馬晨燕,袁正杰,楊海河,曲海艷,何海燕,張 玉,瞿紹洪,*
(1.浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院, 浙江 金華 321004; 2.浙江省農(nóng)業(yè)科學(xué)院 病毒學(xué)與生物技術(shù)研究所,浙江 杭州 310021)
?
水稻離體葉片抗紋枯病接種方法的研究
馬晨燕1,2,袁正杰2,楊海河1,2,曲海艷1,2,何海燕2,張 玉2,瞿紹洪2,*
(1.浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院, 浙江 金華 321004; 2.浙江省農(nóng)業(yè)科學(xué)院 病毒學(xué)與生物技術(shù)研究所,浙江 杭州 310021)
水稻紋枯病是影響水稻生產(chǎn)的重要病害之一。水稻紋枯病抗性屬于數(shù)量遺傳性狀,目前尚未發(fā)現(xiàn)高抗或免疫的水稻種質(zhì)材料。為了提高水稻抗紋枯病種質(zhì)的篩選和研究效率,對(duì)水稻離體葉片抗紋枯病接種的實(shí)驗(yàn)條件進(jìn)行了更精確的控制,并采用了量化的病情調(diào)查方法。取紋枯菌接種離體水稻葉片組織進(jìn)行qRT-PCR分析,水稻病程相關(guān)基因呈誘導(dǎo)表達(dá),驗(yàn)證了紋枯病菌對(duì)水稻的侵染。采用離體葉片接種、大田成株期接種、苗期“微室”接種法,對(duì)抗紋枯病水稻品種和敏感品種進(jìn)行測(cè)試??剐云贩N和敏感品種紋枯病病級(jí)的統(tǒng)計(jì)檢驗(yàn)呈顯著差異,3種方法的結(jié)果表現(xiàn)一致。改進(jìn)的離體葉片接種方法具有易于操作和重復(fù)性好的優(yōu)點(diǎn),適用于大規(guī)模篩選抗紋枯病水稻種質(zhì)材料。
水稻;紋枯病;Rhizoctoniasolani;離體葉片法;病程相關(guān)基因
水稻紋枯病是水稻的重要病害之一[1-2],其病原物為立枯絲核菌(Rhizoctoniasolani),屬于寄主范圍較廣的半腐生性真菌,一般在高溫高濕的環(huán)境條件下侵染分蘗期水稻,由靠近水面的葉鞘開始侵染和擴(kuò)展,也可以危害葉片、莖稈甚至稻穗,引起結(jié)實(shí)率下降,嚴(yán)重的導(dǎo)致植株枯死[3-4]。水稻紋枯病分布于大部分水稻種植區(qū),可以造成高達(dá)50%以上的產(chǎn)量損失[3]。隨著矮稈品種推廣、氮肥用量增加以及氣候變化等,水稻紋枯病的危害逐漸加重,成為水稻穩(wěn)產(chǎn)和高產(chǎn)的嚴(yán)重障礙[1]。
水稻對(duì)紋枯病的抗性屬于典型的數(shù)量性狀[5]。迄今為止,還沒有發(fā)現(xiàn)高抗或免疫的主基因抗病水稻材料,開展紋枯病抗病遺傳育種研究難度較大[2]。水稻紋枯病接種和抗性評(píng)價(jià)方法是篩選抗紋枯病遺傳資源和培育抗病品種的重要前提。水稻紋枯病大田成株期接種方法可靠性和重復(fù)性較好,但是田間鑒定的環(huán)境可控性差,受季節(jié)限制,試驗(yàn)周期較長(zhǎng)[2]。水稻紋枯病苗期接種具有實(shí)驗(yàn)規(guī)模小、發(fā)病環(huán)境可控、鑒定周期短等優(yōu)點(diǎn),然而對(duì)接種稻苗進(jìn)行病情調(diào)查的時(shí)間點(diǎn)不易把握,不同品種的生長(zhǎng)勢(shì)差異等都會(huì)影響鑒定結(jié)果[2]。Prasad等[6]建立的離體葉片法,具有取材方便、操作快速簡(jiǎn)便等優(yōu)點(diǎn),可以滿足大規(guī)模水稻材料抗紋枯病鑒定的需求。該方法將水稻離體葉片的正面緊貼濕濾紙,背面接種帶紋枯病菌菌絲的馬鈴薯PDA瓊脂塊,72 h后目測(cè)病斑范圍和評(píng)定病級(jí)。為了提高離體葉片接種方法的穩(wěn)定性和準(zhǔn)確性,本研究利用含有苯并咪唑保鮮劑的水瓊脂培養(yǎng)基代替濕濾紙,舍棄紋枯病病級(jí)評(píng)定的目測(cè)調(diào)查方式,改用病斑面積積分換算方法,計(jì)算水稻葉片的相對(duì)病斑面積,從而將發(fā)病程度進(jìn)行量化,取得了較好的效果。
1.1 材料
供試水稻材料為紋枯病抗性品種YSBR1[7]、感病品種Lemont[7]和泰粳394[8]。供試紋枯病菌系為YN-7和MH12,由揚(yáng)州大學(xué)潘學(xué)彪教授惠贈(zèng)。
1.2 水稻離體葉片紋枯病接種
1.2.1 水稻種植
