗(Phoenix dactylifera,XM_008788388)12個(gè)物種中含有MYB結(jié)構(gòu)域蛋白基因的氨基酸序列比對(duì)。分析顯示,ClMYB與甜瓜、黃瓜等氨基酸序列相似性分別達(dá)到80%以上(圖3)。利用MEGA5.0軟件將ClMYB氨基酸序列與上述12個(gè)物種的MYB氨基酸序列進(jìn)行聚類分析(圖4),油棕和海棗被聚為一類,可能與它們同屬于單子葉植物有關(guān)。ClMYB與甜瓜和黃瓜MYB基因被聚在一類,說(shuō)明這可能與它們同屬于葫蘆科植物有關(guān)。
2.3 ClMYB的亞細(xì)胞定位
利用基因槍將構(gòu)建好的重組質(zhì)粒PYBA1332-GFP/ClMYB轉(zhuǎn)入洋蔥表皮細(xì)胞內(nèi),25℃暗培養(yǎng)24 h后制片,激光掃描共聚焦熒光顯微鏡觀察。結(jié)果顯示,在轉(zhuǎn)化空載體PYBA1332-GFP的洋蔥表皮綠色熒光分布整個(gè)細(xì)胞包括細(xì)胞膜、細(xì)胞質(zhì)以及細(xì)胞核中(圖5-A),說(shuō)明沒(méi)有目的基因空載是可以在細(xì)胞的細(xì)胞膜、細(xì)胞質(zhì)以及細(xì)胞核中表達(dá)。而轉(zhuǎn)化PYBA1332-GFP/ClMYB載體的洋蔥表皮細(xì)胞內(nèi)只有細(xì)胞核上有綠色熒光信號(hào)(圖5-B),表明ClMYB蛋白定位于細(xì)胞核,為典型的轉(zhuǎn)錄因子蛋白。
2.4 pCzn1-ClMYB原核表達(dá)載體構(gòu)建及表達(dá)
將ClMYB與原核表達(dá)載體pCzn1連接,得到融合表達(dá)載體pCzn1-ClMYB,經(jīng)Nde I+ Xba I雙酶切鑒定,得到798 bp 的目的片段(圖6),測(cè)序結(jié)果表明無(wú)堿基突變,重組質(zhì)粒構(gòu)建成功。將重組質(zhì)粒pCzn1-MYB轉(zhuǎn)化大腸桿菌Arctic Express,經(jīng)終濃度為0.5 mmol·L-1的IPTG在37℃條件下誘導(dǎo)表達(dá)4 h后進(jìn)行SDS-PAGE電泳分析。結(jié)果表明,重組質(zhì)粒pCzn1-ClMYB誘導(dǎo)產(chǎn)物出現(xiàn)一條特異蛋白帶,未誘導(dǎo)表達(dá)及誘導(dǎo)上清液沒(méi)有融合蛋白的表達(dá)(圖7),則目標(biāo)蛋白主要存在于包涵體中。融合蛋白純化后蛋白理論分子量為36 kD左右(含His-tag)(圖8),與預(yù)測(cè)的ClMYB蛋白分子量30.5 kD相近。
2.5 ClMYB在不同抗性材料上接種枯萎病菌后的表達(dá)分析
不同抗性材料接種枯萎病菌后ClMYB表達(dá)量有顯著差異,根部表達(dá)量在高抗枯萎病菌材料PI296341-FR中接菌6 h后達(dá)到最大值,達(dá)到接種前原始表達(dá)量的7.2倍。高感枯萎病菌材料Black diamond中接菌24 h后達(dá)到最大值,達(dá)到接種前原始表達(dá)量的2.2倍,PI296341-FR ClMYB的根部表達(dá)量明顯高于Black diamond(圖9)。在接種處理后13 d后,PI296341-FR病情指數(shù)為2.67,Black diamond病情指數(shù)為87.75。
2.6 MeJA處理對(duì)ClMYB表達(dá)影響
MeJA處理Black diamond和PI296341-FR后,ClMYB對(duì)MeJA處理產(chǎn)生響應(yīng)表達(dá)趨勢(shì)一致,但表達(dá)量差異顯著。Black diamond分別在接種后6和48 h出現(xiàn)ClMYB表達(dá)高峰,表達(dá)量分別是對(duì)照的15和11倍,而PI296341-FR在接種后6 和48 h出現(xiàn)表達(dá)高峰,表達(dá)量分別是對(duì)照的4和6.2倍(圖10)。接種處理13 d后,PI296341-FR無(wú)MeJA處理的病情指數(shù)為2.67,MeJA處理后病情指數(shù)為1.28;而B(niǎo)lack diamond無(wú)MeJA處理的病情指數(shù)為87.75,MeJA處理后病情指數(shù)為19.44。
圖3 ClMYB氨基酸序列與其他物種序列多重比對(duì)Fig. 3 Aligments of the deduced amino acid sequence of ClMYB from other MYB proteins
