• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change of Tropical Cyclone Heat Potential in Response to Global Warming

    2016-11-24 11:33:41RanLIUChanglinCHENandGuihuaWANGStateKeyLaboratoryofSatelliteOceanEnvironmentDynamicsSecondInstituteofOceanographyStateOceanicAdministrationHangzhou310012
    Advances in Atmospheric Sciences 2016年4期

    Ran LIU,Changlin CHEN,and Guihua WANGState Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography, State Oceanic Administration,Hangzhou 310012

    Change of Tropical Cyclone Heat Potential in Response to Global Warming

    Ran LIU,Changlin CHEN?,and Guihua WANG
    State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography, State Oceanic Administration,Hangzhou 310012

    Tropical cyclone heat potential(TCHP)in the ocean can affect tropical cyclone intensityand intensif cation.In this paper, TCHP change under global warming is presented based on 35 models from CMIP5(Coupled Model Intercomparison Project, Phase 5).As the upper ocean warms up,the TCHP of the global ocean is projected to increase by 140.6%in the 21st century under the RCP4.5(+4.5 W m?2Representative Concentration Pathway)scenario.The increase is particularly signif cant in the western Pacif c,northwestern Indian and western tropical Atlantic oceans.The increase of TCHP results from the ocean temperature warming above the depth of the 26?C isotherm(D26),the deepening of D26,and the horizontal area expansion of SST above 26?C.Their contributions are 69.4%,22.5%and 8.1%,respectively.Further,a suite of numerical experiments with an Ocean General Circulation Model(OGCM)is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming.Results show that sea surface warming is the dominant forcing for the TCHP change,while wind stress and sea surface salinity change are secondary.

    tropical cyclone heat potential,global warming,CMIP5,OGCM

    1.Introduction

    The upper ocean sustains tropical cyclone(TC)development by providing a considerable amount of heat and mitigating the sea surface cooling induced by the TC through upwelling and turbulent mixing(Gray,1979;Mei et al.,2015). Tropical cyclone heat potential(TCHP)(Leipper and Volgenau,1972)is a measure of the ocean heat content from the surface down to the depth of the 26?C isotherm(hereafter, D26).Manystudies havereportedthat theTCHP in theocean can affect TC intensity and intensif cation(e.g.,Wada and Usui,2007;Wada and Chan,2008;Goni et al.,2009).The larger the TCHP,the more favorable the ocean conditions are for TC intensif cation(Shay et al.,2000;Lin et al.,2008; Goni et al.,2009;Wada et al.,2012).

    The upper ocean heat content has been shown to have increased in recent decades(Palmer et al.,2007;Domingues et al.,2008;Ishii and Kimoto,2009;Levitus et al.,2012).Levitus et al.(2012)reported that the heat content of the global ocean for the 0-700 m layer increased by 16.7±1.6×1022J during 1955-2010.Consistently,using satellite measurements,Pun et al.(2013)found the TCHP has increased by 10.0%due to the increase in D26 duringthe past two decades inthe westernNorthPacif c Ocean.Ina warmingclimate,the upper ocean could take up half of the heat from the surface to 700 m by the end of the 21st century(Collins et al.,2013). Thus,we expect an increase in TCHP in a warming climate. The structure of the TCHP change,and what determines that change,however,remains unknown.

    In this study,the TCHP change under global warming is analyzed based on 35 models from CMIP5(Coupled Model Intercomparison Project,Phase 5).Then,a suite of numerical experiments with an OGCM is conducted to investigate the relative importance of wind stress and buoyancy forcing for the TCHP change under global warming.

    2.Data and method

    2.1.CMIP5 model outputs

    Themodeloutputsusedinthis studyarefromtheCMIP5. CMIP5 offers a multi-modelperspectiveof simulatedclimate variability and change(Taylor et al.,2012).Historical and RCP4.5(+4.5 W m?2Representative Concentration Pathway)simulations are used to describe the present-dayclimate and warmer climate,respectively.

    Climate change is represented by the difference in the climatological mean between the last 25 years of the 21st century(2076-2100;hereafter,RCP)and the last 25 years of the 20th century(1976-2000;hereafter,HIS).The calculation is similar to that used in previousstudies(e.g.,Sobel and Camargo,2011).A total of35 CMIP5 modelsare used in this study(Table 1).Only one member run(“rlilp1”)is selectedfor each model.We use all 35 models to calculate the multimodel average of each physical parameter.Each model is re-gridded to a common grid before the multi-model average is calculated.The common grid has a uniform 0.5?×0.5?resolution horizontally,and 50 levels vertically.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Table 1.The 35 CMIP5 models used in this study.