將YSBR1、Lemont和泰粳394的種子封裝于羊皮紙袋中進(jìn)行浸種發(fā)芽,發(fā)芽第6天挑選長(zhǎng)勢(shì)基本一致的稻芽點(diǎn)播于育秧田中,25 d后將生長(zhǎng)良好的秧苗移栽大田。在水稻分蘗時(shí)期(大約移栽后30 d),選取葉色濃綠、無病蟲害、生長(zhǎng)健壯的分蘗,剪取完全展開的倒1葉或倒2葉,進(jìn)行紋枯菌接種。
1.2.2 紋枯菌培養(yǎng)
用無菌手術(shù)刀將帶有紋枯菌菌絲的瓊脂塊切成0.4~0.5 cm小塊,接種到含0.005%四環(huán)素(wt·voL)和20 mL馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養(yǎng)基的平板上,封口膜封口,倒置放在28 ℃培養(yǎng)箱中,活化培養(yǎng)2~3 d,培養(yǎng)基表面長(zhǎng)滿白色菌絲后拿出。將來自活化培養(yǎng)的菌塊接種到新的PDA培養(yǎng)基,相同條件下進(jìn)行擴(kuò)大培養(yǎng)。
1.2.3 紋枯病菌接種
剪取葉片中間4~5 cm長(zhǎng)的部分,平鋪于含有苯并咪唑(0.000 1 g·mL-1)的水瓊脂培養(yǎng)基(0.005 g·mL-1agar)上。葉片正面緊貼培養(yǎng)基表面。在含紋枯菌的培養(yǎng)皿相同半徑處,用表面滅菌的打孔器取直徑7 mm帶菌絲的PDA瓊脂塊(圖1-A),將菌塊置于離體葉片中間部位,帶菌絲的一面緊貼葉片背軸面(圖1-B)。封口膜封口,置28 ℃培養(yǎng)。每個(gè)含有水瓊脂的培養(yǎng)皿作為1個(gè)接種重復(fù),其中,每個(gè)水稻品種取1個(gè)離體葉片組織,接種1個(gè)帶菌瓊脂塊。用無菌瓊脂塊接種相同水稻材料,作為對(duì)照。
1.2.4 水稻離體葉片接種后病情調(diào)查及統(tǒng)計(jì)
接種紋枯病菌后72 h,利用數(shù)字掃描儀,將同一培養(yǎng)皿中不同水稻品種的離體葉片同時(shí)進(jìn)行掃描。利用Photoshop軟件,對(duì)掃描照片上的病斑面積進(jìn)行像素?fù)Q算,計(jì)算相對(duì)病斑面積(relative lesion area, RLA),即單位葉面積的病斑面積,作為衡量病害嚴(yán)重程度的評(píng)價(jià)指標(biāo)[9]。RLA的計(jì)算公式為:RLA=病斑面積/葉片面積=病斑區(qū)域像素/葉片區(qū)域像素[9]。通過Tukey法進(jìn)行品種間病級(jí)的多重比較,確定不同品種的紋枯病抗性。
A,紋枯菌生長(zhǎng)3 d的PDA培養(yǎng)基(左),掏空?qǐng)A形部分的菌塊已切出,供紋枯病接種(右);B,接種紋枯病菌的水稻離體葉片A, Potato dextrose agar (PDA) medium with R. solani growing for 3 d (left), PDA discs carrying R. solani were excised for inoculation (right); B, Detached rice leaves inoculated with R. solani圖1 利用水稻離體葉片進(jìn)行抗紋枯病接種鑒定Fig.1 Inoculation of the sheath blight pathogen (R. solani) to rice using detached-leaf method
1.2.5 接種紋枯病菌水稻材料的取樣
在接種24和48 h,于無菌操作臺(tái)中打開培養(yǎng)皿,分別從YN-7菌株和無菌對(duì)照的水稻材料取樣。剪取以瓊脂塊為中心的菌絲擴(kuò)展區(qū)域(葉片徑向約2 cm長(zhǎng)),5~6塊葉組織混合,迅速置于液氮冷凍,然后于-80 ℃保存?zhèn)溆谩?/p>
1.2.6 水稻RNA提取及RT-PCR鑒定
用TRIzol試劑(Invitrogen, USA)提取水稻RNA[10]。1%瓊脂糖凝膠電泳檢測(cè)RNA質(zhì)量,用NanoDrop紫外—可見光分光光度計(jì)(NanoDrop 8000 UV-Vis Spectrophotometer)檢測(cè)RNA濃度和純度。RNA反轉(zhuǎn)錄采用PrimeScriptTM RT reagent Kit試劑盒(TaKaRa公司)并按說明書進(jìn)行操作。以反轉(zhuǎn)錄的cDNA為模板,利用水稻病程相關(guān)基因的特異引物(表1)進(jìn)行實(shí)時(shí)定量RT-PCR分析。設(shè)置3次重復(fù),采用SYBR Premix ExTaqⅡ(2x)實(shí)時(shí)定量試劑盒(TaKaRa公司)的反應(yīng)體系,以EF-1α為內(nèi)參基因,采用2-⊿⊿Ct法進(jìn)行RT-PCR數(shù)據(jù)分析。