圖4 ClMYB與其他MYB 蛋白的系統(tǒng)進(jìn)化樹(shù)Fig. 4 Phylogenetic tree of ClMYB and some other MYB proteins
圖5 ClMYB亞細(xì)胞定位分析Fig. 5 Subcellular localization of ClMYB protein in onion epidermal cells
R2R3亞類MYB轉(zhuǎn)錄因子主要參與次生代謝調(diào)節(jié)[15]、控制細(xì)胞的分化[16]、應(yīng)答激素的刺激[17]及抵御外界脅迫和病原菌的侵染[18]。本研究對(duì)克隆的ClMYB序列分析發(fā)現(xiàn),該基因含有兩個(gè)MYB結(jié)構(gòu)域,編碼263個(gè)氨基酸殘基的蛋白,屬于典型的R2R3類型的MYB轉(zhuǎn)錄因子家族的成員。在擬南芥中,根據(jù)內(nèi)含子在MYB 蛋白的BRH(the region between the conserved DNA-recognitionhelix)的插入位點(diǎn)的不同,將MYB 蛋白被分為A、B、C 3大類,其中A類MYB蛋白在BRH處沒(méi)有插入內(nèi)含子;B類MYB蛋白在BRH 的R3 處插入一個(gè)內(nèi)含子;C類MYB蛋白占擬南芥蛋白的85%,主要參與苯丙烷類代謝途徑,在BRH的R2中插入內(nèi)含子[19]。許玲等[19]在大豆中分離一個(gè)C類MYB基因GmMYB111,與大豆的非生物脅迫和ABA信號(hào)轉(zhuǎn)導(dǎo)途徑有關(guān)。ClMYB在其起始密碼子后第134、388位核苷酸處各插入一個(gè)內(nèi)含子,屬于C類MYB轉(zhuǎn)錄因子,結(jié)合筆者課題組前期篩選出參與西瓜與枯萎病菌非親和互作的莽草酸-苯丙烷-木質(zhì)素生物合成途徑[4],ClMYB可能參與了此代謝途徑,具體調(diào)控功能還有待后續(xù)研究證明。
圖6 重組質(zhì)粒pCzn 1-ClMYB雙酶切鑒定Fig. 6 Restriction enzyme analysis of recombinant plasmid pCzn 1-ClMYB
圖7 ClMYB重組蛋白在大腸桿菌中表達(dá)Fig. 7 Expression of recombinant pCzn 1-ClMYB protein in E. coli Arctic Express
圖8 ClMYB蛋白純化SDS-PAGE分析Fig. 8 SDS-PAGE of ClMYB purification protein
SA、JA和乙烯是植物體內(nèi)重要的抗病信號(hào)分子,它們?cè)诘钟镱惷{迫中具有重要作用[20]。AtMYB30是R2R3亞類MYB轉(zhuǎn)錄因子家族的成員,在擬南芥與病原細(xì)菌的非親和互作中AtMYB30能被快速激活表達(dá),而在起始細(xì)胞死亡受到影響的突變體中,該蛋白的表達(dá)被下調(diào)[21]。在細(xì)菌病原物誘導(dǎo)的HR中,AtMYB30表達(dá)依賴于SA積累,但與依賴于SA的防衛(wèi)反應(yīng)信號(hào)傳導(dǎo)途徑中的關(guān)鍵組分NPR1無(wú)關(guān)[22]。從中間偃麥草中克隆鑒定出R2R3MYB基因TiMYB2R-1,在小麥中異源表達(dá),發(fā)現(xiàn)與全蝕病相關(guān)防御基因在轉(zhuǎn)錄水平上的表達(dá)均顯著提高,表明超量表達(dá)TiMYB2R-1能用于提高小麥抵抗全蝕病的抗性[9]。ATR1 可引發(fā)HR細(xì)胞死亡反應(yīng)從而增強(qiáng)植株對(duì)細(xì)菌病原物的抗性[23],ATR13 則可增強(qiáng)植株對(duì)卵菌、細(xì)菌和病毒的抗病能力[24]。大豆中的PsMYB1能夠增強(qiáng)對(duì)大豆霉疫菌的抗性[25]。對(duì)擬南芥突變體中的BOS1的研究發(fā)現(xiàn),BOS1誘導(dǎo)表達(dá)在coll突變體中被破壞,說(shuō)明參與了茉莉酸抗病反應(yīng)途徑[26]。MYB還參與了依賴于JA的防御反應(yīng)途徑,在水稻幼苗中JA是抵御稻瘟病菌侵染的系統(tǒng)獲得的重要抗病性誘導(dǎo)因子,從水稻中分離JAmyb,受稻瘟病和JA誘導(dǎo),在敏感株系中受稻瘟病菌誘導(dǎo)水平更高[27]。本研究表明,ClMYB表達(dá)受與西瓜抗枯萎病和JA誘導(dǎo),MeJA處理可以顯著提高感病材料Black diamond對(duì)枯萎病的抗病水平,且誘導(dǎo)水平比在抗病材料PI296341-FR更高,推測(cè)ClMYB可能通過(guò)JA信號(hào)途徑參與西瓜抗枯萎病的應(yīng)答中。