    2.2.OGCM

    The OGCM is the OPA(Oc′ean Parall′elis′e)component of the NEMO(Nucleus for European Modeling of the Ocean)modelingframework(Madec,2008).It is a dynamicthermodynamicmodel specif cally designed for climate studies,with a global 1?resolution and a tropical ref nement to 1/3?.The model has 46 levels in the vertical direction,with the layer thickness ranging from 6 m at the surface to 250 m at the bottom.The model integration time step is 1 h.

    To reach the quasi-equilibrium state,the model is f rst integrated for 100 years using the forcing of climatological monthly CORE2(Coordinated Ocean-ice Reference Experiments,version 2)data(Large and Yeager,2009).Then, the monthly wind stress,SST,and sea surface salinity(SSS) f elds from 1976to 2100,fromthe CMIP 35-modelensemble mean,are used to drive the ocean model.The SST and SSS are strongly restored toward the CMIP5 f elds,with a relaxation time scale of 20 days(for a 50 m layer).Five experiments are conducted in the study(Table 2).The average of the last 25 years of each experiment is used for analysis.The differences between the four sensitivity experiments and the control experiment are used to represent the TCHP change forced by(1)the combined effects of wind stress,SST and SSS change,(2)the effect of wind stress change,(3)the effect of SST change,and(4)the effect of SSS change,respectively.

    2.3.Method

    In this study,TCHP is def ned as follows,as in Leipper and Volgenau(1972):

    whereρhis the potential density of the sea water in each layer,cpis the specif c heat capacity at constant pressure,This the ocean temperature in each layer,?Zhis the thickness of each layer,H is D26,and h is the number of a particular verticallayer.WhenThis below26?C,the TCHP in that layer is assumed to be zero.

    3.Results

    3.1.Projected changes of TCHP in CMIP5

    Figure1ashowstheclimatologicaldistribution(contours) of the TCHP in the WOA13(World Ocean Atlas,2013) dataset(Locarnini et al.,2013).The TCHP is high in the Indo-Pacif c warm pool area,with the maximum in the tropical central Pacif c Ocean.The TCHP in the tropical Atlantic Ocean is smaller than that in the tropical Pacif c Ocean.Figure 1b shows the climatological distribution of the TCHP inHIS of CMIP5(contours).Generally,the TCHP distribution from CMIP5(Fig.1b)is similar to the observation(Fig. 1a),althoughtheirdifferencesaresignif cantinsomeregions. Their spatial correlation reaches 0.88.The TCHP magnitude in CMIP5 is smaller than that in WOA13 in most regions (Fig.1a,shading),especially in the areas where the climatological TCHP is large,e.g.,the Indo-Pacif c warm pool area and the western tropical Atlantic Ocean.Smaller TCHP in CMIP5 is also found in the Northwest Pacif c Ocean around 15?N.Globally,the TCHP in CMIP5 underestimates the observed TCHP by 9.8%.This underestimation may be partially due to the cold SST bias in the tropical ocean in CMIP5 (Wang et al.,2014).

    Table 2.Forcing set for the NEMO-OPA experiments.An overbar means the monthly climatology from CMIP5 historical experiments (1976-2000),and a prime means the change of each variable in each year from 1976 to 2100 with respect to the mean of 1976-2000.

    Fig.1.(a)The TCHP(units:108J m?2)in WOA13 data(white contours)and the difference in TCHP between the ensemble mean of the CMIP5 HIS simulation and WOA13(color shading).(b)The TCHP in the HIS simulation(white contours)and the change in TCHP(color shading).(c)The TCHP in RCP (color shading),and the white contour lines of SST for 26?C in the HIS simulation.Basin classif cation is represented by black boxes.The seven ocean basins are:the North Indian Ocean(NIO);Northwest Pacif c(NWP);Northeast Pacif c(NEP);North Atlantic(NAT);South Atlantic(SAT);South Indian Ocean(SIO);South Pacif c(SP).

    The high correlation between the historical experiments and observations suggests that the ensemble mean of the CMIP5 models can be a useful dataset for the projection ofTCHP under climate change.Figure 1b shows the TCHP change in CMIP5 between the RCP and HIS simulations (shading).As the upperoceanwarms up,the TCHP increases globally.The increase is particularly signif cant in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.Globally,the TCHP increases by 129.4%.The changemagnitudevaries with ocean basin.The magnitudeof increase for the North Atlantic and South Atlantic oceans can reach 312.9%and 287.1%,respectively.The South Pacif c Ocean has the smallest magnitude of increase,at 104.4%. The magnitudes of TCHP change in the rest of the basins areas follows:NortheastPacif c(163.3%);NorthwestPacif c (108%);North Indian Ocean(136.1%);South Indian Ocean (122.1%).Figure 1c shows the TCHP in RCP.As the SST warms up,the 26?C SST contour line extends a few degrees poleward.The horizontal area of SST above 26?C increases by30.7%in RCP with respecttoHIS.Addingtheareaexpansion part,the TCHP of the global ocean increases by 140.6% in RCP with respect to HIS.

