• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific:Interannual Variations and Global Warming Effect

    2016-11-24 11:33:43JingchaoLONGSupingZHANGYangCHENJingwuLIUandGengHAN
    Advances in Atmospheric Sciences 2016年4期

    Jingchao LONG,Suping ZHANG?,Yang CHEN,Jingwu LIU,and Geng HAN

    1Physical Oceanography Laboratory,Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China,Qingdao 266100

    2Meteorological bureau of Quanzhou,Quanzhou 362000

    Impact of the Pacific-Japan Teleconnection Pattern on July Sea Fog over the Northwestern Pacific:Interannual Variations and Global Warming Effect

    Jingchao LONG1,Suping ZHANG?1,Yang CHEN1,Jingwu LIU1,and Geng HAN2

    1Physical Oceanography Laboratory,Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China,Qingdao 266100

    2Meteorological bureau of Quanzhou,Quanzhou 362000

    The northwestern Pacific(NWP)is a fog-prone area,especially the ocean east of the Kuril Islands.The present study analyzes how the Pacific-Japan(PJ)teleconnection pattern influences July sea fog in the fog-prone area using independent datasets.The covariation between the PJ index and sea fog frequency(SFF)index in July indicates a close correlation,with a coefficient of 0.62 exceeding the 99%confidence level.Composite analysis based on the PJ index,a case study,and model analysis based on GFDL-ESM2M,show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave,which propagates northward to maintain an anticyclonic anomaly in the midlatitudes, indicating a northeastward shift of the NWP subtropical high.The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere,and strengthens the horizontal southerly moisture transportation from the tropical-subtropical oceans to the fog-prone area.On the other hand,a greater meridional SST gradient over the cold flank of the Kuroshio Extension,due to ocean downwelling,is produced by the anticyclonic wind stress anomaly.Both of these two aspects are favorable for the warm and humid air to cool,condense,and form fog droplets,when air masses cross the SST front.The opposite circumstances occur in low PJ index years,which are not conducive to the formation of sea fog.Finally,a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030s,implying a possible decline of the SFF in this period.

    Pacific-Japan teleconnection,sea fog frequency,northwestern Pacific,global warming

    1.Introduction

    Sea fog is a weather phenomenon that occurs over oceans and coastal regions wherein tiny water droplets sustain in the atmospheric boundary layer and cause atmospheric horizontal visibility of less than 1 km.Sea fogs influence offshore activities,maritime routes,and port operations.Besides,the coverage of low-level cloud,including sea fog,plays a significant role in the energy balance of the global climate system (Norris and Leovy,1994;Clement et al.,2009).

    Previous researches indicate that sea fogs may occur over the cold Yellow Sea surface under the conditions of plentiful moisture supply and stable atmospheric stratification(Wang, 1983;Hu and Zhou,1997;Gao et al.,2007,2010;Zhang and Bao,2008;Zhang et al.,2009).Besides,the transition of marine stratus cloud into fog,forced by subsidence from the Pacific high near the Californian coast,was proven by Koraˇcin et al.(2001).Climatologically,the sea fog frequency (SFF)over China's adjacent seas is characterized by prominent seasonal variation,which Zhang et al.(2009)comprehensively analyzed.On the interannual timescale,the variation in foggy days is controlled by the monsoon circulation anomaly in spring and summer in the Yellow Sea(Zhang et al.,2005;Wang et al.,2006).

    The midlatitude region of the northwestern Pacific (NWP)is highly foggy.The maximum annual mean SFF is 23%(Fu and Song,2014),reaching its peak in July(Zhang et al.,2014a).Sugimoto et al.(2013)indicated that an intensified Okhotsk high and southward shrinking of the northern Pacific subtropical high(NPSH)are responsible for low SFF at Kushiro,Hokkaido,in July.Zhang et al.(2014a)suggested the primary controller of SFF in the NWP is the position and orientation of the NPSH.Yet,the mechanisms involved in the interannual variations of the atmospheric circulations associated with SFF are not well understood.

    The Pacific-Japan(PJ),or East Asia-Pacific(EAP),teleconnection pattern is an important atmospheric bridge con-necting the tropical and midlatitude atmosphere.It is triggered by an SST anomaly in the western Pacific warm pool and maintained by the dispersive energy of a quasi-stationary Rossby wave(Nitta,1987;Huang and Li,1987;Huang, 1990;Lu and Huang,1998;Kosaka and Nakamura,2006, 2008,2010,2011).The PJ pattern can influence the atmospheric circulation,large-scale vertical motion,and moist static stability(Weaver and Ramanathan,1997),which may affect the SFF in the NWP.Zhang et al.(2009)found that the phase of the PJ plays an important role in the ending of the fog season in August in the Yellow Sea.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    In this study,we investigate the impact of the PJ pattern on SFF,with a focus on the atmospheric circulation over the NWP.The paper is organized as follows:A brief description of the datasets used and some definitions is provided in section 2.Section 3 introduces the seasonal and interannual variations of the SFF.Section 4 presents composite analyses, case study and model analysis based on GFED-ESM2M.In section 5,we provide a projection of the PJ index and SFF under global warming conditions.The paper concludes with a summary and discussion in the final section.

    2.Data and method

    Thesurface-basedobservationsofvisibilityfromICOADS during 1981 to 2005 were used to obtain the SFF(Woodruff et al.,2011).The sounding data at Kushiro were obtained from the University of Wyoming(http://weather.uwyo.edu/ upperair/sounding.html),andunifiedto30-mvertical-interval boxes for calculation and drawing.Ocean temperature and velocity(1981-2005)were obtained from SODA(TAMU Research Group,2014)(Carton and Giese,2008)at a horizontal resolution of 0.5?×0.5?and 40 vertical levels with 10-m spacing near the surface(1981-2005).Climate Forecast System Reanalysis data(CFSR)for the period 1981-2005, with a horizontal resolution of 0.5?×0.5?,were applied in the analyses of cloud liquid water mixing ratio(CLWMR), geopotential height,air temperature,and winds(http:// nomads.ncdc.noaa.gov/modeldata/cmd pgbh/;Saha et al., 2010).These data include 12 vertical levels below 700 hPa and are capable of characterizing the marine atmospheric boundary layer(MABL)under different circulation conditions.The SST data(1981-2005),on a 2?grid,were from ERSST.v3b(http://www.esrl.noaa.gov/psd/)(Xue et al.,2003; Smith et al.,2008).Data from CMIP5 were also used,including the following:the historical simulation data[precipitation,3D wind,geopotential height,air temperature,cloud liquid water(CLW),and SST]for the period 1951-2005 from GFDL-ESM2M(Dunne et al.,2012),for analyzing the relationship between precipitation over the east of the Philippines,the PJ pattern,and sea fog in the fog-prone area[horizontal resolution of 2.5?lat×2?lon,global grids (144×90),and 17 levels in the vertical direction];data from MIROC-ESM,CanESM2,GFDL-ESM2G,GFDL-ESM2M, CCSM4,CNRM-CM5,MIROC5,andMRI-CGCM3,including their historical and RCP4.5 experiments-used to project the possible trend of the PJ index under global warming. We interpolated the model data to a 2.5?×2.5?horizontal resolution,following NCEP-NCAR data.The PJ pattern is reproduced well by these CMIP5 models(figure not shown), comparative to the findings of Kosaka and Nakamura(2011) using CMIP3.