圖9 枯萎病菌誘導(dǎo)ClMYB的表達(dá)分析Fig. 9 Expression analysis of ClMYB induced by F. oxysporum f. sp. niveum
圖10 ClMYB在MeJA處理后Black diamond和PI296341-FR的表達(dá)Fig. 10 Expression of ClMYB in response to MeJA treatment in Black diamond and PI296341-FR
ClMYB編碼的氨基酸序列具有MYB轉(zhuǎn)錄因子R2R3型的典型特征,其N端具有R2、R3 兩個(gè)MYB結(jié)構(gòu)域,C端高度變異。進(jìn)化樹(shù)分析表明,該基因編碼的蛋白與甜瓜、黃瓜的MYB同源性最高,這與它們同屬于葫蘆科植物有關(guān)。亞細(xì)胞定位于細(xì)胞核中,基因的原核表達(dá)得到36 kD左右的融合蛋白,其表達(dá)可能與西瓜抗枯萎病和JA信號(hào)轉(zhuǎn)導(dǎo)途徑有關(guān),推測(cè)其可能通過(guò)JA信號(hào)途徑參與西瓜抗枯萎病的應(yīng)答中。
[1] ZHANG Z G, ZHANG J Y, WANG Y C, ZHENG X B. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerellamelonis in infected plant tissues and soil. FEMS Microbiology Letters, 2005, 249: 39-47.
[2] MARTYN R D, NETZER D. Resistance to race 0, 1, 2 of Fusarium wilt of watermelon in Citrullus sp. PI296341-FR. HortScience, 1991, 26(4): 429-432.
[3] 呂桂云, 郭紹貴, 張海英, 耿麗華, 許勇. 西瓜與枯萎病菌非親和互作的表達(dá)序列標(biāo)簽分析. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(9): 1883-1894. Lü G Y, GUO S G, ZHANG H Y, GENG L H, XU Y. Analysis of expressed sequence tags in the incompatible interaction between watermelon and Fusarium oxysporum. Scientia Agricultura Sinica, 2010, 43(9): 1883-1894. (in Chinese)
[4] Lü G Y, GUO S G, ZHANG H Y, GENG L H, SONG F G, FEI Z J, XU Y. Transcriptional profiling of watermelon during its incompatible interaction with Fusarium oxysporum f. sp. niveum. European Journal of Plant Pathology, 2011, 131: 585-601.
[5] YANG Y, KLESSING D F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 14972-14977.
[6] VAILLEAU F, DANIEL X, TRONCHET M, MONTILLET J L, TRIANTAPHYLIDES C, ROBY D. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 10179-10184.
[7] SUGIMOTO K, TAKEDA S, HIROCHIKA H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is regulator of the tobacco retrotransposon Tto1 and defense-related genes. The Plant Cell, 2000, 12: 2511-2527.
