• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating the Formation Mechanisms of the Equatorial Pacif c SST Warming Pattern in CMIP5 Models

    2016-11-24 11:33:25JunYINGPingHUANGandRonghuiHUANG
    Advances in Atmospheric Sciences 2016年4期

    Jun YING,Ping HUANG,and Ronghui HUANG

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190

    2University of Chinese Academy of Sciences,Beijing 100049

    3Joint Center for Global Change Studies,Beijing 100875

    Evaluating the Formation Mechanisms of the Equatorial Pacif c SST Warming Pattern in CMIP5 Models

    Jun YING1,2,Ping HUANG?1,3,and Ronghui HUANG1

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190

    2University of Chinese Academy of Sciences,Beijing 100049

    3Joint Center for Global Change Studies,Beijing 100875

    Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5,the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacif c SST under global warming. Two features with complex formation processes,the zonal El Ni?no-like pattern and the meridional equatorial peak warming(EPW),are investigated.The climatological evaporation is the main contributor to the El Ni?no-like pattern,while the ocean dynamical thermostat effect plays a comparable negative role.The cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play a small positive role in the El Ni?no-like pattern.The processes associated with ocean dynamics are conf ned to the equator.The climatological evaporation is also the dominant contributor to the EPW pattern,as suggested in previous studies.However,the effects of some processes are inconsistent with previous studies.For example, changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern,and changes in the shortwave radiation play a negative role in the EPW pattern.

    global warming,equatorial Pacif c SST warming pattern,multi-model ensemble,CMIP5

    1.Introduction

    ThewarmingpatternsofequatorialPacif cSSTduetorising greenhouse gas concentrations is one of the most important problems in projecting regional climate change and has thus been paid considerable attention in the research community for decades(Clement et al.,1996;Collins,2005;Liu et al.,2005;Xie et al.,2010;Ma and Yu,2014).The patterns of equatorial Pacif c SST warming(EPSW)affect various aspects of regional and global climate change.For example, theydominatethe changesinannual-meanprecipitation,with increased(decreased)rainfall over the areas of large(small) SST warming,and play a more important role in the changes in tropical cyclone intensity than the local absolute SST increases(Vecchi and Soden,2007;Knutson et al.,2008;Xie et al.,2010;Huang et al.,2015).Moreover,the uncertainties of EPSW also dominate the uncertainties of the changes in atmospheric circulation over the equatorial Pacif c(Ma et al., 2012;Ma and Xie,2013).

    Two well-known features of EPSW patterns have been obtained from the multi-model ensemble(MME)of CMIP3 andCMIP5,andfromindividualmodel simulations(Fig.1a): the zonal El Ni?no-like warming pattern(simply referred to as the El Ni?no-like pattern hereafter),with more warming in the eastern than western Pacif c(Ramanathan and Collins,1991; Meehl and Washington,1996;Collins,2005;Vecchi and Soden,2007;Song and Zhang,2014);and the meridional equatorial peak warming(EPW)pattern(Liu et al.,2005;Xie et al.,2010).However,these patterns remain controversial in different scenarios(DiNezio et al.,2009;Zhang and Li, 2014)and different models(Huang and Ying,2015).For instance,a few studies have suggested a La Ni?na-like warming (Clement et al.,1996;Cane et al.,1997)or a zonal uniform warming(DiNezio et al.,2009)for the zonal structure of the SST warming over the equatorial Pacif c.

    Several distinct mechanisms have been proposed to explain the discrepant SST warming patterns.For the zonal structure,the weakened Walker circulation associated with a slower increase in rainfall than in moisture(Held and Soden,2006)can reduce the zonal SST gradient to promote an El Ni?no-like pattern by reducing the westward surface wind stress and the westward oceanic current as well as the cold upwelling in the eastern Pacif c(Vecchi and Soden,2007). The zonal SST gradient can also be weakened by a greater evaporative cooling in the western Pacif c than in the easternPacif c(Knutson and Manabe,1995)and by the stronger cloudradiationregulationinthewesternPacif c(Ramanathan andCollins,1991).Ontheotherhand,thezonalSST gradient can be enlarged by the increased ocean vertical temperature gradient in the eastern Pacif c with upwelling colder subsurface water,known as the ocean dynamical thermostat effect (Clement et al.,1996;Cane et al.,1997),favoring a La Ni?nalike warming pattern.Moreover,the zonal warming pattern can be enlarged by the Bjerknes feedback of zonal air-sea coupling(Bjerknes,1969;Song and Zhang,2014).

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Fig.1.The(a)MME SST warming pattern and(b)mixed layer ocean temperature warming pattern in the equatorial Pacif c. Stippling indicates that more than 80%of models have the same sign.

    In terms of the meridional pattern,Seager and Murtugudde(1997)attributed the EPW pattern to the weaker trade wind at the equator than that in the subtropics,and Liu et al.(2005)to the changes in latent heat,shortwave cloud forcing and ocean vertical mixing.Xie et al.(2010)further emphasizedthedominantroleoftheclimatologicalminimum of evaporative cooling at the equator.

    All of these formation mechanisms seem theoretically reasonable.However,somemechanismscanbefoundmerely in individual model experiments.For example,the ocean dynamical thermostat as a damping effect to the El Ni?no-like patternwas foundin the Zebiak-CaneCGCM with a uniform heat f ux forcing situation(Clement et al.,1996).Based on hybrid CGCM experiments,the EPW pattern was attributed to the stronger trade wind speed in the subtropics than at the equator(Seager and Murtugudde,1997),whereas the effect of evaporative cooling was suggested based on the simulations of the GFDL's CGCM(Knutson and Manabe,1995). However,the performances of these mechanisms in a large group of models remain unclear.

