• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    2016-11-23 03:30:17LIJinXiLIYiYunndWANGBin
    關(guān)鍵詞:氣壓梯度理想

    LI Jin-XiLI Yi-Yunnd WANG Bin,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    Pressure gradient errors in a covariant method of implementing the σ-coordinate: idealized experiments and geometric analysis

    LI Jin-Xia,bLI Yi-Yuanaand WANG Bina,c

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cMinistry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

    A new approach is proposed to use the covariant scalar equations of the σ-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next,the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal σ-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.

    ARTICLE HISTORY

    Revised 27 February 2016

    Accepted 25 March 2016

    Pressure gradient force errors; covariant scalar equations of the σcoordinate; steep terrain;computational and physical space; geometric analysis; non-orthogonal σ-coordinate

    本文針對(duì)經(jīng)典σ坐標(biāo)的氣壓梯度誤差(PGF誤差),采用多種地形展開(kāi)理想試驗(yàn),對(duì)比經(jīng)典σ坐標(biāo)的經(jīng)典方案和協(xié)變方案的PGF誤差。結(jié)果表明:計(jì)算空間中,協(xié)變方案始終能減小經(jīng)典方案的誤差,地形越陡,效果越明顯。然而,幾何分析和理想試驗(yàn)均表明:協(xié)變方案僅能減小計(jì)算空間的誤差,不能減小物理空間的誤差;相比經(jīng)典方案,正交地形追隨坐標(biāo)能同時(shí)減小計(jì)算空間和物理空間的誤差。

    1. Introduction

    The pressure gradient force computational errors (PGF errors) in a terrain-following coordinate (σ-coordinate) can signifcantly afect the performance of a model, including the vorticity in the downslope of steep terrain, the blocking of cold air in the upslope of steep terrain, the potential vorticity near the tropopause over steep terrain, and so on (Smagorinsky et al. 1967; Kasahara 1974; Mahrer 1984;Steppeler et al. 2003; Hoinka and Z?ngl 2004; Li, Chen, and Shen 2005; Hu and Wang 2007). The PGF computational form is expressed by two terms in each horizontal momentum equation in the σ-coordinate. Computational errors are therefore inevitable as these two terms are opposite in sign and typically of the same order near steep terrain(Haney 1991; Fortunato and Baptista 1996; Lin 1997; Ly and Jiang 1999; Berntsen 2002; Chu and Fan 2003; Shchepetkin and McWilliams 2003; Li, Chen, and Li 2012).

    Much efort has been made to alleviate the PGF errors to an acceptable level (Corby, Gilchrist, and Newson 1972;Gary 1973; Zeng 1979; Qian and Zhong 1986; Blumberg and Mellor 1987; Yu 1989; Qian and Zhou 1994; Berntsen 2011; Klemp 2011; Z?ngl 2012), without touching this twoterm PGF (the so-called classic method). Alternatively, two new methods have been proposed to create a one-term PGF to overcome the PGF errors. One is to adopt the covariant scalar equations of the σ-coordinate (the covariant method by Li, Wang, and Wang (2012)); and the other is to design an orthogonal terrain-following coordinate (the orthogonal method by Li et al. (2014)). Using two idealizedexperiments, Li, Wang, and Wang (2012) showed that the covariant method signifcantly reduces the errors, compared to the classic method, in the computational space.

    Figure 1.The pressure feld (shading) and terrain (black curve). The pressure scale (color bar on the right) is in hPa.

    Many researchers have pointed out that the PGF errors of the classic method are related to terrain slope (Yan and Qian 1981; Zeng and Ren 1995; Steppeler et al. 2003; Weller and Shahrokhi 2014; Li, Li, and Wang 2016). But can the covariant method consistently reduce the PGF errors compared to the classic method as terrain slope increases?Moreover, although the calculation of a model is in the computational space, the fnal application of model results is in the physical space; can the covariant method reduce the PGF errors in the physical space?

    In this study, we frst carry out a set of sensitivity experiments of increasing terrain slope to compare the PGF errors of the classic method and those of the covariant method in the computational space. Then, we use a geometric schematic and associated idealized experiments to further investigate the PGF errors of these methods in the physical space. The results of the idealized experiments using various terrain in the computational space are presented in Section 2. The PGF errors in the physical space are compared in Section 3. Concluding remarks and a discussion are given in Section 4.