    To better understand the TCHP change under global warming,we decompose it into three parts(Fig.2)as follows:

    Fig.2.D26 distributions(units:m)along 160?E in the HIS and RCP simulations.The numerals I-III indicate the three parts of TCHP change:the ocean temperature warming above D26, the deepening of D26,and the horizontal area expansion of SST above 26?C.

    Fig.3.TCHPchange(units:108Jm?2)due to(a)theocean temperature warmingabove D26,(b)thedeepening of D26,and(c)the horizontal area expansion of SST above 26?C.

    The three parts describe the TCHP change due to temperature change above D26(term I),the D26 deepening(term II),and the horizontal area change(term III).Figure 3 shows the three parts of the TCHP change.The TCHP increases signif cantly due to the ocean warming above D26(Fig.3a). The spatial pattern is very similar to the total TCHP change (Fig.1b),characterized by a signif cant increase in the western Pacif c,northwestern Indian,and western tropical At-lantic oceans.On average,this part of the TCHP change accounts for 69.4%of the total TCHP change,suggesting ocean warming above D26 is the most important part in total TCHP change.The warmingof ocean temperaturealso deepens D26,and enlarges the horizontal area of SST above 26?C (Figs.3b and c).The TCHP changes due to the deepening of D26 and due to the area expansion account for 22.5%and 8.1%of the total TCHP change,respectively.

    Although the ensemble mean provides some useful information on TCHP change,it is necessary to examine the TCHP change in individual models.Figure 4 shows the globaltotalTCHPandits changesbasedontheresultsofboth individual models and their ensemble mean.The ensemblemean TCHP is close to the observation,although the former is relatively smaller than the latter(also shown in Fig.1a). For individual models,the TCHP ranges from 1.30×1022J (EC-EARTH)to 5.89×1022J(CESM1-BGC).As the global ocean warms up,the TCHP is projected to increase in all models.Generally,the TCHP change is proportional to the total TCHP,with a linear f t slope of 0.4.We also calculated the TCHP and its change in individual ocean basins for these models.All ocean basins demonstrate similar features(not shown).

    Fig.4.Scatterplot betweentheglobaltotalTCHP(units:1022J) and its change for the 35 CMIP5 models.The ensemble mean is plotted as a black dot.The red line indicates the total TCHP in WOA13.The blue line is the linear f t.

    Fig.5.Changes of TCHP(units:108J m?2)in different OGCM experiments forced by(a)wind stress,SST and SSS change;(b)SST change only;(c)wind stress change only;and(d)SSS change only.

    3.2.Forcing mechanisms

    Here,we use an OGCM to test the impact of wind stress, SST andSSS onTCHP changeunderglobalwarming.Figure 5a shows the spatial pattern of TCHP change in the FULL-forcing experiment.The pattern is quite similar to the ensemble mean of CMIP5(Fig.1b).They both show that the TCHP increases in all regions,but with larger magnitudes in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.Generally,the OGCM captures the main features of the TCHP response to climate change in CMIP5. The OGCM experiment forced only by SST change(Fig.5b) also reproduces the results of the FULL-forcing experiment (Fig.5a).Their spatial correlation reaches 0.95,with almost the same magnitude.Compared to the SST-only experiment, the TCHP changes in the WIND-only and SSS-only experiments are weak(Figs.5c and d).The TCHP change in the four sensitivity experiments are 4.15×1022J,4.24×1022J,?5.99×1020J,and 2.47×1019J,respectively.These experiments highlight the dominant role of SST forcing in the TCHP response to global warming.

    4.Summary and discussion

    The TCHP change under future global warming was investigated based on 35 CMIP5 models.As the upper ocean warms up,the TCHP increases globally.The increase is particularly signif cant in the western Pacif c,northwestern Indian,and western tropical Atlantic oceans.The TCHP of the global ocean is projected to increase by 140.6%under the RCP4.5 scenario.Further analysis showed that the projected increase of TCHP mainly results from the ocean warming above D26,which accounts for 69.4%of the total change.