    In the present study,we analyze the changes in the ocean mixed layer energy budgets in 32 CMIP5 models to evaluate the importance of these mechanisms on the formation of the equatorial Pacif c SST warming pattern.To quantify the importance of these mechanisms,we decompose the ocean mixed layer energy budgets into various terms to represent the respective mechanisms.The paper is organized as follows:Section 2 describes the models,variables and methods. Section 3 presents the results.Conclusions are given in section 4.

    2.Models and methods

    2.1.Models and variables

    Outputs from 32 CMIP5 models are used in the present study.Table 1 lists the names and relevant organizations of the 32 models.The details of the models can be found at http://www-pcmdi.llnl.gov/(Taylor et al.,2012).The historical runs for the period 1981-2000 and the RCP8.5 runs for 2081-2100 are used to represent the current and future climate,respectively.

    The variables include the monthly mean SST,total cloud fraction(its standard variable name in CMIP5 is clt),surface latent heat f ux(QE),sensible heat f ux(QH),net longwave radiation(QLW),net shortwave radiation(QSW),surface zonal(uas)and meridional(vas)wind velocity,surface scalar wind speed(sfcWind),ocean temperature(thetao),and ocean 3D mass transport(umo,vmo,and wmo).The net longwave/shortwaveradiation is def ned as the difference between upward and downward longwave/shortwave radiation. The sign of the f ux is def ned such that a positive f ux warms the ocean.Some variables not archived in a few models are marked in Table 1.Moreover,the ocean vertical mass transport not well described in CSIRO Mk3.6.0,BNU-ESM and MIROC5isalsoexcluded(http://cmip-pcmdi.llnl.gov/cmip5/ errata/cmip5errata.html).Ocean 3D currents are obtained from the ocean 3D mass transports.All of the model outputs are interpolated onto a 2.5?×2.5?grid.

    2.2.Def nition of the EPSW pattern

    The change under global warming is f rst def ned as the difference between the 20-year long-term mean of the RCP8.5 run and that of the historical run.Changes in each model are normalized by their respective tropical SST warming averaged between 60?S to 60?N,in order to remove the inf uence of tropical mean SST change.Then,the regional mean SST increase is removed to def ne the EPSW pattern. As shown in Fig.1a,the sign agreement test indicates that most of the CMIP5 models(more than 80%of the 32 models)show some universal patterns of EPSW.

    2.3.Decompositions of heat budgets

    The formation mechanisms of the EPSW patterns can be detected from the surface energy budget changes.For instance,the effect of evaporative cooling can be represented by the latent heat changes(Xie et al.,2010),the effect of cloud-shortwave-radiation-SST feedback by the shortwave radiation changes(Ramanathan and Collins,1991),and the effect of the ocean dynamical thermostat is implied in the ocean heat transport changes(Clement et al.,1996;DiNezioet al.,2009).

    Table 1.List of the 32 CMIP5 models used in the present study.

    For the change in long-term mean,the energy budget balance in the ocean mixed layer can be expressed as(Xie et al., 2010)

    where?denotes future change.?QE,?QH,?QLW,?QSWand?DOrepresent changes in latent heat f ux,sensible heat f ux, net longwave radiation,net shortwave radiation and ocean dynamical processes,respectively.The DOcan be decomposed as

    where?Qu,?Qvand?Qwrepresent changes in the ocean 3D heat transports,and?R is a residual term representing changes in heat transports due to sub-grid scale processes such as vertical mixing and lateral entrainment(DiNezio et al.,2009).

    Because the?Qu,?Qvand?Qwinclude both the effects of changes in ocean currents and changes in ocean temperature gradients associated with different mechanisms,we decompose them into two components:

    whereρois sea water density;cpis specif c heat at constant pressure;H is mixed layer depth,chosen as a constant of 30 m;and u,v,w and T are ocean zonal,meridional and ver-tical current,and temperature,respectively.?Qu1,?Qv1and?Qw1representtheeffectofchangesin oceancurrents,which mainly ref ect the role of changes in surface wind stress and in atmospheric general circulation(Vecchi and Soden,2007); and?Qu2,?Wv2and?Qw2represent the effect of changes in ocean temperature gradients.The patterns of mixed layer temperature changes in Fig.1b are close to the EPSW patterns(Fig.1a),with a spatial correlationcoeff cientnear 0.97, indicating that the mixed layer energy budget is reasonable for studying the SST change pattern and that the mixed layer depth(30 m)is properly chosen.

    Another important variable involving multiple processes is latent heat f ux(Xie et al.,2010).The surface latent heat f ux in models is calculated using the bulk formulas:

    whereρais surface air temperature;L is latent heat of evaporation;CEis the exchange coeff cient;V is surface wind speed;qs(T)is the saturated specif c humidity,following the Clausius-Clapeyron relationship;Tssis SST;and T′is the difference between SST and surface air temperature,known as the stability parameter.RH is the relative humidity,α= L/(RvT2)≈0.06 K?1,and Rvis the ideal gas constant for water vapor.

    From Eq.(4),changes in latent heat f ux can be inf uenced by changes in SST,surface wind speed,surface stability and RH,related to different processes(Xie et al.,2010; Huang,2015).Thus,?QEis decomposed into two parts:?QE=?QEO+?QEA,where?QEO=αQE?Tssis the response of SST change(Newtonian cooling)and?QEAcontains the effects of changes in wind speed,RH and surface stability(Du and Xie,2008;Xie et al.,2010).In?QEA, the effect due to surface wind speed change can be written as?QEW=QE?V/V,which is the key aspect in the windevaporation-SSTfeedback(Xie and Philander,1994)and important to the SST warming pattern formation(Xie et al., 2010).The residual of?QEA,?QER=?QEA??QEW,represents both the effect of changes in RH and surface stability.