表1 水稻病程相關(guān)基因的RT-PCR引物
Table 1 Primers for RT-PCR analysis of rice pathogenesis-related genes
基因名稱Genesymbol基因號(hào)GeneID引物Primer(5’-3’)參考文獻(xiàn)ReferencesOsPR1bOs01g28450F:GCGTCTTCATCACATGCAACTAR:ACCTGAAACAGAAAGAAACAGAGG[8][11]OsPR3Os06g51060F:GGCGTTCTGGTTCTGGATGACR:CGCCGTTGATGATGTTGGTC[11]PBZ1Os12g36880F:CAAATTCTCGTGGCGTTTGAGTCR:CGGCAGCATTCACAATGATTTTC[8][11]E2F-relatedproteinOs03g13050F:ACGTCACGCACGTTCATTAGCAR:GACCGAATAAATGGCTGCTGGT[8]Pleiotropicdrugresistanceprotein(PDR)Os01g42370F:TGGTGGAGATGGTACTGCTGGAR:ATGATGGCAAAGCCAAAGAGGA[8]EF-1αOs03g08020F:CCACGGGCCATCTGATCTACR:AGTCAATGATGAGCACGGCA[12]
1.3 水稻大田成株期紋枯病接種鑒定
2014年4—10月在揚(yáng)州大學(xué)進(jìn)行水稻品種YSBR1、Lemont和泰粳394的大田成株期紋枯病接種試驗(yàn)。水稻種子于5月3~7日發(fā)芽,5月9日播種。秧苗于6月9日移栽大田,每個(gè)小區(qū)栽插3行,每行12個(gè)單株。每個(gè)品種種植3次重復(fù),隨機(jī)區(qū)組設(shè)計(jì)。在水稻分蘗末期(7月27~29日),取小區(qū)第2行(即中間行)的10個(gè)植株,每株取3個(gè)分蘗,采用嵌入法[13-14]接種紋枯病菌系YN-7。在抽穗后30 d(10月9~12日),采用Rush等[15]提出的0~9級(jí)病情評(píng)價(jià)體系,評(píng)定個(gè)體病級(jí),具體方法參照相關(guān)文獻(xiàn)[8,14]。
1.4 水稻苗期紋枯病接種鑒定
采用本實(shí)驗(yàn)室優(yōu)化的紋枯病“微室”接種法[8],進(jìn)行水稻苗期抗紋枯病接種鑒定。接種后7~9 d,測(cè)量水稻植株病斑高度和葉枕高度,計(jì)算單株病級(jí),利用DPS生物統(tǒng)計(jì)軟件進(jìn)行病級(jí)數(shù)據(jù)的方差分析。通過Tukey法進(jìn)行品種間病級(jí)的多重比較。
2 結(jié)果與分析
2.1 水稻離體葉片紋枯病菌接種的病級(jí)分析
為了檢測(cè)水稻品種YSBR1、Lemont、泰粳394對(duì)紋枯病菌的抗感程度,剪取分蘗期的水稻植株生理狀態(tài)一致的葉片組織,背面朝上緊貼在水瓊脂上,分別接種含有紋枯病菌株YN-7和MH12的PDA瓊脂塊,于28 ℃恒溫箱中培養(yǎng)。在接種第3天時(shí)觀察,不同品種的葉片出現(xiàn)面積大小不等的紋枯病病斑(圖2-A,B)。YSBR1葉片大部分保持青綠色,病斑面積較??;Lemont和泰粳394的葉色發(fā)黃,病斑蔓延葉片2/3以上。
利用數(shù)字掃描儀,對(duì)接種3 d的離體葉片進(jìn)行掃描。用Photoshop軟件將掃描照片上的病斑面積進(jìn)行像素?fù)Q算,計(jì)算相對(duì)病斑面積(RLA),然后對(duì)YSBR1、Lemont和泰粳394的RLA數(shù)據(jù)進(jìn)行方差分析(表2)。在YN-7菌株和MH12菌株的接種試驗(yàn)中,YSBR1和泰粳394的RLA均呈顯著差異(P<0.05),YSBR1表現(xiàn)抗病,泰粳394感病。Lemont的離體葉片材料,用以上2個(gè)菌株進(jìn)行了6次接種試驗(yàn),除了用MH12菌株接種的第3次試驗(yàn),在其他5次試驗(yàn)中,Lemont和YSBR1的RLA數(shù)據(jù)均表現(xiàn)顯著差異(P<0.05)。