    2. Idealized experiments in the computational space

    Since the covariant method was shown to significantly reduce the PGF errors in the computational space,compared to the classic method, in the experiments using one kind of terrain implemented by Li, Wang, and Wang (2012), we further investigate the PGF errors of the covariant method and those of the classic method in the computational space over different kinds of terrain. We first introduce the basic parameters for all the experiments, and then compare the PGF errors of the covariant method and those of the classic method in the computational space in experiments of increasing terrain slope.

    2.1. Basic parameters

    For consistency, we use the same parameters as Li, Wang,and Wang (2012), except for the terrain slope. First, the defnition of σ, proposed by Gal-Chen and Somerville (1975) is adopted, where z represents the height, HTis the top of the model, and h represents terrain. We use a 2D bell-shaped terrain (black curve in Figure 1),

    where H = 4 km is the maximum height, a = 5 km is the half width, and h0= 50 km is the middle point of the terrain.

    Second, we use the centeral spatial discretization for the PGF in the horizontal and the forward scheme in the vertical for both methods. The expressions are given as follows:

    Finally, we use a pressure feld,

    as shown in Figure 1, where h(x) is defned by Equation (1), H is the maximum height of terrain, Hp= 300 km is a parameter to adjust the pressure gradient, p0= 1,015.0 hPa is surface pressure, and λ = 8 km is the typical height of the atmosphere. The domain of all the experiments is 0-100 km in the horizontal and 0-37 km in the vertical (Figure 1). The horizontal and vertical resolutions are 0.5 km and 3.7 km, respectively.

    Figure 2.RMS-REs of two methods in the computational space in experiments of increasing terrain slope. The slope is calculated by arctan (H/2a) and shown in (a). The RMS-REs of each method are shown in (b).

    2.2. Sensitivity experiments

    Through increasing the maximum height H of terrain in Equation (1) at 50-m intervals from 3 to 9 km, we carry out 121 sets of experiments (Figure 2(a)). Note that the maximum slope is almost three times the minimum in Figure 2(a).

    We calculate the root-mean-square of relative errors(RMS-REs) of the PGF of the covariant method and those of the classic method (Figure 2(b)). The RMS-REs of the covariant method are consistently reduced by one order of magnitude, compared to those of the classic method. Moreover, as the terrain slope increases, the RMS-REs of the classic method significantly increase (red line in Figure 2(b) relative to black line in Figure 2(a)); however,the RMS-REs of the covariant method remain approximately the same (blue line in Figure 2(b) relative to black line in Figure 2(a)). Therefore, the steeper the terrain, the greater the reduction of the ratio of PGF errors via the covariant method.

    3. Comparison of the PGF errors in the physical space

    In order to compare the PGF errors of the covariant method and those of the classic method in the physical space, we frst use a geometric schematic to further investigate the PGF errors in the physical space, and then carry out a set of associated idealized experiments to validate the results obtained by the geometric analysis.

    The geometric schematic of PGF is shown in Figure 3. The relationship between the lines with arrow heads in Figure 3 and the variables related to PGF are all listed below:

    Figure 3.Schematic of PGF vectors and their components in diferent methods.

    The vertical PGF of the z-coordinate,

    The horizontal PGF of the covariant method in the computational space,The vertical PGF of the covariant method in the computational space,

    In addition, through the geometric relationship in Figure 3,we obtain

    where φ is terrain slope, and

    First, the expressions of the PGF of the covariant method and the classic method in the physical space are respectively given by

    According to Equation (7), the PGF of the covariant method expressed in Equation (9) equals the PGF of the classic method shown in Equation (10); namely, the covariant method cannot reduce the PGF errors in the physical space compared to the classic method.

    Note that both the classic method and the covariant method are non-orthogonal methods (Li, Wang, and Wang 2011, 2012), namely, the PGF errors in the physical space cannot be reduced by the coordinate transformation in the non-orthogonal σ-coordinate. But can the orthogonal method proposed by Li et al. (2014) reduce the PGF errors in the physical space?