    The?QEO=αQE?Tss,includingthe effects of the climatological evaporation QEand the SST change,can be divided into two terms,following Huang(2015):

    where the angled brackets denote the tropical Pacif c mean, the prime represents the deviations,the termrepresents the response of the spatially non-uniform SST change, andthe effect of the spatial distribution of the climatological latent heat f ux.

    3.Results

    Figures2a-cexhibitthechangesinlatentheatf ux(?QE), net longwave radiation(?QLW)and net shortwave radiation (?QSW).Changes in sensible heat f ux(?QH)are omitted due to relatively small values.SST warming is mainly contributed by increases in net downward longwave radiation, while changes in latent heat and net shortwave radiation suppress surface warming.The regional deviations of these surface energy budgets are shown in Figs.2d-f.Changes in latent heat f ux and net shortwave radiation exhibit pronounced spatial patterns(Figs.2d and f),indicating more important inf uences on the EPSW pattern;whereas,the increases in net longwave radiation(Fig.2e)are mainly spatially uniform,contributed by the near uniform increases in greenhouse gases.

    For the ocean dynamics(Fig.3),the 3D heat transports are mainly located in the equatorialPacif c,except the meridional heat transport,which cools the NH and warms the SH offtheequator.Thehorizontalheatadvection(Figs.3aandb) warms the surface of the equator,while the vertical heat advection(Fig.3c)cools SST in the eastern Pacif c.In addition, the residual term mainly warms the equatorial eastern Pacif c and cools the off-equatorialf anks of the eastern Pacif c(Fig. 3d).

    3.1.Zonal El Nin?o-like pattern

    In the MME,the SST warming in the eastern Pacif c is larger than that in the western Pacif c,exhibiting an El Nin?olike pattern.The difference between the regional mean of (5?S-5?N,145?-85?W)and(5?S-5?N,125?E-175?W),denoted by the dashed green boxes in Fig.1a,is around 0.12?C per 1?C of global warming.

    Four mechanisms are suggested to inf uence the zonal pattern formation.The total effect of evaporative cooling, represented by the changes in latent heat f ux,causes warmer SST in the eastern than the western Pacif c,favoring an El Nin?o-likepattern(Fig.2d).Figures4aandbshowtheNewtoniancoolingeffect(?QEO)andthe atmosphericforcingeffect (?QEA).The?EEOnear the equator is similar to the EPSW pattern(Fig.4a),indicatingafavorablefactorforthe ElNin?olike pattern.On the contrary,the atmospheric adjustment effect(Fig.4b)appears to damp the El Nin?o-like warming.In?EEO,the effect of the spatial distribution of climatological latent heat f ux(?EEO2,Fig.4d)is the dominant contributor to the total effectof evaporativecooling,favoringan El Nin?olike pattern(Knutson and Manabe,1995),while the effect of non-uniform SST change(?QEO1,Fig.4c)plays a damping role.

    The cloud-shortwave-radiation-SST feedback is suggested to be another factor favoring the El Nin?o-like pattern, which can be represented by the changes in shortwave radiation.As shown in Figs.2c and f,there is more decreased net shortwave radiation over the western Pacif c than the western Pacif c,favoring an El Nin?o-like pattern.To illustrate the role of cloud-shortwave-radiation-SST feedback,a cloudshortwave-radiation-SST feedback index(CSFI)is def ned by regressing monthly net shortwave radiation anomalies to SST anomalies(Sun et al.,2003;Sun et al.,2006),to quantify the strength of shortwave feedbacks in the climate system.Figure 5a shows the spatial distribution of the CSFI in the historical run.The CSFI is negativein most parts near the equator,suggesting a negative convective cloud-shortwaveradiation-SSTfeedback,andpositiveovertheeasternPacif c,indicating a positive stratus cloud-shortwave-radiation-SST feedback(Ramanathan and Collins,1991;Song and Zhang, 2014).The negative(positive)cloud-SST feedback will suppress(enhance)the local SST warming.This process can be demonstrated by the changes in cloud amount(Fig.5b). Thus,the cloud-shortwave-radiation-SSTfeedback weakens the zonalgradientofSST,contributingtoan El Ni?no-likepattern.

    Fig.2.Changes in(a)latent heat f ux(?QE),(b)net longwave radiation(?QLW),and(c)net shortwave radiation (?QSW).(d-f)As in(a-c)but with the respective tropical Pacif c mean removed.

    Fig.3.Regional changes in the(a)zonal,(b)meridional and(c)vertical heat transport,and(d)the residual term in Eq.(2).

    Fig.4.Components of the regional changes in latent heat f ux:(a)?QEO,(b)?QEA,(c)?QEO1and?QEO2

    Fig.5.(a)Cloud-shortwave-radiation-SST feedback index in the historical run.(b)Changes in total cloud fraction.

    The changes in ocean heat transports associated with the oceancurrentchanges(Figs.6a-c)indirectlyref ectthe effect of the changes in atmospheric general circulation connected by the surface wind stress changes.The effects of changes in ocean zonal and vertical currents both warm the SST along the equator(Figs.6a,c),which is associated with the weakened Walker circulation(Vecchi and Soden,2007).However, the zonal current changesdo not contributemuchto the zonal gradientofSSTchanges(Fig.6a)becauseofthenearuniform zonalcurrentchanges(Fig.7a).Meanwhile,thedownwelling changes in the eastern Pacif c(Fig.7b)—weakening the cold upwelling and warming the SST—mainly represent the effect of weakened Walker circulation on the zonal gradient of SST changes(Fig.6c and?Qw1).The effect of changes in meridionalcurrentalsowarmstheSST intheeasternPacif caround 5?N(Fig.6b)with a relatively weak magnitude,which could be attributed to the weak weakening of the meridional overturning circulation(Vecchi and Soden,2007;Ma and Xie, 2013).