紋枯病菌株YN-7(A)和MH12(B)侵染水稻品種YSBR1、Lemont、泰粳394離體葉片第3天Leaf tissues of rice cultivars YSBR1, Lemont, and Taijing 394 infected with R. solani strains YN-7 (A) and MH12 (B) for 3 days圖2 水稻離體葉片接種紋枯病菌的病斑掃描Fig.2 Digital scanning of the sheath blight lesions on detached rice leaves infected with R. solani
表2 紋枯菌侵染水稻離體葉片相對(duì)病斑面積的統(tǒng)計(jì)分析
Table 2 Statistical analysis of the relative lesion area of detached rice leaves infected withR.solani
試驗(yàn)/菌株Exp./Strain水稻品種Cultivar接種重復(fù)Inoculationrepeat12345678910平均Average第1次/YN-7YSBR10.100.120.170.070.070.060.070.010.010.010.069bLemont0.950.270.610.020.530.130.190.400.460.280.384a泰粳3940.270.290.310.370.280.120.300.350.170.190.265a第1次/MH12YSBR10.040.000.040.010.080.000.070.040.100.000.038bLemont0.290.350.560.520.100.240.140.540.170.280.319a泰粳3940.170.170.110.210.570.360.440.700.230.170.313a第2次/YN-7YSBR10.020.140.010.160.670.040.030.290.190.020.157bLemont0.820.270.560.320.560.400.440.290.600.890.515a泰粳3940.360.400.250.670.670.520.220.600.490.190.437a第2次/MH12YSBR10.240.030.000.060.010.170.000.130.150.000.079bLemont0.210.660.890.710.900.380.410.080.380.030.465a泰粳3940.320.260.250.330.170.390.560.610.420.490.380a第3次/YN-7YSBR10.070.060.500.530.020.360.120.080.060.150.195bLemont0.350.680.380.020.010.730.760.520.790.500.474a泰粳3940.750.490.210.720.490.470.640.680.450.840.574a第3次/MH12YSBR10.150.020.350.110.030.020.050.590.080.010.141bLemont0.510.800.390.120.090.120.230.540.420.160.338ab泰粳3940.110.430.150.730.740.710.620.330.590.770.518a
分別用紋枯病菌株YN-7和MH12對(duì)每個(gè)水稻品種接種3次,每次10個(gè)重復(fù)(10皿);掃描紋枯病病斑,通過積分換算方法,計(jì)算相對(duì)病斑面積。對(duì)3個(gè)水稻品種的平均相對(duì)病斑面積進(jìn)行方差分析和多重比較,同列數(shù)據(jù)后無相同小寫字母表明品種平均相對(duì)病斑面積具有顯著差異(P<0.05)。
R.solanistrains YN-7 and MH12 were inoculated to each rice cultivar for three times (10 repeats each time). The sheath blight lesions were scanned electronically. The relative lesion area was calculated using the integration method. The average lesion areas of the cultivars were analyzed by ANOVA and multiple comparisons. The average lesion areas labeled with different letters showed significant difference (P<0.05).