[8] VAN DER ENT S, VERHAGEN B W, VAN DOORN R, BAKKER D, VERLAAN M G, PEL J C, PROVENIERS C G, VAN LONG L C, TON J, PIETERSE C M J. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology, 2008, 146: 1293-1304.
[9] LIU X, YANG L H, ZHOU X Y, ZHOU M P, LU Y. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Journal of Experimental Botany, 2013, 64(8): 2243-2253.
[10] LIU H X, ZHOU X Y, DONG N, LIU X, ZHANG H Y, ZHANG Z Y. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Functional & Integrative Genomics, 2011, 11: 431-443.
[11] ZHANG Z Y, LIU X, WANG X D, ZHOU M P, ZHOU X Y, YE X G, WEI X. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense and stress-related genes. New Phytologist, 2012, 196: 1155-1170.
[12] 侯紅敏, 王浩, 殷向靜, 閆琴, 王躍進(jìn), 王西平. 華東葡萄抗白粉病VpMYBR1基因表達(dá)與功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(7): 1408-1418. HOU H M, WANG H, YIN X J, YAN Q, WANG Y J, WANG X P. Expression and functional analysis of VpMYBR1 gene resistant to Uncinula necator from Vitis pseudoreticulata. Scientia Agricultura Sinica, 2013, 46(7): 1408-1418. (in Chinese)
[13] TIMMERMANS M C, HUDSON A, BECRAFT P W, NELSON T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science, 1999, 284: 151-153.
[14] 李猷, 王日升, 董登峰, 張曼, 劉文君, 陳振東, 董文斌. 西瓜與枯萎病菌非親和互作相關(guān)基因的分離及表達(dá)分析. 植物病理學(xué)報(bào), 2015, 45(1): 22-32. LI Y, WANG R S, DONG D F, ZHANG M, LIU W J, CHEN Z D, DONG W B. Isolation and expression analysis of resistance related genes in incompatible interaction between watermelon and Fusarium oxysporum f. sp. niveum. Acta Phytopathologica Sinica, 2015, 45(1): 22-32. (in Chinese)
[15] 邢文, 金曉玲. 調(diào)控植物類黃酮生物合成的MYB轉(zhuǎn)錄因子研究進(jìn)展. 分子植物育種, 2015, 13(3): 689-696. XING W, JIN X L. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynthesis. Molecular Plant Breeding, 2015, 13(3): 689-696. (in Chinese)
[16] LAU S E, SCHWARZACHER T, OTHMAN R Y, HARIKRISHNA J A. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid. BMC Plant Biology, 2015, 15: 194.
[17] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15: 573-581.
[18] GAO F, ZHAO H X, YAO H P, LI C L, CHEN H, WANG A H, PARK S U, WU Q. Identification, isolation and expression analysis of eight stress-related R2R3-MYB genes in tartary buckwheat (Fagopyrum tataricum). Plant Cell Reports, 2016, 35: 1385-1396.
[19] 許玲, 衛(wèi)培培, 張大勇, 徐照龍, 何曉蘭, 黃益洪, 馬鴻翔, 邵宏波.大豆轉(zhuǎn)錄因子基因GmMYB111的克隆及功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(15): 3079-3089. XU L, WEI P P, ZHANG D Y, XU Z L, HE X L, HUANG Y H, MA H X, SHAO H B. Expression and function analysis of the transcriptionfactor Gm MYB111 in soybean. Scientia Agricultura Sinica, 2015, 48(15): 3079-3089. (in Chinese)
[20] LU J, ROBERT C A, RIEMANN M, COSME M, MèNESAFFRANé L, MASSANA J, STOUT M J, LOU Y, GERSHENZON J, ERB M. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiology, 2015, 167(3): 1100-1116.
[21] DANIEL X, LACOMME C, MOREL J B, ROBY D. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. The Plant Journal, 1999, 20(1): 57-66.
[22] RAFFAELE S, RIVAS S, ROBY D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 2006, 580: 3498-3504.
[23] SOHN K H, LEI R, NEMRI A, JONES J D. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. The Plant Cell, 2007, 19: 4077-4090.
[24] RENTEL M C, LEONELLI L, DAHLBECK D, ZHAO B Y, STASKAWICZ B J. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3): 1091-1096.