    Theoceandynamicalthermostateffectcanberepresented by changes in the ocean heat transports due to changes in ocean vertical temperature gradients(Figs.6f)(Cane et al., 1997;Seager and Murtugudde,1997;An and Im,2014).Under global warming,the ocean vertical temperature gradients will increase(Fig.7b),with less solar radiation absorbed in the subsurface than at the surface.Thus,the background upwelling pulls up cooler subsurface water to cool the surface in the eastern Pacif c,damping the El Ni?no-like pattern(Fig. 6f).

    The energy budget analyses basically verify that the previous suggested mechanisms are pronounced in the MME of the 32 CMIP5 models.However,they also exhibit great discrepanciesin spatialstructureandstrength(Figs.2f,4c andd, and 6).The effects of weakened Walker circulation(Fig.6c) and ocean dynamical thermostat(Fig.6f)are conf ned near the equator(2.5?S-2.5?N),with great horizontal gradients, because of the narrow upwelling and stratif cation region in the eastern Pacif c.Whereas,the effects of climatological evaporationand cloud radiationfeedbackextendto 5?S-5?N, close to the structure of the SST change pattern.

    The effect of climatological evaporation,cloud radiation feedback,the weakened Walker circulation,and the ocean dynamical thermostat can be represented by thezonaldifferences betweentheeastern(5?S-5?N, 145?-85?W)and western(5?S-5?N,125?E-175?W)Pacif c of?QEO2,?QSW,?Qw1and?Qw2,respectively. The climatological evaporation contributes the most to the El Ni?no-like pattern with the east-west differenceexceeding 2 W m?2(around 2.03 W m?2),while the ocean dynamical thermostat contributes a comparable damping to the El Ni?no-like pattern formation(?1.96 W m?2).The cloud-shortwave radiation-SST feedback(0.92 W m?2)and the weakened Walker circulation(0.59 W m?2)play a positive but relatively small role.

    Fig.6.Regional changes in the ocean heat transports induced by changes in(a)zonal current(b)meridional current(c)vertical current(d)zonal gradients of temperature(e)meridional gradients of temperatureand(f)vertical gradients of temperature

    Fig.7.(a)Changes in horizontal currents averaged in the mixed layer(vectors less than 0.02 m s?1are omitted).(b)Vertical gradients of changes in ocean temperature(color shading)and the zonal overturning current(vectors;m s?1)at the equator (averaged between 2.5?S and 2.5?N).Changes in vertical velocity are multiplied by 100 for display,and vectors less than 0.05 are omitted.

    3.2.Equatorial peak warming pattern

    The meridional EPSW exhibits a peak warming at the equator(Fig.8a).Three terms of the zonal-mean heat budgets peak at the equator,favoring the EPW pattern(Fig.8a):representingtheeffectofclimatologicalevaporation;representing the effect of changes in ocean zonal heat transport;andrepresenting the effect of changes in the ocean residual term.On the other hand,the changes in theshortwaveradiationRHandstabilitythe meridional heat transportand the vertical heat transportdamp the EPW pattern(Fig.8b).

    Among the mechanisms,the latent heat changes due to the effect of the climatological evaporative cooling is the greatest positive contribution to the EPW pattern(Fig.8a), which was f rst mentioned by Liu et al.(2005)and emphasized by Xie et al.(2010).Another important positive factor in the present analysis,which has not been emphasized,isthe effect of changes in the ocean zonal heat transport due to the weakened Walker circulation(yellow curve in Fig.8a), as demonstrated in Figs.6a and 7a.This result is inconsistent with that in Liu et al.(2005),suggesting the changes in oceaniccirculationarenotimportant.Theresidualterm(?R′) involving sub-grid scale processes,such as the ocean vertical mixing,also has a positive contribution to the EPW pattern,although its meridional range is relatively small.Meanwhile,these favorable mechanisms are balanced mainly by the effects of changes in the ocean vertical heat transports due to enhanced oceanic vertical temperature gradients and the latent heat changes due to changes in the atmosphericRH and stability(Fig.8b).It should be noted that the effects of changes in shortwave radiation(Liu et al.,2005)and surface wind speed(Seager and Murtugudde,1997),believed to be positive in forming the EPW pattern,do not contribute to the EPW pattern positively.The former damps the EPW pattern, while the latter mainly affects the off-equatorial patterns.

    Fig.8.(a)Zonal mean of(multiplied by 10;units:K)and the terms with positive contribution to the EPW pattern(units:W m?2K?1).(b)The terms with negative contribution to the EPW pattern(units:W m?2K?1).

    4.Conclusions

    This paper analyzes the changes in the mixed-layer energy budget using 32 CMIP5 models,to investigate the formation mechanisms of the annual-mean equatorial Pacif c SST warming patterns.Discussed are two patterns that are pronounced but whose mechanisms are unclear:the zonal El Ni?no-like pattern and the meridional equatorial peak pattern.

    For the El Ni?no-like pattern,we examined the effects of climatological evaporation,the cloud-shortwave-radiation-SST feedback,the weakening of the Walker circulation,and the ocean dynamical thermostat.The quantitative energy budget analyses,based on the MME of the CMIP5 models, revealed that the effect of climatological evaporation plays a major role,while the cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play relatively small roles.On the contrary,the effect of the ocean dynamical thermostat plays a major negative role,damping the El Ni?no-like pattern formation,with comparable magnitude to the effect of climatological evaporation.The effects of climatological evaporationand the cloud-radiationfeedback on the equatorextendmuchwider meridionallythan those of the effects associated with ocean dynamics.

    For the meridional EPW pattern,the dominant role of the climatological latent heat f ux is also apparent in the MME of the 32 CMIP5 models,as in Xie et al.(2010).Nevertheless,the performances of some mechanisms evaluated in the present study are different from those in some previous studies.The changes in the zonal heat transport due to the weakened Walker circulation make a considerable positive contribution to the EPW pattern,which is inconsistent with the result in Liu et al.(2005).Moreover,the effect of changes in shortwave radiation damps the EPW pattern,which is inconsistent with the positive role proposed by Liu et al.(2005), while the effect of surface wind speed mainly inf uences the off-equatorial patterns,which is also inconsistent with the positive role proposed in Seager and Murtugudde(1997).