    In this study,a fogaWhen the visibility in an observational report in a certain grid is less than 1 km(the code of VV is 90-94 in ICOADS)and there is neither rainfall nor snow at the same time,we defined this as a sea fog event in this grid.ICOADS data are not routinely collected,since the number of ships,buoys,and other platforms available change with time.To avoid this uncertainty,we defined the relative frequency of sea fog occurrence(SFF).The NWP was meshed into a 1?×1?grid to calculate the SFF.event was defined as when the visibility was less than 1000 m(excluding precipitation and dust), according to ICOADS.The relative SFF in the grid of 1?×1?over the NWP was calculated by

    where Nfogis the number of fog events and Nobsis the total number of observations(Zhang et al.,2014a).We defined the ocean east of the Kuril Islands(40?-50?N,145?-165?E) as the climatological fog-prone area(hereinafter,fog-prone area),where the SFF is basically greater than 15%(Fig.1). The time series of the SFF in each July from 1981 to 2005 in the fog-prone area is defined as the SFF index.

    According to Kosaka(2013,personal communication), the PJ pattern can be obtained by regressing vorticity or geopotential height anomalies onto the PJ index,which is extracted from the first principal component(PC1)of the EOF for the monthly meridional pressure gradient force at 850 hPa over the NWP(0?-60?N,100?-160?E),

    in whichφand u represent geopotential height and zonal wind velocity at 850 hPa,respectively;f is the geostrophic parameter and y denote meridional direction.

    3.Relationship between SFF and the PJ pattern over the NWP

    The climatological annual mean SFF in the NWP is characterized by a zonally elongated band with a maximum up to 21%in the fog-prone area located over the cold flank of the Kuroshio Extension(KE)(Fig.1).The seasonal variations of the SFF are remarkable,with more fog in summer than in winter and a peak in July(Fig.1).

    The regressions of geopotential height and the wind anomaly at 850 hPa in July onto the PJ index show that there are three anomalous centers-in the ocean east of the Philippines,southeast of Japan,and in the Okhotsk Sea(Fig.2a)-in agreement with the pattern proposed by Nitta(1987)and Huang and Li(1987).The fog-prone area is situated just between the two anomalous centers of the PJ pattern(the rectangle in Fig.2a).In Fig.2b,both the PJ index and the SFFindex in July exhibit a prominent interannual variability,with a correlation coefficient of 0.62 exceeding the 99%significant level.When the PJ index keeps in its positive phase,the convection over the tropical ocean east of the Philippines is stronger,which is conducive to the formation of a positive phase of the PJ pattern.Controlled by such a PJ pattern,the pressure pattern and associated southerly wind anomaly are favorable for fog formation;this is discussed in detail in the following sections.

    Fig.1.Climatological distribution of annual SFF(%)over the NWP(color scale),climatological SST(contours;?C),and the SFF seasonal variation(bottom right)in the fog-prone area(blue rectangle in the figure),based on ICOADS.Schematic flow patterns of the Kuroshio and its extension are shown by the meandering red vector.

    Fig.2.(a)Regressions of geopotential height anomalies(contours;gpm)and wind anomalies(vectors;m s?1)at 850 hPa in July onto the PJ index from 1981 to 2005(gray shading denotes the 90%confidence level for the geopotential height anomaly).(b)Interannual variation of PJ index and SFF index in the fog-prone area in July(the blue rectangle is the same as in Fig.1).

    4.Comparison between high and low PJ index years

    To further investigate the impacts of the PJ pattern on atmospheric circulation and hence the SFF,a composite analysis was performed.As shown in Fig.2b,1981,1984,1989, 1994,1997,1999,2000 and 2002 can be classified as high PJ index years(normalized PJ index of greater than 0.6)(hereinafter,HI years);and 1983,1986,1987,1988,1991,1993, 1998 and 2003 as low PJ index years(normalized PJ index of less than 0.6)(hereinafter,LI years).

    4.1.Difference at the near-surface level

    In HI years,the NPSH shifts northeastward,strengthening the southerly moisture flux over the fog-prone area (Fig.3a).However,the NPSH is narrow and extends southwestward in LI years;the easterly wind weakens the moisture flux(Fig.3b).Most of the moisture converges along the north flank of the NPSH over the south of the fog-prone area.The static stability at the low level(θ975hPa-θ1000hPa)is strongerin HI years than in LI years.The difference between HI years and LI years exhibits a PJ-like pattern in the geopotential height field with three anomalous centers(?,+,?,from south to north;Fig.3c).The characteristics of the quasistationary Rossby wave are revealed by the wave-activity flux,defined by Takaya and Nakamura(2001).The southerly wind anomalies over the fog-prone area may lead to stronger warm advection,creating a more stable stratification in the low-level atmosphere.

    Fig.3.Composite map of(a)HI years,(b)LI years,and(c) the difference between HI years and LI years at 1000 hPa: geopotential height(contours;gpm),low level static stability (θ975hPa-θ1000hPa;shading;K),moisture flux(black vectors; kg m?1s?1),and wave-activity flux at 850 hPa(blue vectors; m2s?2),with scaling in the bottom right of(c).The area circled by the purple contours represents statistical significance at the 90%confidence level,based on the Student's t-test.The blue rectangle is the same as in Fig.1.

    The SST(SAT;surface air temperature)in HI years is about 0.8?C(1.5?C)higher than in LI years over the north flank of the KE,with southerly wind anomalies(Fig.4a).The difference between SAT and SST,i.e.,SAT-SST,is adopted to denote the stability of the air-sea interface.The spatial pattern of the difference in SAT-SST between HI years and LI years(Fig.4b)resembles that of the low-level static stability in Fig.3c.The greater values of SAT-SST imply greater stability at the air-sea interface.This configuration,along with the low-level stability,facilitates a damping of the development of turbulence farther upward,which is favorable for the maintenance of fog in the fog-prone area.