    Second, according to Figure 3, the horizontal and vertical PGFs of the orthogonal method in the computational space are respectively, where x′ is the horizontal coordinate of the orthogonal terrain-following coordinate. Then, the PGF of the orthogonal method in the physical space can be expressed by

    Using the geometric relationship in Figure 3, we obtain

    Substituting Equations (5) and (7) into Equations (14) and(15), we obtain

    Note that the PGF of the orthogonal method in the physical space is AJ-AH and that of the non-orthogonal method is AB-BE. According to Equation (16), the PGF errors in the physical space can be reduced by the orthogonal method when the terrain slope φ is large enough:

    (1) If is large enough to make the order of AH smaller than that of AJ, i.e. AH and AJ are no longer of the same order, the PGF errors in the physical space can be reduced by the orthogonal method;

    Figure 4.REs of three methods in the computational and physical spaces. The dashed contours are for negative values. The contour interval in (a), (b), (d), and (f) is 1.0, while that in (c) and (e) is 0.1. The diferences between (a) and (c) in this study and Li, Wang, and Wang(2012, Figure 6(c) and (d)) on the boundaryare due to the revised boundary condition used in this study. The revised boundary condition is directly from the defnition of pressure , to obtain the value on each boundary grid.

    Finally, we calculate the PGF errors of the three methods, i.e. the classic method, the covariant method and the orthogonal method. Substituting Equations (4), (5), (6), (8),(11), and (12) into Equations (9), (10), and (13), and using the discretization schemes given in Section 2.1, we can obtain the discrete expressions of the PGF of the three methods in the physical space as follows:Using Equations (17)-(19) and the parameters given in Section 2.1, we calculate the REs of the PGF of the three methods in the computational space as well as in the physical space (Figure 4). As obtained in the geometric analysis,the PGF errors of the covariant method are the same as those of the classic method in the physical space (Figure 4(b) and(d)), whereas the PGF errors of the orthogonal method are much reduced compared to those of the classic method in the physical space (Figure 4(b) and (f)). In addition, as with the covariant method, the orthogonal method can also reduce the PGF errors of the classic method in the computational space (Figure 4(a), (c), and (e)).

    4. Conclusion and discussion

    Through idealized experiments using increasing terrain slope in the computational space and a geometric analysis in the physical space, the present study investigates the validity of reducing the PGF errors via the covariant method proposed by Li, Wang, and Wang (2012), compared to the classic method. First, sensitivity experiments of increasing terrain slope in the computational space show that the RMS-REs of the covariant method are consistently one order of magnitude smaller than those of the classic method (Figure 2). More importantly, the steeper the terrain, the greater the reduction in the ratio of PGF errors via the covariant method, indicating that the covariant method may perform better near steep terrain.

    The geometric analysis (Figure 3) and associated idealized experiments then demonstrate that, compared to the classic method, the covariant method based on the non-orthogonal σ-coordinate can reduce the PGF errors in the computational space but not in the physical space(Figure 4(a)-(d)). However, the orthogonal method proposed by Li et al. (2014) can reduce the PGF errors in the computational space as well as in the physical space(Figure 4(a) and (b), (e) and (f)).

    In addition, since the covariant method cannot reduce the PGF errors in the physical space, but can signifcantly reduce the errors in the computational space, especially over steep terrain, the covariant method may not improve the simulation of pressure itself but could lead to improvement in the velocity (relevant to pressure, according to the momentum equations). For example, Weller and Shahrokhi(2014) used the curl-free PGF (the PGF of the covariant method is curl-free in the computational space) to obtain a better hydrostatic balance and better energy conservation.

    Besides, the patterns of PGF error of the orthogonal method are diferent from those of the other two methods based on the non-orthogonal σ-coordinate (Figure 4(a)-(d), (e) and (f)). This is related to the diference between computational grids in the orthogonal σ-coordinate and those in the non-orthogonal σ-coordinate used in this study. Further analyses are needed to investigate the relationship between computational grids and PGF errors. Plus, the true benefts of the covariant method and the orthogonal method need to be tested using primitive equations in more idealized experiments and realistic simulations.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Basic Research Program of China (973 Program) [grant number 2015CB954102];the National Natural Science Foundation of China [grant number 41305095], [grant number 41175064].