    A suite of OGCM experiments was conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming.The experiments showed that SST forcing is dominant in the TCHP response to global warming.The effects of wind stress and SSS on TCHP change are secondary.

    Although SST plays an important role in TC genesis,the ocean heat content,e.g.,TCHP,has been shown to play a more important role in TC intensity and intensif cation(Shay et al.,2000;Wada and Usui,2007;Goni et al.,2009).The projected increase of TCHP under global warming suggests the ocean may become more favorable for TC intensif cation, although it is still highly debated as to whether the accompanying changes in the ocean subsurface temperature prof le may partially oppose this effect(Knutson et al.,2013;Huang et al.,2015).Meanwhile,the long-term effect of increased TC intensity can in turn further strengthen the ocean warming by pumping heat into the ocean,possibly leading to positive feedback(Emanuel,2001;Sriver and Huber,2007;Mei, 2013).

    Acknowledgements.This study was supported by the National Basic Research Program of China(Grant No.2012CB 955601),the National Natural Science Foundation of China(Grant Nos.41206021 and 41125019),and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010103).The CMIP5 model outputs were obtained from the Program for Climate Model Diagnosis and Intercomparison(PCMDI)at the Lawrence Livermore National Laboratory (http://pcmdi9.llnl.gov).

    REFERENCES

    Collins,M.,and Coauthors,2013:Long-term climatechange:projections,commitments and irreversibility,1029-1136.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T.F.Stocker,et al., Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA.

    Domingues,C.M.,J.A.Church,N.J.White,P.J.Gleckler,S.E. Wijffels,P.M.Barker,and J.R.Dunn,2008:Improved estimates of upper-ocean warming and multi-decadal sea-level rise.Nature,453,1090-1093.

    Emanuel,K.A.,2001:The contribution of tropical cyclones to meridional heat transport by the oceans.J.Geophys.Res., 106(D14),14 771-14 781.

    Goni,G.,and Coauthors,2009:Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography,22,190-197.

    Gray,W.M.,1979:Hurricanes:Their formation,structure,and likely role in the tropical circulation.Meteorology over the Tropical Oceans,D.B.Shaw,Eds.,James Glaisher House, 155-218.

    Huang,P.,I.-I.Lin,C.Chou,and R.H.Huang,2015:Change in ocean subsurface environment tosuppress tropical cyclone intensif cation under global warming.Nature Communications, 6,7188,doi:10.1038/ncomms8188.

    Ishii,M.,and M.Kimoto,2009:Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections.Journal Oceanography,65,287-299.

    Knutson,T.R.,and Coauthors,2013:Dynamical downscaling projections of twenty-f rst-century Atlantic hurricane activity:CMIP3 and CMIP5 model-based scenarios.J.Climate, 26,6591-6617.

    Large,W.G.,and S.Yeager,2009:The global climatology of an interannually varying air-sea f ux data set.Climate Dyn.,33, 341-364,doi:10.1007/s00382-008-0441-3.

    Leipper,D.F.,and L.D.Volgenau,1972:Hurricane heat potential of the Gulf of Mexico.J.Phys.Oceanogr.,2,218-224.

    Levitus,S.,and Coauthors,2012:World ocean heat content and thermosteric sea level change(0-2000 m)1955-2010.Geophys.Res.Lett.,39,L10603.

    Lin,I.-I.,C.-C.Wu,I.-F.Pun,and D.-S.Ko,2008:Upperocean thermal structure and the western North Pacif c category 5 typhoons.Part I:Ocean features and the category 5 typhoons'intensif cation.Mon.Wea.Rev.,136,3288-3306, doi:10.1175/2008MWR2277.1.

    Locarnini,R.A.,and Coauthors,2013:World Ocean Atlas 2013, Vol.1:Temperature.S.Levitus,Ed.,A.Mishonov Technical Ed.;NOAA Atlas NESDIS 73,40 pp.

    Madec,G.,2008:NEMO ocean engine.Note du P?ole de mod′elisation,Institut Pierre-Simon Laplace(IPSL),France, No 27,ISSN No 1288-1619.

    Mei,W.,F.Primeau,J.C.McWillams,and C.Pasquero,2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.Proceedings of the National Academy of Sciences of the United States of America, 110(38),15 207-15 210.

    Mei,W.,S.P.Xie,F.Primeau,J.C.McWilliams,and C.Pasquero,2015:Northwestern Pacif c typhoon intensity controlled by changes in ocean temperatures.Science Advances, 1,e1500014.

    Palmer,M.D.,K.Haines,S.F.B.Tett,and T.J.Ansell,2007: Isolating the signal of ocean global warming.Geophys.Res. Lett.,34,L23610.