    The fog-prone area lies at the north flank of the KE,with sharp changes in SST(Fig.1).The difference in the meridional SST gradient between HI years and LI years shows that the SST front,which develops between the KE and Oyashio current with a sharp SST gradient,is stronger in HI years than in LI years(Fig.4b).Since sea fogs over this area in July are advection cooling fogs that form when a warmer air mass flows over a colder sea surface and the air temperature decreases to the dew point(Wang,1983),a sharp SST gradient will be favorable for air-mass cooling and hence fog formation(Klein and Hartmann,1993;Li and Zhang,2013).The reinforcement of the meridional SST gradient over the cold flank of the KE is likely to result from the increase in SST over the KE,which may be caused by the ocean downwelling associated with the anticyclonic wind stress anomaly(shown in Fig.4c).A longitude-depth section of sea temperature and ocean vertical motion confirms that the stronger downwelling will lead to a warmer sea temperature under an anticyclonic wind stress anomaly in HI years(Figs.4c and d).

    4.2.Difference in vertical structure in the MABL

    Figures5aandbshowthatthedepthoftheMABLisshallow at the cold flank of the SST front,and the strengthened vertical gradient of the virtual potential temperature implies thefrequentoccurrenceoftemperatureinversionscappingthe MABL.Over the SST front and its warm flank,virtual potential temperature is relatively uniform under 950 hPa,indicating a well-mixed MABL.The CLWMR is used to represent the fog or cloud.

    In HI years,the stable atmospheric stratification and low MABL over the northern edge of the NPSH produces more horizontal motion;the southerly winds march to 50?N,taking more humid and warmer air to the fog-prone area below 920 hPa.The CLWMR is horizontally distributed with its peak around 960 hPa over the SST front and to its north(Fig. 5a).Whereas,the southerly wind in LI years,with an obvious ascending motion,results in the higher MABL and the rise of the maximum center of CLWMR to 940 hPa,which is probably related to low-level clouds(Fig.5b).The averaged vertical profiles at Kushiro(the location is shown in Fig.6b) in July 2010(typical HI;Fig.5d)and in July 2013(typical LI;Fig.5e)further clarify the difference.In July 2010,the temperature and virtual potential temperature(VPT)profiles show an inversion layer below 300 m.The VPT increases with height,indicating stable stratification in the low-level atmosphere,which results from the configuration of southerly wind below 800 m and westerly wind in the upper layer.The southerly wind in the low-level atmosphere is conducive to the transport of more moisture northward,consistent with Fig.5a.However,the atmospheric stratification is unstable in the low-level atmosphere in July 2013,which is possibly associated with counterclockwise changes in wind direction,from southeasterly at around 400 m to easterly at around 800 m.

    Fig.4.Difference between HI years and LI years:(a)SST(color scale;?C),SAT(green contours;?C)and wind(vectors;m s?1)at 1000 hPa,with scaling in the bottom right;(b)air temperature at 2 m minus SST (color scale)and meridional SST gradient(black contours at 0.8 K km?1intervals,±0.8,±1.6,±2.4);(c) ocean vertical motion averaged from the sea surface to 50 m(color scale;m s?1)and wind stress(vectors; N m?2);(d)longitude-depth section of sea temperature(color scale;K),zonal(m s?1)and vertical velocity (10?4m s?1),averaged from 35?to 45?N.The difference fields above show statistical significance at the 90%confidence level,based on the Student's t-test.The rectangle is the same as in Fig.1.

    In HI years,the positive SAT-SST corresponds to a low and stable MABL,with the CLWMR base close to the sea surface,indicating more fog(Fig.5a).The positive SATSST results from the even larger increase in SAT associated with warm advection(Fig.5a),in spite of the warmer SST in HI years(Fig.5c).In LI years,the weaker warm advection leads to SAT-SST below or near 0?C,which brings about an unstable air-sea interface that facilitates the lift of the MABL and the level of the maximum CLWMR(Fig.5b).The difference between HI years and LI years shows that a positive CLWMR near the sea surface is capped by a warmer potential temperature anomaly(Fig.5c).The peak of the SAT-SST is not collocated with the maximum of the potential temperature,but is shifted to the north by about 2?,probably as a result of advection by the southerly wind in HI years(Fig. 5c).

    The northeasterly migration of the NPSH in HI years enhances the southerly advection,which is conducive to more moisture transportation and a more stable and lower MABL. On the other hand,the NPSH anomaly favors heating of the SST over the warm flank of the SST front,via downwelling forcing,producing a stronger SST gradient.All of these factors facilitate the generation of sea fog.

    Fig.6.Fog case:(a)Synoptic map.Geopotential height(thick black contours represent 1016 hPa;contours with intervals of 2 hPa)and wind(arrows)at 1000 hPa.The trajectories are represented by red,blue and green lines at 10 m,300 m and 1000 m,respectively.An overview of atmospheric circulation over the NWP is shown in the top left, and the red rectangle denotes the detail shown in the main part of the panel.(b)Multifunctional Transport Satellites (MTSAT)MTSAT visible cloud image at 0000 UTC 30 July.(c)Backward trajectories.Asterisks represent the starting point of the backward tracking.Meters MSL:height,THETA:potential temperature,RELHUMID:relative humidity. (d)Sounding at Kushiro at 0000 UTC 30 July,virtual potential temperature(solid line with black dots;K),temperature (solid line;?C),dewpoint(dashed line,?C),RH(dotted line;%),and horizontal wind(arrows;m s?1).

    4.3.Case study

    To confirm the results from the climatological analysis, we investigated a fog event(30-31 July 2014)and a nonfog event(23 July 2013)in the fog-prone area,based on ICOADS.HYSPLIT(version 4)was used to operate the backward tracing of the air parcels.For the fog event,Fig. 6b shows sea fog covered the ocean to the southeast of Hokkaido.The large-scale circulation pattern was positive-PJ-like(inserted in Fig.6a),and the fog-prone area was controlled by an anticyclonic circulation with southerly wind and stable stratification(Figs.6a and d).The backward tracing of the air parcels shows that the parcels at 10 m,300 m and 1000 mcamefromsouthofthestartlocation[(43?N,147?E);asterisks in Fig.6a],indicating the influence a deep Pacific high. The potential temperature(PT)maintained at 295 K and the RH at 10 m increased from 70%to 85%when the air parcel was over the KE,implying a possible contribution of the KE to maintaining the high temperature and humidity(Zhang etal.,2014a).Meanwhile,the PT decreased rapidly to 288 K once it had flowed across to the north flank of the KE,and the RH reached 91%,suggesting the possibility of fog occurrence.