在以上離體葉片的接種試驗(yàn)中,感病品種Lemont和泰粳394的相對(duì)病斑面積均無顯著差異(P>0.05)。
2.2 離體葉片接種后水稻病程相關(guān)基因的qRT-PCR分析
受到病原菌侵染的植物會(huì)啟動(dòng)一系列復(fù)雜高效的保護(hù)機(jī)制,包括病程相關(guān)基因的激活,以抵抗病原菌的侵襲[16]。在接種24和48 h,取紋枯病菌株YN-7侵染和無菌對(duì)照的離體葉片材料,對(duì)其中水稻病程相關(guān)基因OsPR1b[8,11]、OsPR3[11]、PBZ1[8,11]、轉(zhuǎn)錄因子E2F[8]以及PDR[8]進(jìn)行實(shí)時(shí)定量RT-PCR分析。比較接種處理和無菌對(duì)照的基因相對(duì)表達(dá)量,結(jié)果表明,以上5個(gè)基因在YSBR1和Lemont的24或48 h接種材料中均表現(xiàn)表達(dá)上調(diào)(接種處理的基因相對(duì)表達(dá)量顯著或極顯著高于對(duì)照的相應(yīng)表達(dá)量,圖3)。OsPR1b、PBZ1和PDR在YSBR1中相對(duì)表達(dá)量的峰值高于Lemont中的相應(yīng)峰值。YSBR1中E2F相對(duì)表達(dá)量的峰值則低于Lemont的相應(yīng)峰值。OsPR3在YSBR1和Lemont中的表達(dá)水平相差不大。根據(jù)上述結(jié)果,離體葉片材料中水稻病程相關(guān)基因呈典型誘導(dǎo)表達(dá),說明紋枯病菌已侵染水稻葉片組織。
2.3 供試水稻品種田間成株期和苗期“微室”法接種驗(yàn)證
對(duì)YSBR1、Lemont和泰粳394進(jìn)行了大田成株期紋枯病接種試驗(yàn)。根據(jù)Rush等[15]的0~9級(jí)病情評(píng)價(jià)體系,YSBR1、Lemont和泰粳394的平均病級(jí)分別為2.85(抗病)、7.60(感病)、4.31(中等感病),相互之間呈顯著差異(表3)。此外,根據(jù)水稻苗期“微室”接種試驗(yàn)結(jié)果,YSBR1、Lemont和泰粳394的苗期平均病級(jí)分別為2.98(抗病)、7.65(感病)和6.19(感病),相互呈顯著差異(表4)。因此,上述結(jié)果驗(yàn)證了抗病和感病品種YSBR1和Lemont之間,以及YSBR1和泰粳394之間的紋枯病病級(jí)差異。
Y和L分別表示水稻品種YSBR1和Lemont;24 hpi和48 hpi分別表示接種紋枯病菌之后24和48 h的取樣材料;24h和48h表示未接種水稻材料,作為對(duì)照。*和**分別表示處理組與對(duì)照組基因相對(duì)表達(dá)量存在顯著差異(P<0.05)和極顯著差異(P<0.01)Y, the rice cultivar YSBR1; L, the cultivar Lemont; 24 hpi and 48 hpi represent the rice samples at the time points of 24 and 48 hours post inoculation (hpi) of R. solani, respectively; 24h and 48h, the uninoculated rice samples at the 24 hpi and 48 hpi, as negative controls. * and ** indicate significant difference (P<0.05) and extremely significant difference (P<0.01), respectively圖3 離體水稻葉片接種紋枯病菌后病程相關(guān)基因的表達(dá)量變化Fig.3 Changes of the relative expression levels of rice pathogenesis-related genes in the R.solani-infected detached rice leaves
本研究對(duì)Prasad等[6]建立的水稻離體葉片紋枯病接種方法進(jìn)行了改進(jìn),對(duì)接種條件進(jìn)行更精確的控制,并采用了量化的病情調(diào)查方法。在2個(gè)紋枯病菌株的6次重復(fù)接種試驗(yàn)中,有5次試驗(yàn)取得了抗病和感病品種的相對(duì)病斑面積表現(xiàn)顯著差異的結(jié)果。大田接種試驗(yàn)以及苗期“微室”接種試驗(yàn)進(jìn)一步驗(yàn)證了上述結(jié)果。改進(jìn)的離體葉片接種方法具有快速簡(jiǎn)便和易于重復(fù)的優(yōu)點(diǎn),適用于大規(guī)模水稻種質(zhì)材料抗紋枯病性狀的篩選。
根據(jù)水稻離體葉片病程相關(guān)基因的RT-PCR分析結(jié)果,在紋枯病接種條件下,OsPR1b、OsPR3、PBZ1、E2F和PDR呈典型的誘導(dǎo)表達(dá),分每個(gè)水稻植株接種3個(gè)分蘗,計(jì)算分蘗的紋枯病平均病級(jí),作為水稻單株病級(jí)。對(duì)3個(gè)水稻品種的單株病級(jí)進(jìn)行方差分析,平均病級(jí)后無相同小寫字母的品種的紋枯病病級(jí)具有顯著差異(P<0.05)。下同。
表3 水稻大田成株期紋枯病接種的病級(jí)