    Pun,I.-F.,I.-I.Lin,and M.-H.Lo,2013:Recent increase in high tropical cyclone heat potential area in the Western NorthPacif cOcean.Geophys.Res.Lett.,40,4680-4884,doi: 10.1002/grl.50548.

    Shay,L.K.,G.J.Goni,and P.G.Black,2000:Effects of a warmoceanic featureonhurricaneOpal.Mon.Wea.Rev.,128, 1366-1383.

    Sobel,A.H.,and S.J.Camargo,2011:Projected future seasonal changes in tropical summer climate.J.Climate,24,473-487, doi:10.1175/2010JCLI3748.1.

    Sriver,R.L.,and M.Huber,2007:Observational evidence for an ocean heat pump induced by tropical cyclones.Nature,447, 577-580.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485-498.

    Wada,A.,and N.Usui,2007:Importance of tropical cyclone heat potential for tropical cyclone intensity and intensif cation in thewesternNorthPacif c.Journal ofOceanography,63,427-447,doi:10.1007/s10872-007-0039-0.

    Wada,A.,and J.C.L.Chan,2008:Relationship between typhoon activityand upper ocean heat content.Geophys.Res.Lett.,35, L17603,doi:10.1029/2008GL035129.

    Wada,A.,N.Usui,and K.Sato,2012:Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacif c Ocean.J.Geophys.Res.,117,D11118,doi:10.1029/2012JD017583.

    Wang,C.Z.,L.P.Zhang,S.-K.Lee,L.X.Wu,and C.R.Mechoso, 2014:A global perspective on CMIP5 climate model biases.Nature Climate Change,4,201-205,doi:10.1038/nclimate2118.

    Liu,R.,C.L.Chen,and G.H.Wang,2016:Change of tropical cyclone heat potential in response to global warming.Adv.Atmos.Sci.,33(4),504-510,

    10.1007/s00376-015-5112-9.