    The present study is based on the MME of 32 CMIP5 models'outputs.The inter-model spreads in the EPSW are quite large in current CMIP models(DiNezio et al.,2009; Huang and Ying,2015),with great impacts on the uncertainties in projecting regional climate changes(Huang et al., 2013;Ma and Xie,2013).The present energy budget analysis provides a useful method to study the importance of the mechanisms to the inter-model uncertainty in the EPSW, which is worthy of study in the future.

    Acknowledgements.The work was supported by the National Basic Research Program of China(Grant Nos.2014CB953903 and 2012CB955604),and the National Natural Science Foundation of China(Grant Nos.41575088 and 41461164005).We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling,which is responsible for CMIP5,and the climatemodeling groups(listed in Table 1)for producing and making available their model output.We also thank the two anonymous reviewers for their constructive suggestions.

    REFERENCES

    An,S.-I.,and S.-H.Im,2014:Blunt ocean dynamical thermostat in response of tropical eastern Pacif cSST to global warming. Theor.Appl.Climatol.,118,173-183.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacif c.Mon.Wea.Rev.,97,163-172.

    Cane,M.A.,and Coauthors,1997:Twentieth-century Sea surface temperature trends.Science,275,957-960.

    Clement,A.C.,R.Seager,M.A.Cane,and S.E.Zebiak,1996: An ocean dynamical thermostat.J.Climate,9,2190-2196.

    Collins,M.,2005:El Ni?no-or La Ni?na-like climate change?Climate Dyn.,24,89-104.

    DiNezio,P.N.,A.C.Clement,G.A.Vecchi,B.J.Soden,B.P. Kirtman,and S.-K.Lee,2009:Climate response of the equatorial Pacif c to global warming.J.Climate,22,4873-4892.

    Du,Y.,and S.-P.Xie,2008:Role of atmospheric adjustments in the tropical Indian ocean warming during the 20th century in climate models.Geophys.Res.Lett.,35,L08712.

    Held,I.M.,and B.J.Soden,2006:Robust responses of the hydrological cycle to global warming.J.Climate,19,5686-5699.

    Huang,P.,2015:Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models.J.Climate,28,6503-6515.

    Huang,P.,and J.Ying,2015:A multimodel ensemble pattern regression method to correct the tropical Pacif c SST change patterns under global warming.J.Climate,28,4706-4723.

    Huang,P.,S.-P.Xie,K.M.Hu,G.Huang,and R.H.Huang,2013: Patterns of the seasonal response of tropical rainfall to global warming.Nature Geoscience,6,357-361.

    Huang,P.,I.-I.Lin,C.Chou,and R.H.Huang,2015:Change in ocean subsurface environment tosuppress tropical cyclone intensif cation under global warming.Nature Communications, 6,7188.

    Knutson,T.R.,and S.Manabe,1995:Time-mean response over the tropical Pacif c to increased CO2in a coupled oceanatmosphere model.J.Climate,8,2181-2199.

    Knutson,T.R.,J.J.Sirutis,S.T.Garner,G.A.Vecchi,and I.M. Held,2008:Simulated reduction in Atlantic hurricane frequency under twenty-f rst-century warming conditions.Nature Geoscience,1,359-364.

    Liu,Z.Y.,S.Vavrus,F.He,N.Wen,and Y.F.Zhong,2005:Rethinking tropical ocean response to global warming:The enhanced equatorial warming.J.Climate,18,4684-4700.

    Ma,J.,S.-P.Xie,and Y.Kosaka,2012:Mechanisms for tropical tropospheric circulation change in response to global warming.J.Climate,25,2979-2994.

    Ma,J.,and S.-P.Xie,2013:Regional patterns of Sea surface temperature change:A source of uncertainty in future projections of precipitation and atmospheric circulation.J.Climate,26, 2482-2501.

    Ma,J.,and J.-Y.Yu,2014:Linking centennial surface warming patterns in the equatorial Pacif c to the relative strengths of the Walker and Hadley circulations.J.Atmos.Sci.,71,3454-3464.

    Meehl,G.A.,and W.M.Washington,1996:El Ni?no-like climate change in a model with increased atmospheric CO2concentrations.Nature,382,56-60.

    Ramanathan,V.,and W.Collins,1991:Thermodynamic regulation of ocean warmingby cirruscloudsdeduced fromobservations of the 1987 El Ni?no.Nature,351,27-32.

    Seager,R.,and R.Murtugudde,1997:Ocean dynamics,thermocline adjustment,and regulation of tropical SST.J.Climate, 10,521-534.

    Song,X.L,and G.J.Zhang,2014:Role of climate feedback in El Ni?no-like SST response to global warming.J.Climate,27, 7301-7318.

    Sun,D.-Z.,J.Fasullo,T.Zhang,and A.Roubicek,2003:On the radiative and dynamical feedbacks over the equatorial Pacif c cold tongue.J.Climate,16,2425-2432.

    Sun,D.Z.,and Coauthors,2006:Radiative and dynamical feedbacks over the equatorial cold tongue:Results from nine atmospheric GCMs.J.Climate,19,4059-4074.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485-498.

    Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20,4316-4340.

    Xie,S.-P.,and S.G.H.Philander,1994:A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacif c.Tellus A,46,340-350.

    Xie,S.-P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23,966-986.

    Zhang,L.,and T.Li,2014:A simple analytical model for understanding the formation of Sea surface temperature patterns under global warming.J.Climate,27,8413-8421.