Table 3 The sheath blight scores of rice adult plants inoculated withR.solanion field
品種Cultivar大田水稻植株的紋枯病病級(jí)Sheathblightscoreofriceplantsonfield植株數(shù)Plantnum-ber平均病級(jí)AverageYSBR12.003.003.003.002.004.003.001.003.003.00202.85c4.003.003.003.002.003.003.003.003.003.00泰粳3944.004.504.004.003.504.504.004.004.004.00474.31b5.004.004.005.004.003.504.004.004.003.504.504.004.004.004.004.504.004.004.004.004.504.004.506.006.005.005.005.004.004.003.005.005.004.005.005.005.00Lemont9.007.009.009.009.007.009.009.009.009.00207.60a9.009.009.006.008.005.005.005.005.005.00
Three tillers of each rice plant were inoculated withR.solani. The disease score of a single plant were rated by calculating the average of the scores of tillers.The disease scores of three rice cultivars were analyzed by ANOVA. The average scores labeled without the same lower letters showed significant difference (P<0.05). The same as the table below.
表4 水稻苗期紋枯病菌“微室”接種的病級(jí)
Table 4 The sheath blight scores of rice seedlings inoculated withR.solaniusing micro-chamber method
品種Cultivar苗期水稻植株“微室”接種的紋枯病病級(jí)Sheathblightscoreofriceplantsinoculationwiththemicro-chambermethods植株數(shù)Plantnumber平均病級(jí)AverageYSBR12.062.893.002.274.492.183.323.602.212.342.385.03122.98c泰粳3947.146.024.486.425.179.006.495.606.319.008.257.08246.19b4.763.269.004.996.544.533.308.072.946.934.399.00Lemont7.889.007.548.259.008.249.005.423.848.268.606.72127.65a
每個(gè)微室接種4~5個(gè)水稻幼苗,作為1次接種重復(fù),然后計(jì)算全部植株的平均病級(jí)。
For a single experimental repeat, 4-5 rice seedlings were inoculated withR.solaniin a micro-chamber, and the average disease score of the plants was calculated.
別與徐國(guó)娟等[8]和Wang等[11]的結(jié)果一致。并且,抗病品種OsPR1b、PBZ1和PDR誘導(dǎo)表達(dá)的水平顯著高于感病品種。Wang等[11]對(duì)抗紋枯病的OsWRKY4過表達(dá)轉(zhuǎn)基因水稻和未轉(zhuǎn)化品種進(jìn)行RT-PCR分析,OsPR1b和PBZ1在紋枯病菌侵染條件下呈誘導(dǎo)表達(dá),并且抗病株系誘導(dǎo)表達(dá)的峰值顯著高于未轉(zhuǎn)化感病品種。因此,水稻病程相關(guān)基因表達(dá)量的變化,驗(yàn)證了紋枯病菌對(duì)水稻離體葉片組織的侵染。這種在精確控制的環(huán)境條件下檢測(cè)水稻基因表達(dá)的實(shí)驗(yàn)體系,可以運(yùn)用于水稻和紋枯病菌分子互作的研究。
本研究對(duì)水稻離體葉片抗紋枯病接種方法、大田成株期以及苗期接種方法進(jìn)行了比較。在抗病品種和感病品種的差異顯著性方面,3種方法取得了一致的試驗(yàn)結(jié)果。對(duì)于抗感差異較小的中感品種和感病品種,離體葉片接種的相對(duì)病斑面積差異性不顯著。因此,在水稻抗紋枯病種質(zhì)篩選過程中,建議利用離體葉片方法快速簡(jiǎn)便的優(yōu)勢(shì),先用該方法篩選抗性水平較高的水稻材料,再結(jié)合其他接種方法,對(duì)篩選材料進(jìn)行驗(yàn)證,從而滿足大規(guī)模水稻抗性種質(zhì)資源篩選的需求。
[1] 孟慶忠, 劉志恒, 王鶴影, 等. 水稻紋枯病研究進(jìn)展[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 32(5): 376-381.