[25] ZHANG M, LU J, TAO K, YE W W, LI A N, LIU X Y, KONG L, DONG S M, ZHENG X B, WANG Y C. A Myb transcription factor of Phytophthora sojae, regulated by MAP Kinase PsSAK1, is required for zoospore development. PLoS ONE, 2012, 7(6): e40246.
[26] MENGISTE T, CHEN X, SALMERON J, DIETRICH R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3-myb transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell, 2003, 15(11): 2551-2565.
[27] LEE M W, QI M, YANG Y. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Molecular Plant-Microbe Interactions, 2001, 14(4): 527-535.
(責(zé)任編輯 岳梅)
Cloning and Expression Analysis of Fusarium Wilt Resistance-Related Gene CIMYB Transcription Factor from CitruIIus Ianatus
HAN Jin-huan, WANG Li-xia, GAO Hong-bo, Lü Gui-yun
(College of Horticulture, Agricultural University of Hebei, Baoding 071001, Hebei)
【Objective】The objective of this study is to clone ClMYB, which is a gene encoding MYB transcription factor, analyze its sequence features and expression characteristics, and to provide new insights into the understanding of the molecular mechanism in response of watermelon plants to Fusarium oxysporum f. sp. niveum infection.【Method】In a recent study, a novel EST of MYB transcription factors was obtained from data analysis of microarray and suppression subtractive hybridization (SSH) of incompatible interaction between watermelon and F. oxysporum f. sp. niveum. cDNA sequence of the MYB was isolated and clonedusing cDNA from watermelon roots with F. oxysporum f. sp. niveum infection by RT-PCR method, designated as ClMYB. The conserved domains and sequence features of ClMYB protein were analyzed by bioinformatics methods. Multiple sequence alignments and a phylogenetic tree of homologous species were done between ClMYB protein and its homologous ones from other species using MEGA5.0. The subcellular localization of ClMYB was analyzed using fusion expression vector PYBA1332-GFP. Then ORF of the cloned gene was inserted into the expression vector pCzn1 by Nde I and Xba I digestion. The recombinant plasmid was transformed into E. coli Arctic Express system and induced expression by 0.5 mmol·L-1IPTG for 4 h. The expression of the fusion protein was detected by SDS-PAGE. The expression pattern of target genes in watermelon with F. oxysporum f. sp. niveum were detected by real-time fluorescent quantitative PCR (qRT-PCR).【Result】Using RT-PCR method, cDNA sequence of ClMYB (GenBank: KT751229) was cloned from watermelon (PI296341-FR) root. Sequence alignment and bioinformatics analysis revealed that the deduced amino acids of ClMYB had common characteristics of MYB transcription factors with two MYB domains of R2 and R3 at the N-terminal and highly variation at the C-terminal. Phylogenetic tree analysis suggested that the encoded protein had the closest genetic relationship with Cucumis melo MYB (GenBank: XM_008440304) and Cucumis sativus MYB (GenBank: XM_011652633). Subcellular localization results showed that ClMYB protein was located in the nucleus which belongs to a typical transcription factor. The expression of fusion protein was obtained by inducing with IPTG in E. coli and its relative molecular weight was 36 kD. qRT-PCR showed that the expression of ClMYB was induced by F. oxysporum f. sp. niveum, and appeared peak earlier and higher in PI296341-FR than Black diamond. MeJA at 50 μmol·L-1could significantly improve the resistance of Black diamond to F. oxysporum f. sp. niveum and induce the expression of ClMYB. In PI296341-FR, the expression of ClMYB was also induced by MeJA, while its expression level was lower than Black diamond. 【Conclusion】ClMYB is a typical R2R3-MYB transcription factor and is located in the nucleus. The expression of fusion protein was obtained by prokaryotic expression and its relative molecular weight is 36 kD. The expression of ClMYB was induced by F. oxysporum f. sp. niveum and JA. It is speculated that ClMYB may be involved in JA-mediated resistance signal transduction network of F. oxysporum f. sp. niveum. It might play an important role in disease resistance of Citrullus lanatus.
watermelon; Fusarium wilt; ClMYB transcription factor; gene cloning; expression analysis
2016-05-06;接受日期:2016-06-16
國(guó)家自然科學(xué)基金(31201632)、河北省自然科學(xué)基金(C2016204138)
聯(lián)系方式:韓金桓,E-mail:m15200099616@163.com。通信作者呂桂云,E-mail:guiyunlv@163.com