    Ying,J.,P.Huang,and R.H.Huang,2016:Evaluating the formation mechanisms of the equatorial Pacif c SST warming pattern in CMIP5 models.Adv.Atmos.Sci.,33(4),433-441,

    10.1007/s00376-015-5184-6.

    17 august 2015;revised 4 October 2015;accepted 27 October 2015)

    ?Ping HUANG

    Email:huangping@mail.iap.ac.cn

    天堂动漫精品| 可以在线观看的亚洲视频| 国产主播在线观看一区二区| av福利片在线观看| 国产单亲对白刺激| 高清毛片免费观看视频网站| 亚洲,欧美精品.| 日韩精品中文字幕看吧| 国产精品久久久久久久久免 | 成人精品一区二区免费| 午夜精品久久久久久毛片777| 99热只有精品国产| 我的老师免费观看完整版| 18+在线观看网站| 在线看三级毛片| 免费看美女性在线毛片视频| 美女免费视频网站| 免费无遮挡裸体视频| 日本在线视频免费播放| 毛片女人毛片| 亚洲熟妇中文字幕五十中出| 悠悠久久av| 国内少妇人妻偷人精品xxx网站| 欧美一级a爱片免费观看看| 国产精品久久视频播放| 高清日韩中文字幕在线| 日韩欧美 国产精品| a级一级毛片免费在线观看| 精品一区二区三区视频在线 | 亚洲av成人精品一区久久| 性欧美人与动物交配| 国产精品一及| 欧美一区二区精品小视频在线| 操出白浆在线播放| 亚洲国产欧美人成| 我的老师免费观看完整版| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 免费av毛片视频| 黄色日韩在线| 夜夜躁狠狠躁天天躁| 熟女人妻精品中文字幕| 国产精品自产拍在线观看55亚洲| 一级a爱片免费观看的视频| 黄色日韩在线| 免费在线观看日本一区| 成年人黄色毛片网站| 亚洲无线在线观看| 欧美av亚洲av综合av国产av| 少妇熟女aⅴ在线视频| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲精品av在线| 精品无人区乱码1区二区| 97超视频在线观看视频| 啦啦啦免费观看视频1| 精品国产亚洲在线| 看黄色毛片网站| 欧美国产日韩亚洲一区| 久久久国产成人免费| 观看美女的网站| 欧美黄色片欧美黄色片| 精品人妻1区二区| 欧美最新免费一区二区三区 | 91麻豆精品激情在线观看国产| 久久久久久九九精品二区国产| 亚洲一区二区三区不卡视频| 亚洲天堂国产精品一区在线| 亚洲人成伊人成综合网2020| 亚洲国产精品成人综合色| 免费高清视频大片| 亚洲乱码一区二区免费版| 国产精品98久久久久久宅男小说| 精品久久久久久久久久免费视频| 黄色片一级片一级黄色片| 女人十人毛片免费观看3o分钟| 亚洲熟妇中文字幕五十中出| 成人三级黄色视频| 国产免费一级a男人的天堂| 无限看片的www在线观看| 成人一区二区视频在线观看| 老司机午夜福利在线观看视频| 午夜精品在线福利| 亚洲性夜色夜夜综合| 国产精品一及| 国产一区在线观看成人免费| 国产乱人视频| 女同久久另类99精品国产91| 国产亚洲精品av在线| 观看免费一级毛片| 成人亚洲精品av一区二区| 亚洲人与动物交配视频| 日本 欧美在线| 国产精品自产拍在线观看55亚洲| 天堂动漫精品| 最新中文字幕久久久久| 一进一出抽搐gif免费好疼| 国产免费男女视频| 麻豆一二三区av精品| 蜜桃久久精品国产亚洲av| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看 | 熟女人妻精品中文字幕| 亚洲av熟女| 国产一区二区在线av高清观看| 少妇丰满av| 色在线成人网| 亚洲专区中文字幕在线| 夜夜看夜夜爽夜夜摸| 激情在线观看视频在线高清| 精品久久久久久久久久免费视频| 女人被狂操c到高潮| 亚洲国产精品成人综合色| 日本精品一区二区三区蜜桃| 亚洲欧美日韩无卡精品| 黄色成人免费大全| 久久6这里有精品| 大型黄色视频在线免费观看| 国产毛片a区久久久久| 99热精品在线国产| 精品99又大又爽又粗少妇毛片 | 午夜福利成人在线免费观看| 国模一区二区三区四区视频| 午夜福利免费观看在线| 丰满的人妻完整版| 丁香欧美五月| 久久精品人妻少妇| 婷婷亚洲欧美| 性色avwww在线观看| 亚洲av美国av| 大型黄色视频在线免费观看| 看黄色毛片网站| 1024手机看黄色片| 亚洲五月天丁香| 母亲3免费完整高清在线观看| 国内毛片毛片毛片毛片毛片| 男女床上黄色一级片免费看| 啦啦啦免费观看视频1| 亚洲 国产 在线| 国产免费一级a男人的天堂| h日本视频在线播放| 激情在线观看视频在线高清| 无限看片的www在线观看| 麻豆一二三区av精品| 欧美极品一区二区三区四区| 免费在线观看亚洲国产| 国产真实乱freesex| 国模一区二区三区四区视频| 亚洲av熟女| 免费搜索国产男女视频| 成人午夜高清在线视频| 久久精品综合一区二区三区| 免费高清视频大片| 国产精品,欧美在线| 午夜a级毛片| 五月伊人婷婷丁香| 村上凉子中文字幕在线| 男人舔奶头视频| 久久欧美精品欧美久久欧美| 精品电影一区二区在线| 在线观看av片永久免费下载| 久久精品91蜜桃| 久久香蕉精品热| 成人特级黄色片久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 搞女人的毛片| 在线播放无遮挡| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 欧美黄色淫秽网站| 51国产日韩欧美| 国产亚洲精品久久久com| 欧美在线一区亚洲| 老汉色av国产亚洲站长工具| 男女做爰动态图高潮gif福利片| 伊人久久大香线蕉亚洲五| 亚洲人成网站在线播放欧美日韩| 国产伦一二天堂av在线观看| 看片在线看免费视频| 国产高清三级在线| 中出人妻视频一区二区| 国产成人影院久久av| 色尼玛亚洲综合影院| 琪琪午夜伦伦电影理论片6080| 少妇的丰满在线观看| 99久国产av精品| 久久九九热精品免费| 国产成人aa在线观看| 18禁黄网站禁片午夜丰满| 非洲黑人性xxxx精品又粗又长| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 人妻久久中文字幕网| 午夜福利成人在线免费观看| 国产精品久久电影中文字幕| 亚洲国产中文字幕在线视频| 久久久久精品国产欧美久久久| 亚洲人成网站高清观看| 