MENG Q Z, LIU Z H, WANG H Y, et al. Research progress in rice sheath blight [J].JournalofShenyangAgriculturalUniversity, 2001, 32(5): 376-381. (in Chinese with English abstract)
[2] 左示敏, 張亞芳, 陳宗祥, 等. 水稻抗紋枯病遺傳育種研究進(jìn)展[J]. 中國(guó)科學(xué):生命科學(xué), 2010, 40(11): 1014-1023.
ZUO S M, ZHANG Y F, CHEN Z X, et al. Current progress on genetics and breeding in resistance to rice sheath blight[J].ScientiaSinicaVitae, 2010, 40(11): 1014-1023. (in Chinese)
[3] OKUBARA P A, DICKMAN M B, BLECHIl A E. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogensRhizoctoniaandPythium[J].PlantScience, 2014, 228: 61-70.
[4] TAHERI P, TARIGHI S. Cytomolecular aspects of rice sheath blight caused byRhizoctoniasolani[J].EuropeanJournalofPlantPathology, 2011, 129(4): 511-528.
[5] PINSON S R M, CAPDEVIELLE F M, OARD J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines [J].CropScience, 2005, 45(2): 503-510.
[6] PRASAD B, EIZENGA G C. Rice sheath blight disease resistance identified inOryzaspp. Accessions [J].PlantDisease, 2008, 92(11): 1503-1509.
[7] 陳夕軍, 王玲, 左示敏, 等. 水稻紋枯病寄主—病原物互作鑒別品種與菌株的篩選[J]. 植物病理學(xué)報(bào), 2009, 39(5): 514-520.
CHEN X J, WANG L, ZUO S M, et al. Screening of cultivars and isolates for identifying interaction between host and pathogen of rice sheath blight [J].ActaPhytopathologicaSinica, 2009, 39(5): 514-520. (in Chinese with English abstract)
[8] 徐國(guó)娟, 袁正杰, 左示敏, 等. 水稻苗期紋枯病抗性鑒定微室接種技術(shù)的改良[J]. 中國(guó)水稻科學(xué), 2015, 29(1): 97-105.
XU G J, YUAN Z J, ZUO S M, et al. Improvement of the micro-chamber inoculation method for determination of rice seedling resistance to sheath blight (Rhizoctoniasolani) [J].ChineseJournalofRiceScience, 2015, 29(1): 97-105. (in Chinese with English abstract)
[9] 崔華威, 楊艷麗, 黎敬濤, 等. 一種基于Photoshop的葉片相對(duì)病斑面積快速測(cè)定方法[J]. 安徽農(nóng)業(yè)科學(xué), 2009, 37(22): 10760-10762.
CUI H W, YANG Y L, LI J T, et al. A faster method for measuring relative lesion area on leaves based on software Photoshop [J].JournalofAnhuiAgriculturalSciences, 2009, 37(22): 10760-10762. (in Chinese with English abstract)
[10] SINGH G, KUMAR S, SINGH P. A quick method to isolate RNA from wheat and other carbohydrate-rich seeds [J].PlantMolecularBiologyReporter, 2003, 21(1): 93a-93f.
[11] WANG H, MENG J, PENG X, et al. RiceWRKY4 acts as a transcriptional activator mediating defense responses towardRhizoctoniasolani, the causing agent of rice sheath blight [J].PlantMolecularBiology, 2015, 89(1/2): 157-171.