    For the non-fog case,Fig.7a shows that the fog-prone area was controlled by a cyclone with northeasterly wind and unstable stratification(Figs.7a and d),favorable for cloud (Fig.7b).The large-scale circulation pattern in this case was negative-PJ-like(inserted in Fig.7a).The trajectory analyses show that the PT at 10 m was almost equal to,or even higher than,that at 300 m,suggestive of weakened stratification in the MABL over the cyclone.The PT dropped remarkably owing to the sharp front,while the RH almost reached saturation from near the sea surface to 1000 m,indicating a deep cloud layer.

    The above results imply that the atmospheric circulation and KE front play different roles in the formation of sea fog. The former determines the favorable wind direction and stable atmospheric stratification,while the latter is conducive to maintaining high temperature and humidity and,hence,condensation to fog droplets,after moving across the SST front, which is basically in agreement with the climatological results.

    4.4.Analysis based on GFDL-ESM2M

    GFDL-ESM2M was used to analyze the atmospheric response to changes in the PJ pattern.Since the PJ pattern is maintained by the dispersive energy of the quasi-stationary Rossby wave triggered by the enhanced anomalous convection over the east of the Philippines(Nitta,1987;Huang and Li,1987;Kosaka and Nakamura,2006),the normalized regional mean(15?-25?N,145?-160?E)precipitation was used to define enhanced(weakened)convection years,with a value greater than 1.4(less than?1.4),from which the composite analysis was made.In enhanced convection years,the intensified precipitation over the ocean east of the Philippines results in a negative stream function anomaly at 850 hPa,and triggers prominent wave activity flux propagating from the convective zone to the anticyclonic anomaly in the midlatitudes(Fig.8c).At 200 hPa,the anticyclonic anomaly in the midlatitudes is also remarkable,but shifts to the north slightly,indicating a barotropic anticyclone(Figs.8a and c),i.e.,a PJ pattern consistent with Huang and Li(1987) and Kosaka and Nakamura(2006).The CLW anomaly near the sea surface,capped with a positive PT anomaly,denotes greater sea fog occurrence,when the convection strengthens over the east of the Philippines(Fig.8e).In weakened convection years,anomalous atmospheric circulation is opposite compared with enhanced convection years(Figs.8b and d). A northerly wind anomaly and unstable atmospheric stratification are dominant in the MABL(Fig.8f),which are unfavorable for the formation of sea fog.All of these features are in agreement with the results from the reanalysis data and indicate that the model can simulate the PJ pattern and reflectits physical relations with sea fog in the fog-prone area.

    Fig.8.Composited anomalies of(a)stream function and wave activity flux at 200 hPa,(c) stream function,wave activity flux at 850 hPa(blue arrows with blue scaling in the bottom right)and precipitation(green contours),(e)latitude-height section of potential temperature (contours;interval of 0.2 K),CLW(color scale),meridional wind(m s?1)and vertical velocity (?10?2hPa s?1)vectors,with black scaling in the bottom right in(d)and SST,averaged from 150?E to 155?E,in enhanced convection(high PJ index)years.The composited anomalies in weakened convection(low PJ index)years are shown in(b,d and f).The gray shading,precipitation contours and synthetic fields above show statistical significance at the 95%confidence level,based on the Student's t-test.

    5.Possible trend of the PJ index and SFF under global warming conditions

    Based on the relations between the SFF and PJ index discussed above,we projected the possible trend of the PJ index and SFF under global warming conditions using eight models under the RCP4.5 scenario.

    The multi-model ensemble(MME)mean projection of the PJ index in the eight models reveals an obvious declining trend,statistically significant at the 99%confidence level, from the 2030s to the end of the 21st century(Fig.9).During the 2030s and 2050s,the frequency of the positive phase of the PJ index is higher than that of the negative phase.After 2060,the negative phase increases,implying weakened convection over the ocean east of the Philippines and thus lower SFF in the fog-prone area.The Student's t-test shows the difference in the PJ index between 2030-2050 and 2060-2100 exceeds the 99%confidence level.The shift is similar to the projection of the EAP index in the SRES A1B experiment in IPCC AR4 models(Huang and Qu,2009).Such a change in phase of the PJ pattern may decrease the SFF over the fog-prone area by the end of the 21st century,which is in agreement with our results.

    6.Summary and discussion

    The midlatitudes of the NWP is a highly foggy area,especially the ocean east of the Kuril Islands in July.In this study,we investigated the influences of the PJ pattern on sea fog over the fog-prone area in July and discussed the possible trend of the PJ pattern and the associated SFF under the conditions of global warming using eight models.

    Composite analysis,a case study,and analysis based on GFDL-ESM2M showed that,in HI years,the convective activity over the east of the Philippines strengthens,which triggers a Rossby wave to propagate northward and the maintenance of an anticyclone anomaly in the midlatitudes.In the geopotential height field,the NPSH shifts northeastward,strengthening the southerly wind and moisture flux over the fog-prone area.Under the influence of the northern edge of the NPSH,the atmospheric stratification in the lower troposphere is relatively stable.The reinforced horizontal southerly winds enhance the warm advection in the lower atmosphere,resulting in a stronger inversion layer over the cold flank of the SST front and a stable air-sea interface,providing favorable atmospheric conditions for fog formation.Thegreater meridional SST gradient over the cold flank of the KE,which results from the warming in the KE due to ocean downwelling forced by the anticyclonic wind stress anomaly, is conducive to a cooling and condensing of the warm and humid air to form fog droplets,when air masses cross the SST front.InlowPJindexyears,theoppositesetofcircumstances exists,which is unfavorable for the formation of sea fog.

    Fig.9.Normalized PJ index in eight models under the RCP4.5 scenario from 2006 to 2099.The black bold line and red trend line denote the MME mean and linear trend in the period 2037-99, respectively.

    Fig.10.Regressions of the SST(color scale;?C)and wind anomalies at 1000 hPa[vectors, with scaling in the top left in(c)]onto the SFF index from 1981 to 2005:(a)preceding winter (December-February);(b)spring(March-May);(c)summer(June-August).The dotted areas denote statistical significance at the greater than 90%confidence level.The green circles represent the cyclonic and anticyclonic surface circulation anomalies,and the rectangle is the same as in Fig.1.