一区二区三区国产精品乱码| 久久久久久久久中文| 99精品在免费线老司机午夜| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 亚洲国产中文字幕在线视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品98久久久久久宅男小说| 国产精品亚洲一级av第二区| 一级黄色大片毛片| 国产老妇女一区| 亚洲中文字幕日韩| 日韩免费av在线播放| 色在线成人网| 男女做爰动态图高潮gif福利片| 人人妻,人人澡人人爽秒播| 51国产日韩欧美| 欧美丝袜亚洲另类 | 一边摸一边抽搐一进一小说| 久久香蕉国产精品| 综合色av麻豆| 制服丝袜大香蕉在线| 岛国在线免费视频观看| 欧美成人a在线观看| av女优亚洲男人天堂| 美女高潮的动态| 午夜福利成人在线免费观看| 国产色爽女视频免费观看| 真人做人爱边吃奶动态| 成人高潮视频无遮挡免费网站| 一区二区三区激情视频| 午夜福利在线在线| 国产成人系列免费观看| 国产免费av片在线观看野外av| 亚洲av成人av| 欧美日韩乱码在线| 国产亚洲av嫩草精品影院| 黄色片一级片一级黄色片| 女人被狂操c到高潮| 蜜桃久久精品国产亚洲av| 久久久久久久亚洲中文字幕 | 国产69精品久久久久777片| 老司机福利观看| 国产aⅴ精品一区二区三区波| 丁香六月欧美| 天天一区二区日本电影三级| 成年女人看的毛片在线观看| 亚洲精品一区av在线观看| 欧美一区二区国产精品久久精品| 色播亚洲综合网| 午夜免费激情av| 久99久视频精品免费| 欧美3d第一页| 久久国产精品人妻蜜桃| 制服人妻中文乱码| 脱女人内裤的视频| netflix在线观看网站| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久久电影 | 一夜夜www| 男人的好看免费观看在线视频| 欧美成人一区二区免费高清观看| 90打野战视频偷拍视频| av在线天堂中文字幕| 欧美成人一区二区免费高清观看| 可以在线观看的亚洲视频| 97超级碰碰碰精品色视频在线观看| 亚洲男人的天堂狠狠| 中文字幕久久专区| 国产亚洲精品一区二区www| 久久香蕉精品热| 欧美又色又爽又黄视频| eeuss影院久久| 天堂动漫精品| 亚洲无线在线观看| 丝袜美腿在线中文| 99在线视频只有这里精品首页| aaaaa片日本免费| 亚洲男人的天堂狠狠| 99精品久久久久人妻精品| 女警被强在线播放| 久9热在线精品视频| 桃色一区二区三区在线观看| 国产综合懂色| 在线播放无遮挡| 精品国产亚洲在线| 亚洲成人精品中文字幕电影| 免费av毛片视频| 综合色av麻豆| 免费搜索国产男女视频| 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| 韩国av一区二区三区四区| 成年版毛片免费区| 欧美一区二区精品小视频在线| 一区福利在线观看| 中文字幕熟女人妻在线| 日韩高清综合在线| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久免费视频| 国产亚洲精品av在线| 国产毛片a区久久久久| 成人av一区二区三区在线看| 少妇人妻一区二区三区视频| 99精品欧美一区二区三区四区| 香蕉丝袜av| 麻豆国产av国片精品| 亚洲精品456在线播放app | 一进一出抽搐gif免费好疼| 好男人电影高清在线观看| 丰满人妻一区二区三区视频av | 亚洲五月婷婷丁香| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 老司机在亚洲福利影院| 好男人电影高清在线观看| 日韩欧美三级三区| 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 久久人妻av系列| 99久久九九国产精品国产免费| 人人妻,人人澡人人爽秒播| 长腿黑丝高跟| 中国美女看黄片| 亚洲人成网站在线播| 成人永久免费在线观看视频| 亚洲 国产 在线| 久久久久久久久久黄片| 亚洲五月天丁香| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 亚洲 欧美 日韩 在线 免费| 精华霜和精华液先用哪个| 国产一区二区亚洲精品在线观看| 午夜老司机福利剧场| 欧美一级毛片孕妇| 18+在线观看网站| 国产一区二区三区视频了| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 久久久国产成人精品二区| 91在线观看av| 大型黄色视频在线免费观看| 国产成年人精品一区二区| 啪啪无遮挡十八禁网站| 少妇的丰满在线观看| 一本综合久久免费| 亚洲精品一区av在线观看| 亚洲熟妇中文字幕五十中出| 欧美在线一区亚洲| 国产日本99.免费观看| av黄色大香蕉| 亚洲av二区三区四区| 啦啦啦免费观看视频1| 舔av片在线| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 最新中文字幕久久久久| 91久久精品国产一区二区成人 | 国产成人啪精品午夜网站| 小蜜桃在线观看免费完整版高清| 国产一区二区三区视频了| 久久精品国产自在天天线| 国产精品自产拍在线观看55亚洲| 美女cb高潮喷水在线观看| 法律面前人人平等表现在哪些方面| 欧美乱色亚洲激情| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 在线观看舔阴道视频| 国产精品综合久久久久久久免费| 97超视频在线观看视频| 久久6这里有精品| 欧美成人免费av一区二区三区| 色av中文字幕| 中文字幕av在线有码专区| 每晚都被弄得嗷嗷叫到高潮| 久久中文看片网| 母亲3免费完整高清在线观看| 免费在线观看亚洲国产| 欧美乱色亚洲激情| 欧美av亚洲av综合av国产av| 香蕉丝袜av| 成人鲁丝片一二三区免费| 小蜜桃在线观看免费完整版高清| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 熟女人妻精品中文字幕| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| АⅤ资源中文在线天堂| 1024手机看黄色片| 窝窝影院91人妻| 亚洲 国产 在线| 岛国视频午夜一区免费看| 久久久国产精品麻豆| 久99久视频精品免费| 国产激情欧美一区二区| 国产亚洲精品久久久久久毛片| 久久国产精品影院| 亚洲精品日韩av片在线观看 | 宅男免费午夜| 性色avwww在线观看| xxx96com| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 