    30 April 2015;revised 20 August 2015;accepted 21 August 2015)

    ?Changlin CHEN

    Email:clchen@sio.org.cn

    在现免费观看毛片| 精品久久久精品久久久| av又黄又爽大尺度在线免费看| 亚洲国产av新网站| 亚洲国产精品成人综合色| 最近手机中文字幕大全| 99热这里只有是精品50| 国产成人精品久久久久久| 久久久成人免费电影| 69人妻影院| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久免费av| 久久精品人妻少妇| 日本午夜av视频| 99久久中文字幕三级久久日本| 美女主播在线视频| 国产午夜精品久久久久久一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲精品日韩在线中文字幕| 九九在线视频观看精品| 国产精品偷伦视频观看了| 99久久精品热视频| 亚洲av.av天堂| 大码成人一级视频| 免费电影在线观看免费观看| a级毛片免费高清观看在线播放| 午夜福利视频1000在线观看| 久热久热在线精品观看| 亚洲在线观看片| 黄色配什么色好看| 天堂中文最新版在线下载 | 国产在线一区二区三区精| 免费看日本二区| 国产亚洲一区二区精品| 国产精品久久久久久精品古装| 欧美成人午夜免费资源| 极品少妇高潮喷水抽搐| 久久这里有精品视频免费| 成年版毛片免费区| 国产永久视频网站| 国产有黄有色有爽视频| 熟女av电影| 国产免费一级a男人的天堂| 搡女人真爽免费视频火全软件| 久久久精品欧美日韩精品| 一本一本综合久久| 99久久精品国产国产毛片| 观看美女的网站| 精品久久久久久电影网| 日韩伦理黄色片| 中文字幕av成人在线电影| 永久免费av网站大全| 日本黄大片高清| 欧美日韩在线观看h| 国产男人的电影天堂91| 国产综合精华液| 91在线精品国自产拍蜜月| 一区二区三区乱码不卡18| 久久人人爽人人片av| videos熟女内射| 成人午夜精彩视频在线观看| 三级经典国产精品| 你懂的网址亚洲精品在线观看| 久久久久久九九精品二区国产| av免费观看日本| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆成人av视频| 三级国产精品欧美在线观看| 日本色播在线视频| 久久久国产一区二区| 精品少妇久久久久久888优播| 国产精品久久久久久精品电影小说 | 精品国产乱码久久久久久小说| 国产成人精品婷婷| 久久久精品欧美日韩精品| 日本一二三区视频观看| 久热久热在线精品观看| 久久久精品免费免费高清| 少妇高潮的动态图| 国产乱人视频| 少妇人妻 视频| 久久久久久国产a免费观看| 免费观看无遮挡的男女| 国产成人aa在线观看| 国产91av在线免费观看| 少妇的逼水好多| 国产精品一区二区在线观看99| 国内少妇人妻偷人精品xxx网站| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 亚洲精品中文字幕在线视频 | 亚洲国产精品专区欧美| 听说在线观看完整版免费高清| 插阴视频在线观看视频| 国产老妇伦熟女老妇高清| 在线亚洲精品国产二区图片欧美 | 国产午夜福利久久久久久| 成人黄色视频免费在线看| 麻豆国产97在线/欧美| 美女内射精品一级片tv| 成年免费大片在线观看| 精品视频人人做人人爽| 国产精品.久久久| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 99久久精品国产国产毛片| 国产精品蜜桃在线观看| 夜夜爽夜夜爽视频| 成人免费观看视频高清| 永久免费av网站大全| 成人国产麻豆网| 欧美性猛交╳xxx乱大交人| 一区二区三区乱码不卡18| 免费看日本二区| 特大巨黑吊av在线直播| 另类亚洲欧美激情| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 草草在线视频免费看| av又黄又爽大尺度在线免费看| 狂野欧美激情性xxxx在线观看| 欧美成人a在线观看| 欧美3d第一页| 一级毛片aaaaaa免费看小| 九草在线视频观看| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 亚洲aⅴ乱码一区二区在线播放| 大香蕉97超碰在线| 欧美 日韩 精品 国产| 小蜜桃在线观看免费完整版高清| av网站免费在线观看视频| 亚洲国产av新网站| av在线天堂中文字幕| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 女人久久www免费人成看片| 国产精品成人在线| 久久久久久国产a免费观看| 一本一本综合久久| 一级爰片在线观看| 成人亚洲欧美一区二区av| 神马国产精品三级电影在线观看| 国产一区亚洲一区在线观看| 欧美成人a在线观看| 狠狠精品人妻久久久久久综合| 日韩在线高清观看一区二区三区| 成人亚洲精品一区在线观看 | 伊人久久精品亚洲午夜| 三级男女做爰猛烈吃奶摸视频| 中文天堂在线官网| 又粗又硬又长又爽又黄的视频| 国模一区二区三区四区视频| 99热全是精品| 少妇的逼水好多| 纵有疾风起免费观看全集完整版| 黑人高潮一二区| 精品久久久精品久久久| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 午夜日本视频在线| 夫妻午夜视频| 国产老妇伦熟女老妇高清| 97在线人人人人妻| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 久久ye,这里只有精品| 亚洲成人久久爱视频| 免费人成在线观看视频色| av在线蜜桃| 国产成人精品婷婷| 男人和女人高潮做爰伦理| 国产亚洲av片在线观看秒播厂| 最近中文字幕2019免费版| 免费av毛片视频| 国产精品久久久久久av不卡| 欧美日韩亚洲高清精品| 久热这里只有精品99| 亚洲电影在线观看av| 亚洲伊人久久精品综合| 亚洲aⅴ乱码一区二区在线播放| 少妇熟女欧美另类| videos熟女内射| 免费av不卡在线播放| 亚洲美女视频黄频| 国产精品久久久久久av不卡| 中文字幕免费在线视频6| 国产探花极品一区二区| 国产永久视频网站| 一级a做视频免费观看| av女优亚洲男人天堂| 成人综合一区亚洲| 国产免费一级a男人的天堂| 国产欧美另类精品又又久久亚洲欧美| 一本久久精品| 极品少妇高潮喷水抽搐| 黄色日韩在线| 亚洲怡红院男人天堂| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 日韩视频在线欧美| 