    Previous research suggests that the PJ wave train is associated with remote anomalous SST forcing(Xie et al.,2009; Kosaka and Nakamura,2010).The regressions of the SST and wind anomalies in the preceding winter onto the SFF index show that high SFF is more likely to occur in the subsequent summer of La Ni?na-like events(Fig.10).The SST cooling in the tropical mid-eastern Pacific in La Ni?na-like winters can result in the decreases in SST in the following spring-summer in the northern Indian Ocean through the“capacitor effect”,which triggers the positive phase of the PJ pattern,according to previous studies.Thus,the SFF might be projected by the phase of the PJ pattern as well as the changes in SST in the tropical mid-eastern Pacific.So,the projection of SST rising notably over the tropical eastern Pacific in the 21st century(Lu et al.,2008;Zhang et al.,2014a) also supports the possibility of a high frequency in the negative phase of the PJ index.It is worth noting that rainfall, associated with the cyclonic anomaly,may increase over the ocean east of the Kuril Islands,and there may be a decrease in atmospheric stability(corresponding to a negative PJ pattern) under global warming conditions,based on the“warmer-getwetter”theory(Xie et al.,2010),which is highly compatible with our results.

    The present work focused mainly on the impact of the PJ pattern,with the signal coming from the tropical SST anomaly.A number of other influences were not considered in this study,such as the“Silk Road”pattern(Kosaka et al., 2009;Kosaka and Nakamura,2011),forcing by local SST, and intraseasonal variation in the PJ pattern,all of which may also play a role in the formation of sea fog.These aspects constitute the next step in our research.

    Acknowledgements.The authors wish to thank Prof.Shang-Ping XIE for his constructive suggestions,and Dr.Yi LI,Wen-Xiu ZHONG,and Lei WANG for their helpful discussions.The authors arethankfulto thetwoanonymousreviewersfor theircomments and suggestions.The dataset was from the Earth System Grid Federation,CISL Research Data Archive.This work was supported by a“973”project(Grant No.2012CB955602)Natural Science Foundation of China and the Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401),and the NSFC(Grant No. 41175006),J.W.Liu was supported by the Fundamental Research Funds for the Central Universities.

    REFERENCES

    Carton,J.A.,and B.S.Giese,2008:A reanalysis of ocean climate using Simple Ocean Data Assimilation(SODA).Mon.Wea. Rev.,136,2999-3017.

    Clement,A.C.,R.Burgman,and J.R.Norris,2009:Observational and model evidence for positive low-level cloud feedback.Science,325,460-464.

    Dunne,J.P.,and Coauthors,2012:GFDL's ESM2 global coupled climate-carbon earth system models.Part I:physical formulation and baseline simulation characteristics.J.Climate,25, 6646-6665.

    Fu,G.,and Y.J.Song.,2014:Climatology characteristics of sea fog frequency over the Northern Pacific.Periodical of Ocean University of China,44,35-41.(in Chinese)

    Gao,S.H.,H.Lin,B.Shen,andG.Fu,2007:Aheavyseafogevent over the Yellow Sea in March 2005:Analysis and numerical modeling.Adv.Atmos.Sci.,24,65-81,doi:10.1007/s00376-007-0065-2.

    Gao,S.H.,S.B.Zhang,Y.L.Qi,and G.Fu,2010:Initial conditions improvement of sea fog numerical modeling over the Yellow Sea by using cycling 3DVAR-Part II:RAMS numerical experiments.Periodical of Ocean University of China,40, 1-10,18.(in Chinese)

    Hu,R.J.,and F.Zhou,1997:A numerical study on the effects on air sea conditions on the process of sea fog.Journal of Ocean University of China,27,282-290.(in Chinese)

    Huang,G.,and X.Qu,2009:Meridional location of west pacific subtropical high in Summer in IPCC AR4 simulation.Transactions of Atmospheric Sciences,32,351-359.(in Chinese)

    Huang,R.H.,1990:Studies on the teleconnections of the general circulation anomalies of East Asia causing the summer droughtandfloodinChinaandtheirphysicalmechanism.Scientia Atmospheric Sinica,14,108-117.(in Chinese)

    Huang,R.H.,and W.J.Li,1987:Influence of the anomaly of heat source over the northwestern tropical Pacific for the subtropical high over East Asia.Proc.International Conf.on the General Circulation of East Asia,April 10-15,1987,Chengdu, China,40-45.

    Klein,S.A.,and D.L.Hartmann,1993:The seasonal cycle of low stratiform clouds.J.Climate,6,1587-1606.

    Koraˇcin,D.,J.Lewis,and W.T.Thompson,2001:Transition of stratus into fog along the California coast:observations and modeling.J.Atmos.Sci.,58,1714-1731.

    Kosaka,Y.,and H.Nakamura,2006:Structure and dynamics of the summertime Pacific-Japan teleconnection pattern.Quart. J.Roy.Meteor.Soc.,132,2009-2030.

    Kosaka,Y.,and H.Nakamura,2008:A comparative study on the dynamics of the Pacific-Japan(PJ)teleconnection pattern based on reanalysis datasets.SOLA,4,9-12.

    Kosaka,Y.,and H.Nakamura,2010:Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone.Part II:A global survey.J.Climate,23,5109-5125.

    Kosaka,Y.,and H.Nakamura,2011:Dominant mode of climate variability,intermodel diversity,and projected future changes over the summertime Western North Pacific simulated in the CMIP3 models.J.Climate,24,3935-3955.

    Kosaka,Y.,H.Nakamura,M.Watanabe,and M.Kimoto,2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations.J.Meteor.Soc.Japan, 87,561-580.

    Li,M.,and S.P.Zhang,2013:Impact of sea surface temperature front on stratus-sea fog over the Yellow and East China Seas-A case study with implications for climatology.Journal of Ocean University of China,12,301-311.

    Lu,R.Y.,and R.H.Huang,1998:Influence of East Asia/Pacificteleconnection pattern on the interannual variations of the blocking highs over the Northeastern Asia in summer.Scientia Atmospheric Sinica,22,727-734.(in Chinese)

    Lu,J.,C.Gang,and D.M.W.Frierson,2008:Response of the zonal mean atmospheric circulation to El Ni?no versus global warming.J.Climate,21,5835-5851.

    Nitta,T.,1987:Convective activities in the tropical Western Pacific and their impact on the northern Hemisphere summer circulation.J.Meteor.Soc.Japan,65,373-390.

    Norris,J.R.,and C.B.Leovy,1994:Interannual variability in stratiform cloudiness and sea surface temperature.J.Climate, 7,1915-1925.