男女那种视频在线观看| 全区人妻精品视频| 美女黄网站色视频| 禁无遮挡网站| 啦啦啦观看免费观看视频高清| 999久久久精品免费观看国产| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看| 他把我摸到了高潮在线观看| 一本久久中文字幕| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 90打野战视频偷拍视频| 国产视频内射| 少妇熟女aⅴ在线视频| 日韩 欧美 亚洲 中文字幕| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 日本黄色片子视频| 白带黄色成豆腐渣| 宅男免费午夜| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 日本在线视频免费播放| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 国产v大片淫在线免费观看| 免费av不卡在线播放| 亚洲熟妇熟女久久| 色视频www国产| 婷婷精品国产亚洲av| 变态另类丝袜制服| 久久久国产成人精品二区| av福利片在线观看| 亚洲精品粉嫩美女一区| 欧美色欧美亚洲另类二区| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区| 一本一本综合久久| 国产亚洲精品一区二区www| 久久婷婷人人爽人人干人人爱| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 免费人成视频x8x8入口观看| 久久久精品欧美日韩精品| 在线观看日韩欧美| 日韩国内少妇激情av| 日韩欧美三级三区| 99久久精品国产亚洲精品| 国产精品一区二区三区四区免费观看 | 最近最新中文字幕大全电影3| 一区二区三区激情视频| or卡值多少钱| 国产av一区在线观看免费| 日韩精品青青久久久久久| 日本一二三区视频观看| 亚洲无线观看免费| 久久亚洲精品不卡| 亚洲av免费高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品乱码久久久久久99久播| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 天天添夜夜摸| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 精品人妻1区二区| 91在线精品国自产拍蜜月 | 级片在线观看| 啦啦啦韩国在线观看视频| 国产激情欧美一区二区| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 欧美在线黄色| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片 | 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 国产精品影院久久| 午夜福利在线观看吧| 在线观看舔阴道视频| 久久久久久久久久黄片| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 综合色av麻豆| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 欧美激情在线99| 真人做人爱边吃奶动态| 草草在线视频免费看| 亚洲人与动物交配视频| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 级片在线观看| 亚洲精品日韩av片在线观看 | 亚洲男人的天堂狠狠| 91久久精品电影网| 久久精品91无色码中文字幕| 搡老熟女国产l中国老女人| 亚洲成人中文字幕在线播放| 69人妻影院| 看片在线看免费视频| 最新中文字幕久久久久| 国产欧美日韩一区二区精品| 一个人看的www免费观看视频| 国产一区二区三区在线臀色熟女| 国产在视频线在精品| 成人三级黄色视频| 在线观看免费午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利免费观看在线| 国产成人a区在线观看| 热99在线观看视频| 欧美丝袜亚洲另类 | 亚洲欧美日韩卡通动漫| 免费av观看视频| 亚洲熟妇中文字幕五十中出| 丰满人妻熟妇乱又伦精品不卡| 搡老岳熟女国产| 久久久国产成人免费| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 日韩中文字幕欧美一区二区| 日本a在线网址| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 日韩精品青青久久久久久| 欧美成狂野欧美在线观看| 国产毛片a区久久久久| 香蕉丝袜av| 18+在线观看网站| 长腿黑丝高跟| 国产综合懂色| 国内揄拍国产精品人妻在线| 国产视频内射| 国产乱人视频| 久久性视频一级片| 国产精品98久久久久久宅男小说| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 久久久久国产精品人妻aⅴ院| 亚洲av一区综合| 好看av亚洲va欧美ⅴa在| 19禁男女啪啪无遮挡网站| 真实男女啪啪啪动态图| 国产精品av视频在线免费观看| 99久久综合精品五月天人人| 亚洲乱码一区二区免费版| 很黄的视频免费| 欧美三级亚洲精品| 午夜老司机福利剧场| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 一本综合久久免费| 香蕉丝袜av| 久久精品国产亚洲av涩爱 | 免费观看精品视频网站| 亚洲av免费在线观看| 日本三级黄在线观看| 久久精品国产自在天天线| 欧美丝袜亚洲另类 | 午夜老司机福利剧场| 亚洲av二区三区四区| av视频在线观看入口| 欧美日韩瑟瑟在线播放| 亚洲欧美一区二区三区黑人| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| 亚洲性夜色夜夜综合| 好看av亚洲va欧美ⅴa在| 欧美一区二区亚洲| 欧美日韩国产亚洲二区| 欧美性感艳星| 在线观看舔阴道视频| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱 | 国产午夜精品论理片| or卡值多少钱| 好看av亚洲va欧美ⅴa在| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 久久天躁狠狠躁夜夜2o2o| 三级男女做爰猛烈吃奶摸视频|