交换朋友夫妻互换小说| 自拍欧美九色日韩亚洲蝌蚪91 | 国产一区二区三区av在线| 欧美性感艳星| 秋霞在线观看毛片| 18+在线观看网站| 男人舔奶头视频| 久久ye,这里只有精品| 韩国av在线不卡| 色5月婷婷丁香| 中文欧美无线码| 日韩成人av中文字幕在线观看| 国产视频内射| 国产成人freesex在线| 日本色播在线视频| 国精品久久久久久国模美| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 美女主播在线视频| 91精品伊人久久大香线蕉| 国产欧美日韩一区二区三区在线 | 日韩不卡一区二区三区视频在线| 99九九线精品视频在线观看视频| 99热这里只有是精品在线观看| av在线亚洲专区| 神马国产精品三级电影在线观看| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 麻豆成人av视频| eeuss影院久久| 91精品伊人久久大香线蕉| 老师上课跳d突然被开到最大视频| 插逼视频在线观看| 啦啦啦在线观看免费高清www| 国产美女午夜福利| 国产成人a区在线观看| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 欧美zozozo另类| 又爽又黄a免费视频| 日本免费在线观看一区| 高清日韩中文字幕在线| 午夜福利视频精品| 国产高清三级在线| 老司机影院毛片| 国产 精品1| 国产欧美日韩精品一区二区| 午夜日本视频在线| 免费观看性生交大片5| 成年av动漫网址| 国产黄片美女视频| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 亚洲人成网站高清观看| 成人免费观看视频高清| 草草在线视频免费看| 插阴视频在线观看视频| 极品少妇高潮喷水抽搐| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看| 久久久亚洲精品成人影院| 我要看日韩黄色一级片| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 久久久久久久精品精品| 亚洲av不卡在线观看| 色综合色国产| 国产成人91sexporn| 男插女下体视频免费在线播放| 大又大粗又爽又黄少妇毛片口| 交换朋友夫妻互换小说| av在线天堂中文字幕| 晚上一个人看的免费电影| 久久久久久久久久久免费av| 七月丁香在线播放| 一区二区三区免费毛片| 日韩视频在线欧美| 日韩一本色道免费dvd| 欧美一区二区亚洲| 中文字幕制服av| 国产高清不卡午夜福利| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 国产成人一区二区在线| 91aial.com中文字幕在线观看| videossex国产| 欧美潮喷喷水| 国产一区二区三区av在线| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 99久久精品国产国产毛片| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| av网站免费在线观看视频| 搡老乐熟女国产| 欧美成人午夜免费资源| 亚洲电影在线观看av| 国产亚洲午夜精品一区二区久久 | 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 成人无遮挡网站| 日韩视频在线欧美| 少妇人妻一区二区三区视频| 嫩草影院新地址| videos熟女内射| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 免费观看在线日韩| 久久综合国产亚洲精品| 高清毛片免费看| 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 国产综合精华液| 日韩亚洲欧美综合| 欧美老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| 九色成人免费人妻av| 免费看av在线观看网站| 成人亚洲精品一区在线观看 | 亚洲自拍偷在线| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| av在线app专区| 午夜福利网站1000一区二区三区| 久久影院123| 中文字幕免费在线视频6| 九九在线视频观看精品| 男女国产视频网站| 啦啦啦啦在线视频资源| av天堂中文字幕网| 亚洲av福利一区| 女人被狂操c到高潮| 日本免费在线观看一区| 国产视频首页在线观看| 亚洲av不卡在线观看| 午夜福利在线观看免费完整高清在| 欧美国产精品一级二级三级 | 精品久久久久久久久av| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频 | 丝袜美腿在线中文| 日韩视频在线欧美| 婷婷色综合大香蕉| 能在线免费看毛片的网站| 小蜜桃在线观看免费完整版高清| 亚洲av成人精品一二三区| av女优亚洲男人天堂| www.av在线官网国产| 99久久中文字幕三级久久日本| 亚洲欧美日韩另类电影网站 | 人妻 亚洲 视频| 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品电影小说 | 在线亚洲精品国产二区图片欧美 | 菩萨蛮人人尽说江南好唐韦庄| 少妇 在线观看| 最近中文字幕2019免费版| 国产精品爽爽va在线观看网站| 亚洲精品一区蜜桃| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 久久久精品欧美日韩精品| av在线老鸭窝| 久久国产乱子免费精品| 乱系列少妇在线播放| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| 在线观看一区二区三区激情| 国产黄频视频在线观看| 97热精品久久久久久| 欧美老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 青春草国产在线视频| 最近中文字幕2019免费版| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 亚洲精品成人久久久久久| 老司机影院成人| 看十八女毛片水多多多| 一级毛片电影观看| 国产综合懂色| 国产极品天堂在线| 王馨瑶露胸无遮挡在线观看| kizo精华| 99久久中文字幕三级久久日本| 日本黄色片子视频| 我的老师免费观看完整版| 我要看日韩黄色一级片| 高清在线视频一区二区三区| 亚洲色图av天堂| 国产黄频视频在线观看| 成人无遮挡网站| 涩涩av久久男人的天堂| 