    Saha,S.,and Coauthors,2010:The NCEP climate forecast system reanalysis.Bull.Amer.Meteor.Soc.,91,1015-1057.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore, 2008:Improvements to NOAAs historical merged land-ocean temp analysis(1880-2006).J.Climate,21,2283-2296.

    Sugimoto,S.,T.Sato,and K.Nakamura,2013:Effects of synoptic-scale control on long-term declining trends of summer fog frequency over the pacific side of Hokkaido Island.J. Appl.Meteor.and Climatol.,52,2226-2242.

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependent wave-activity flux for stationary and migratory quasi geostrophic eddies on a zonally varying basic flow.J. Atmos.Sci.,58,608-627.

    TAMU Research Group,cited 2014:SODA 2.2.4.[Available online at http://sodaserver.tamu.edu/assim/SODA 2.2.4/]

    Wang,B.H.,1983:Sea Fog.China Ocean Press,Beijing,352 pp. (in Chinese)

    Wang,X.,F.Huang,and X.Zhou,2006:Climatic characteristics of sea fog formation of the Huanghai Sea in summer.Acta Oceanologica Sinica,28,26-34.(in Chinese)

    Weaver,C.P.,and V.Ramanathan,1997:Relationships between large-scale vertical velocity,static stability,and cloud radiative forcing over Northern Hemisphere Extratropical Oceans. J.Climate,10,2871-2887.

    Woodruff,S.D.,and Coauthors,2011:ICOADS Release 2.5:Extensions and enhancements to the surface marine meteorological archive.Int.J.Climatol.,31,951-967.

    Xie,S.P.,K.M.Hu,Jan Hafner,H.Tokinaga,Y.Du,G.Huang, and T.Sampe,2009:Indian Ocean capacitor effect on indowestern Pacific climate during the summer following El Ni?no. J.Climate,22,730-747.

    Xie,S.P.,C.Deser,G.A.Vecchi,J.Ma,H.Y.Teng,and A.T. Wittenberg,2010:Global warming pattern formation:Sea surface temperature and rainfall.J.Climate,23,966-986.

    Xue,Y.,T.M.Smith,and R.W.Reynolds,2003:Interdecadal changes of 30-Yr SST normals during 1871-2000.J.Climate, 16,1601-1612.

    Zhang,S.P.,and X.W.Bao,2008:The main advances in sea fog research in China.Periodical of Ocean University of China, 38,359-366.(in Chinese)

    Zhang,H.Y.,F.X.Zhou,and X.H.Zhang,2005:Interannual change of sea fog over the Yellow Sea in spring.Oceanologia et Limnologia Sinica,36,36-42.(in Chinese)

    Zhang,S.P.,S.P.Xie,Q.Y.Liu,Y.Q.Yang,X.G.Wang,and Z. P.Ren,2009:Seasonal variations of yellow sea fog:Observations and mechanisms.J.Climate,22,6758-6772.

    Zhang,S.P.,Y.Chen,J.C.Long,and G.Han,2014a:Interannual variability of sea fog frequency in the Northwestern Pacific in July.Atmos.Res.,151,189-199.

    Zhang,S.P.,J.C.Long,Y.J.Yin,W.Y.Yang,and W.B.Yang, 2014b:Analysis of the process of a local sea fog lifted into low cloud in eastern China.Periodical of Ocean University of China,44,1-10.(in Chinese)

    Long,J.,S.Zhang,Y.Chen,J.Liu,and G.Han,2016:Impact of the Pacific-Japan teleconnection pattern on July sea fog over the northwestern Pacific:Interannual variations and global warming effect.Adv.Atmos.Sci.,33(4),511-521,

    10.1007/s00376-015-5097-4.