[12] MUKHOPADHYAY P, TYAGI A K.OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J].ScientificReports, 2015, 5: 9998. doi: 10.1038/srep09998.
[13] 王子斌, 左示敏, 李剛, 等. 水稻成株期對(duì)紋枯病的抗性表現(xiàn)研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011, 33(2): 144-150.
WANG Z B, ZUO S M, LI G, et al. Study of resistance of rice to sheath blight at adult plant stage [J].JournalofJilinAgriculturalUniversity, 2011, 33(2): 144-150. (in Chinese with English abstract)
[14] 潘學(xué)彪, 陳宗祥, 徐敬友, 等. 不同接種調(diào)查方法對(duì)抗水稻紋枯病遺傳研究的影響[J]. 江蘇農(nóng)學(xué)院學(xué)報(bào), 1997, 18(3): 27-32.
PAN X B, CHEN Z X, XU J Y, et al. The effects of different methods of inoculation and investigation on genetic research of resistance to rice sheath blight [J].JournalofJiangsuAgriculturalCollege, 1997, 18 (3): 27-32. (in Chinese with English abstract)
[15] RUSH M C, HOFF B J, MELLRATH W O. A uniform disease rating system for rice disease in the United States [C]// Proceedings of the 16th Rice Technical Working Group, Lake Charles, Louisiana, USA, 1976: 64.
[16] CROUZET J, TROMBIK T, FRAYSSE A S, et al. Organization and function of the plant pleiotropic drug resistance ABC transporter family [J].FebsLetters, 2006, 580(4): 1123-1130.
(責(zé)任編輯 侯春曉)
Studies on the detached-leaf inoculation method for determination of rice resistance to sheath blight (Rhizoctoniasolani)
MA Chen-yan1,2,YUAN Zheng-jie2,YANG Hai-he1,2,QU Hai-yan1,2,HE Hai-yan2,ZHANG Yu2,QU Shao-hong2,*
(1.CollegeofChemistryandLifeSciences,ZhejiangNormalUniversity,Jinhua321004,China; 2.InstituteofVirologyandBiotechnology,ZhejiangAcademyofAgriculturalSciences,Hangzhou310021,China)
Rice sheath blight (Rhizoctoniasolani) is one of the important diseases causing large loss to rice production. Rice resistance toR.solanibelongs to quantitative genetic trait. Rice germplasm with high resistance or immunity to sheath blight has not yet been identified. In order to improve the efficiency of screening and characterizing sheath blight-resistant rice germplasm, we made precise control of the experimental conditions for the detached-leaf inoculation method, and developed a quantitative protocol for the evaluation of disease severity. The detached leaf tissues inoculated withR.solaniwere subjected to quantitative reverse-transcription qRT-PCR analysis. The induced expression of rice pathogenesis-related genes verified the infection of the pathogen into rice. A sheath blight-resistant rice cultivar and a sensitive cultivar were tested using the detached-leaf method, the field inoculation method and the micro-chamber inoculation method, respectively. The three methods showed similar results, and disease scores of the resistant and sensitive cultivars were significantly different based on statistical tests. Taken together, the improved detached-leaf inoculation method had the advantages of easy operation and good repeatability, and could be used for large-scale screening of sheath blight-resistant rice germplasm.
rice (Oryzasativa); sheath blight;Rhizoctoniasolani; detached-leaf inoculation; pathogenesis-related gene
http://www.zjnyxb.cn
10.3969/j.issn.1004-1524.2016.10.15
2016-03-15
轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2012ZX08009001);浙江省農(nóng)業(yè)科學(xué)院科技創(chuàng)新能力提升工程項(xiàng)目(2015CX07);浙江省農(nóng)業(yè)科學(xué)院省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地開放基金(2010DS700124-KF1210,2010DS700124-KF1406)
馬晨燕(1988—),女,山東菏澤人,碩士研究生,主要從事水稻生物技術(shù)研究。E-mail: mcy1025181205@163.com
*通信作者,瞿紹洪,E-mail: squ@mail.zaas.ac.cn
S511;S41-30
A
1004-1524(2016)10-1730-08
浙江農(nóng)業(yè)學(xué)報(bào)ActaAgriculturaeZhejiangensis, 2016,28(10): 1730-1737
馬晨燕, 袁正杰, 楊海河, 等. 水稻離體葉片抗紋枯病接種方法的研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2016, 28(10): 1730-1737.