久久精品人妻少妇| 插阴视频在线观看视频| 欧美+日韩+精品| 高清av免费在线| 久久久久久久国产电影| 国产黄色免费在线视频| 毛片女人毛片| 少妇高潮的动态图| 亚洲最大成人av| 久久精品国产亚洲av天美| 午夜福利在线在线| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| a级毛片免费高清观看在线播放| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 色婷婷久久久亚洲欧美| 波野结衣二区三区在线| 色视频在线一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 免费大片18禁| av专区在线播放| 高清日韩中文字幕在线| 国产欧美日韩一区二区三区在线 | 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| 一级毛片我不卡| 国产毛片在线视频| 97在线视频观看| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 韩国高清视频一区二区三区| 麻豆久久精品国产亚洲av| 一区二区三区免费毛片| 十八禁网站网址无遮挡 | 高清午夜精品一区二区三区| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 亚洲av.av天堂| 亚洲不卡免费看| 美女主播在线视频| 国产精品久久久久久精品古装| 久久久久久久国产电影| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 成人高潮视频无遮挡免费网站| 欧美性猛交╳xxx乱大交人| 成人午夜精彩视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 99热网站在线观看| 国产欧美日韩一区二区三区在线 | 狂野欧美激情性xxxx在线观看| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 超碰97精品在线观看| 午夜福利在线在线| 黄色视频在线播放观看不卡| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 三级经典国产精品| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 亚洲无线观看免费| 日韩强制内射视频| 久热这里只有精品99| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文资源天堂在线| 亚洲精品国产成人久久av| 欧美潮喷喷水| 有码 亚洲区| 免费人成在线观看视频色| 97超视频在线观看视频| 免费黄频网站在线观看国产| 久久久久久伊人网av| 午夜精品国产一区二区电影 | 一区二区三区四区激情视频| 日韩国内少妇激情av| 亚洲av一区综合| 国产成人一区二区在线| 国产综合精华液| 亚洲国产精品999| 一级二级三级毛片免费看| kizo精华| 男女国产视频网站| 亚洲av中文字字幕乱码综合| 亚洲欧洲日产国产| 成人欧美大片| 久久精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99re6热这里在线精品视频| 我要看日韩黄色一级片| kizo精华| 亚洲av电影在线观看一区二区三区 | 老司机影院毛片| 插阴视频在线观看视频| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区| 国产精品精品国产色婷婷| 中文资源天堂在线| 亚洲av一区综合| 十八禁网站网址无遮挡 | 大话2 男鬼变身卡| 久久久久网色| 交换朋友夫妻互换小说| 国产淫片久久久久久久久| 国产永久视频网站| 99热6这里只有精品| 日日啪夜夜撸| 韩国高清视频一区二区三区| 自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| 免费看a级黄色片| 又爽又黄无遮挡网站| 日本午夜av视频| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 欧美成人精品欧美一级黄| 亚洲成人中文字幕在线播放| 亚洲成人一二三区av| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| 美女主播在线视频| 欧美极品一区二区三区四区| 草草在线视频免费看| videos熟女内射| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 亚洲一级一片aⅴ在线观看| 午夜精品一区二区三区免费看| 中文精品一卡2卡3卡4更新| 夜夜爽夜夜爽视频| 一边亲一边摸免费视频| 小蜜桃在线观看免费完整版高清| 搡老乐熟女国产| 搞女人的毛片| 亚洲欧美日韩卡通动漫| av福利片在线观看| 最近手机中文字幕大全| 在线看a的网站| 在线免费十八禁| 国产精品国产三级专区第一集| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 国产成人精品一,二区| 激情五月婷婷亚洲| 亚洲精品一二三| 午夜亚洲福利在线播放| 色综合色国产| 97热精品久久久久久| 大话2 男鬼变身卡| 免费黄色在线免费观看| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| 日韩伦理黄色片| videos熟女内射| 一边亲一边摸免费视频| 18+在线观看网站| av国产精品久久久久影院| 国产黄片美女视频| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 狂野欧美激情性bbbbbb| 亚洲真实伦在线观看| 亚洲av不卡在线观看| 国产成人91sexporn| 黄色欧美视频在线观看| 丰满乱子伦码专区| 99re6热这里在线精品视频| 欧美成人a在线观看| av.在线天堂| 久久久久国产精品人妻一区二区| 2021天堂中文幕一二区在线观| 成人亚洲精品av一区二区| 七月丁香在线播放| 欧美潮喷喷水| 国产综合精华液| 色网站视频免费| 国内精品宾馆在线| 三级国产精品欧美在线观看| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 一级毛片久久久久久久久女| 看黄色毛片网站| 九色成人免费人妻av| 久久精品国产a三级三级三级| av播播在线观看一区| 国产老妇伦熟女老妇高清| 美女脱内裤让男人舔精品视频| 久久97久久精品| 在线播放无遮挡| 少妇的逼好多水|