    16 April 2015;revised 2 October 2015;accepted 20 October 2015)

    ?Suping ZHANG

    Email:zsping@ouc.edu.cn

    欧美一级a爱片免费观看看| 免费看av在线观看网站| 成人无遮挡网站| 婷婷色综合www| 欧美zozozo另类| 又粗又硬又长又爽又黄的视频| 亚洲成人精品中文字幕电影| 黄片无遮挡物在线观看| 日本-黄色视频高清免费观看| 99视频精品全部免费 在线| av天堂中文字幕网| 日本免费在线观看一区| 全区人妻精品视频| 日本-黄色视频高清免费观看| 亚洲av欧美aⅴ国产| 成年女人看的毛片在线观看| 免费看光身美女| 久久精品国产亚洲av涩爱| 欧美日韩综合久久久久久| 亚洲性久久影院| 黑人高潮一二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品视频女| 国产极品天堂在线| 午夜福利网站1000一区二区三区| 国内少妇人妻偷人精品xxx网站| 在线观看av片永久免费下载| 五月伊人婷婷丁香| 黄片无遮挡物在线观看| 亚洲国产精品专区欧美| 成人特级av手机在线观看| 69av精品久久久久久| a级毛片免费高清观看在线播放| freevideosex欧美| 老司机影院毛片| 日韩成人伦理影院| 欧美高清成人免费视频www| av专区在线播放| 久久亚洲国产成人精品v| 大香蕉久久网| 在线a可以看的网站| 日本一本二区三区精品| 少妇高潮的动态图| 精品久久久久久电影网| av国产久精品久网站免费入址| 欧美 日韩 精品 国产| 一级毛片aaaaaa免费看小| 国产午夜福利久久久久久| 国产成人91sexporn| 69av精品久久久久久| 欧美日韩亚洲高清精品| 午夜视频国产福利| 男人舔奶头视频| 亚洲精品色激情综合| videossex国产| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 日韩不卡一区二区三区视频在线| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 欧美+日韩+精品| av播播在线观看一区| 精品久久国产蜜桃| 亚洲人与动物交配视频| 欧美日本视频| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 简卡轻食公司| 尾随美女入室| 又大又黄又爽视频免费| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 少妇人妻 视频| 卡戴珊不雅视频在线播放| av线在线观看网站| 国产av码专区亚洲av| 亚洲怡红院男人天堂| 卡戴珊不雅视频在线播放| 久久久久久久国产电影| 国产av码专区亚洲av| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 新久久久久国产一级毛片| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 国产综合懂色| 永久免费av网站大全| 日韩三级伦理在线观看| 51国产日韩欧美| 赤兔流量卡办理| freevideosex欧美| 亚洲aⅴ乱码一区二区在线播放| 午夜精品国产一区二区电影 | 99视频精品全部免费 在线| 七月丁香在线播放| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 在线观看国产h片| 建设人人有责人人尽责人人享有的 | 国产av国产精品国产| 国产精品久久久久久精品古装| 特级一级黄色大片| 男女下面进入的视频免费午夜| 亚洲精品久久午夜乱码| 中文在线观看免费www的网站| 欧美日韩一区二区视频在线观看视频在线 | 国产高清有码在线观看视频| 国内精品宾馆在线| 91精品国产九色| av专区在线播放| 亚洲欧美一区二区三区黑人 | 亚洲精品视频女| 九九久久精品国产亚洲av麻豆| 噜噜噜噜噜久久久久久91| 好男人视频免费观看在线| 插阴视频在线观看视频| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区国产| 中文字幕亚洲精品专区| 成人综合一区亚洲| 日韩成人伦理影院| 国产av码专区亚洲av| 亚洲天堂av无毛| 亚洲av男天堂| 搡老乐熟女国产| 日韩欧美精品免费久久| 在线免费观看不下载黄p国产| 亚洲精品中文字幕在线视频 | 亚洲精品成人久久久久久| 少妇人妻久久综合中文| 国产精品三级大全| av卡一久久| 三级国产精品片| 亚洲不卡免费看| 亚洲国产精品国产精品| 乱码一卡2卡4卡精品| 涩涩av久久男人的天堂| 日本三级黄在线观看| 亚洲av不卡在线观看| 久久久久久久大尺度免费视频| 18禁动态无遮挡网站| 高清在线视频一区二区三区| 亚洲精品乱码久久久v下载方式| 日本三级黄在线观看| 国产大屁股一区二区在线视频| 熟妇人妻不卡中文字幕| 免费黄网站久久成人精品| 狠狠精品人妻久久久久久综合| 日日啪夜夜爽| 在线观看一区二区三区激情| 天堂网av新在线| 男人狂女人下面高潮的视频| 简卡轻食公司| 一级黄片播放器| 色视频www国产| 男女那种视频在线观看| 一个人看的www免费观看视频| 亚洲欧美精品专区久久| 精品一区在线观看国产| 国产精品一区www在线观看| 极品少妇高潮喷水抽搐| 亚洲无线观看免费| 大话2 男鬼变身卡| 一区二区av电影网| 午夜亚洲福利在线播放| 久久人人爽人人片av| 免费黄频网站在线观看国产| 国产精品人妻久久久久久| 国产成人一区二区在线| 国产精品一区二区在线观看99| 国内精品美女久久久久久| 一区二区三区精品91| 男女下面进入的视频免费午夜| 亚洲av免费在线观看| 成人特级av手机在线观看| 亚洲,一卡二卡三卡| 亚洲国产精品成人综合色| 观看美女的网站| 精品久久久精品久久久| 久久久久网色| 人妻系列 视频| 亚洲美女搞黄在线观看| 夜夜爽夜夜爽视频| 免费av观看视频| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区黑人 | 搡女人真爽免费视频火全软件| 最近最新中文字幕免费大全7| 国产黄a三级三级三级人| 久久精品久久精品一区二区三区| 久久久久网色| 久久精品国产亚洲av天美| 亚洲无线观看免费| 两个人的视频大全免费| 又大又黄又爽视频免费| 欧美性感艳星| 亚洲国产精品成人久久小说| videos熟女内射| 国产精品.久久久| 久久国产乱子免费精品| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区国产| 中文在线观看免费www的网站| 国产毛片a区久久久久| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 狂野欧美激情性bbbbbb| 国产淫语在线视频| 黄色一级大片看看| 两个人的视频大全免费| 国产免费一级a男人的天堂| 1000部很黄的大片| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 国产精品偷伦视频观看了| 欧美日韩视频精品一区| 26uuu在线亚洲综合色| 91久久精品国产一区二区三区| 建设人人有责人人尽责人人享有的 | 日韩av免费高清视频| 18禁裸乳无遮挡免费网站照片| 中文字幕制服av| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 三级男女做爰猛烈吃奶摸视频| 搡老乐熟女国产| 免费黄频网站在线观看国产| 欧美bdsm另类| 国产视频内射| 边亲边吃奶的免费视频| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 爱豆传媒免费全集在线观看| 特大巨黑吊av在线直播| 午夜福利高清视频| 性色avwww在线观看| 欧美激情国产日韩精品一区| 夫妻午夜视频| 一级爰片在线观看| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 成人免费观看视频高清| 色吧在线观看| 久久韩国三级中文字幕| 亚洲精品国产av蜜桃| 亚洲成色77777| 黑人高潮一二区| 久久久久国产精品人妻一区二区| 伦精品一区二区三区| 一区二区三区精品91| 免费观看无遮挡的男女| 干丝袜人妻中文字幕| 成人美女网站在线观看视频| 欧美最新免费一区二区三区| 国产精品福利在线免费观看| 精品久久久久久久久av| 一区二区三区免费毛片| 女人被狂操c到高潮| 美女被艹到高潮喷水动态| 国产精品一区二区在线观看99| 黄片无遮挡物在线观看| 97在线视频观看| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 赤兔流量卡办理| 精品久久久久久久人妻蜜臀av| av天堂中文字幕网| 日韩中字成人| 一级二级三级毛片免费看| 男人爽女人下面视频在线观看| 伊人久久国产一区二区| 成人高潮视频无遮挡免费网站| 亚洲av国产av综合av卡| 日韩三级伦理在线观看| 久久午夜福利片| 欧美 日韩 精品 国产| 中文资源天堂在线| 日本黄大片高清| 综合色av麻豆| 中文字幕免费在线视频6| 在线看a的网站| 超碰av人人做人人爽久久| 国产v大片淫在线免费观看| 久久久久久久久久久免费av| 一区二区av电影网| 国内精品宾馆在线| 成人一区二区视频在线观看| 国产黄色免费在线视频| 在线观看美女被高潮喷水网站| 亚洲av不卡在线观看| 99精国产麻豆久久婷婷| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 岛国毛片在线播放| 久久久久久伊人网av| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 国产黄色免费在线视频| 日韩三级伦理在线观看| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 亚洲av免费在线观看| 日韩一区二区三区影片| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 噜噜噜噜噜久久久久久91| 精品人妻熟女av久视频| 成人一区二区视频在线观看| 国产精品一区二区性色av| 中国三级夫妇交换| 国产在视频线精品| 国产大屁股一区二区在线视频| 国产男女超爽视频在线观看| av国产免费在线观看| 一级二级三级毛片免费看| 国产乱来视频区| 午夜免费男女啪啪视频观看| 纵有疾风起免费观看全集完整版| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 一个人看的www免费观看视频| 欧美bdsm另类| 一二三四中文在线观看免费高清| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件| 成年免费大片在线观看| 国产精品不卡视频一区二区| 国产精品福利在线免费观看| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 麻豆久久精品国产亚洲av| 久久6这里有精品| 青春草视频在线免费观看| av播播在线观看一区| 亚洲婷婷狠狠爱综合网| 精品一区二区三卡| 国产一区二区三区av在线| 亚洲高清免费不卡视频| 成人午夜精彩视频在线观看| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 成人亚洲精品av一区二区| 国产精品不卡视频一区二区| 大香蕉久久网| 嫩草影院精品99| 老女人水多毛片| 麻豆久久精品国产亚洲av| 丝袜美腿在线中文| 丝袜喷水一区| 日韩伦理黄色片| 久久久久网色| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 永久网站在线| 在线观看免费高清a一片| 精品久久久久久久人妻蜜臀av| 国产成人免费观看mmmm| 一级黄片播放器| 制服丝袜香蕉在线| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 五月玫瑰六月丁香| 日韩一区二区三区影片| 亚洲成人av在线免费| 夫妻午夜视频| 特大巨黑吊av在线直播| 婷婷色麻豆天堂久久| 免费观看的影片在线观看| 亚洲国产日韩一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品国产精品| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| 亚洲经典国产精华液单| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 免费av毛片视频| 国产亚洲一区二区精品| av网站免费在线观看视频| 国产成人a∨麻豆精品| 波多野结衣巨乳人妻| 18禁裸乳无遮挡动漫免费视频 | 少妇被粗大猛烈的视频| 久久久久精品性色| 九九在线视频观看精品| 久久综合国产亚洲精品| 日本三级黄在线观看| av免费观看日本| 三级国产精品片| 免费观看av网站的网址| 久久综合国产亚洲精品| 免费少妇av软件| 精品人妻视频免费看| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| 亚洲国产日韩一区二区| 亚洲av福利一区| 三级国产精品片| 在线看a的网站| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| 最近最新中文字幕免费大全7| 秋霞在线观看毛片| 亚洲电影在线观看av| 国产精品成人在线| 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 亚洲国产av新网站| 麻豆乱淫一区二区| 日韩欧美 国产精品| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 大片电影免费在线观看免费| 久久久久网色| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 中文字幕制服av| 在线a可以看的网站| 亚洲最大成人av| 国产精品一二三区在线看| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 亚洲欧美成人精品一区二区| 高清日韩中文字幕在线| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 欧美日韩国产mv在线观看视频 | 午夜免费男女啪啪视频观看| 亚洲av成人精品一二三区| 韩国av在线不卡| 国产午夜福利久久久久久| 国产精品久久久久久av不卡| 亚洲最大成人中文| 欧美少妇被猛烈插入视频| 天堂网av新在线| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 少妇人妻久久综合中文| 禁无遮挡网站| 色5月婷婷丁香| 亚州av有码| 久热久热在线精品观看| 身体一侧抽搐| av在线播放精品| 亚洲在线观看片| 久久国产乱子免费精品| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 大片免费播放器 马上看| av在线亚洲专区| 大片电影免费在线观看免费| 高清毛片免费看| 亚洲精品成人久久久久久| 免费在线观看成人毛片| 亚洲欧美一区二区三区黑人 | 久久97久久精品| 免费少妇av软件| 亚洲欧洲国产日韩| 色视频www国产| 永久免费av网站大全| 嫩草影院入口| 在线精品无人区一区二区三 | 国产成人精品婷婷| 久久久久久久国产电影| 日日啪夜夜撸| 好男人在线观看高清免费视频| 高清午夜精品一区二区三区| 国产免费一区二区三区四区乱码| 色综合色国产| 69人妻影院| 日韩一区二区视频免费看| 国产精品一及| 欧美成人精品欧美一级黄| 亚洲精品视频女| 好男人在线观看高清免费视频| 老司机影院毛片| 嫩草影院新地址| 国产午夜精品一二区理论片| 中国三级夫妇交换| 高清毛片免费看| 哪个播放器可以免费观看大片| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 在线观看免费高清a一片| 国产成人一区二区在线| 国国产精品蜜臀av免费| 天堂网av新在线| av免费在线看不卡| 亚洲av不卡在线观看| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 老司机影院毛片| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 超碰97精品在线观看| 国产黄色免费在线视频| 精品人妻熟女av久视频| 身体一侧抽搐| 婷婷色综合www| av天堂中文字幕网| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 午夜免费观看性视频| 亚州av有码| 成人美女网站在线观看视频| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 18禁裸乳无遮挡动漫免费视频 | 最近最新中文字幕免费大全7| tube8黄色片| 麻豆国产97在线/欧美| 午夜视频国产福利| 国产精品精品国产色婷婷| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 国产黄片美女视频| 精品久久久精品久久久| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久小说| av在线app专区| 自拍欧美九色日韩亚洲蝌蚪91 | 中国国产av一级| 免费看不卡的av| 激情五月婷婷亚洲| 中文资源天堂在线| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 五月开心婷婷网| 久久6这里有精品| 亚洲成色77777| 一级毛片我不卡| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 久久久久国产精品人妻一区二区| 欧美三级亚洲精品| 免费观看无遮挡的男女| 亚洲经典国产精华液单| av卡一久久| 插逼视频在线观看| 色播亚洲综合网| 伊人久久精品亚洲午夜| 午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 在线a可以看的网站| 亚洲欧美清纯卡通| 永久网站在线| 色婷婷久久久亚洲欧美| 欧美精品一区二区大全| 插阴视频在线观看视频| 国产免费福利视频在线观看| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 国产乱人视频| 免费看av在线观看网站| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区视频9| av线在线观看网站| 亚洲一级一片aⅴ在线观看| 夜夜爽夜夜爽视频| 国产av不卡久久| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 亚洲成色77777| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 精品人妻熟女av久视频| 国产一区二区三区av在线| 别揉我奶头 嗯啊视频| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 亚洲经典国产精华液单| 禁无遮挡网站| 亚洲一区二区三区欧美精品 | 日韩欧美 国产精品| 美女高潮的动态| 免费av毛片视频| 波多野结衣巨乳人妻| 综合色丁香网| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说 | 午夜免费观看性视频| 亚洲av电影在线观看一区二区三区 | 22中文网久久字幕| 超碰97精品在线观看|