    Notes on contributors

    LI Jin-Xi is a PhD candidate at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on dynamical core of atmospheric models. Recent publications include papers in Atmospheric and Oceanic Science Letters, Geoscientifc Model Development, Atmospheric Science Letters, and Chinese Science Bulletin.

    LI Yi-Yuan is an associated researcher at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. Her main research interests are the numerical methods for the dynamical core of atmospheric models, especially the methods related with the vertical. Recent publications include papers in Geoscientifc Model Development, Communication in Computational Physics,and Atmospheric Science Letters.

    WANG Bin is a professor at LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University. His main research interests are the numerical methods and data assimilation for the atmospheric, oceanic, and coupled models. Recent publications include papers in Geoscientifc Model Development, Monthly Weather Review, and Tellus.

    References

    Berntsen, J. 2002. “Internal pressure errors in sigma-coordinate ocean models.” Journal of Atmospheric and Oceanic Technology 19: 1403-1414. doi:http://dx.doi.org/10.1175/1520-0426(2002)019<1403:IPE ISC>2.0.CO;2.

    Berntsen, J. 2011. “A perfectly balanced method for estimating the internal pressure gradients in sigma-coordinate ocean models.” Ocean Modelling 38: 85-95. doi:http://dx.doi. org/10.1016/j.ocemod.2011.02.006.

    Blumberg, A. F., and G. L. Mellor. 1987. “A description of a three-dimensional coastal ocean circulation model.”P(pán)aper presented at the annual meeting for the American Geophysical Union, Washington, DC, 1-16. doi:http://dx.doi. org/10.1029/CO004p0001.

    Chu, P. C., and C. Fan. 2003. “Hydrostatic correction for sigma coordinate ocean models.” Journal of Geophysical Research 108: 3206-3217. doi:http://dx.doi.org/10.1029/2002JC001668.

    Corby, G. A., A. Gilchrist, and R. L. Newson. 1972. “A general circulation model of the atmosphere suitable for long period integrations.” Quarterly Journal of the Royal Meteorological Society 98: 809-832. doi:http://dx.doi.org/10.1002/qj.49709841808.

    Fortunato, A. B., and A. M. Baptista. 1996. “Evaluation of horizontal gradients in sigma-coordinate shallow water models.” Atmosphere-Ocean 34: 489-514. doi:http://dx.doi.or g/10.1080/07055900.1996.9649574.

    Gal-Chen, T., and R. C. J. Somerville. 1975. “On the use of a coordinate transformation for the solution of the Navierstokes equations.” Journal of Computational Physics 17: 209-228. doi:http://dx.doi.org/10.1016/0021-9991(75)90037-6.

    Gary, J. M. 1973. “Estimate of truncation error in transformed coordinate, primitive equation atmospheric models.” Journal of the Atmospheric Sciences 30: 223-233. doi:http://dx.doi. org/10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2.

    Haney, R. L. 1991. “On the pressure gradient force over steep topography in sigma coordinate ocean models.” Journal of Physical Oceanography 21: 610-619. doi:http://dx.doi. org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    Hoinka, K. P., and G. Z?ngl. 2004. “The infuence of the vertical coordinate on simulations of a PV streamer crossing the Alps.”Monthly Weather Review 132: 1860-1867. doi:http://dx.doi. org/10.1175/1520-0493(2004)132h1860:TIOTVCi2.0.CO;2.

    Hu, J. L., and P. X. Wang. 2007. “The errors of pressure gradient force in high-resolution meso-scale model with terrainfollowing coordinate and its revised scheme.” Chinese Journal of Atmospheric Sciences 31: 109-118 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.2007.01.11.

    Kasahara, A. 1974. “Various vertical coordinate systems used for numerical weather prediction.” Monthly Weather Review 102: 509-522. doi:http://dx.doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    Klemp, J. B. 2011. “A terrain-following coordinate with smoothed coordinate surfaces.” Monthly Weather Review 139: 2163-2169. doi:http://dx.doi.org/10.1175/MWR-D-10-05046.1.

    Li, X. L., D. H. Chen, and X. S. Shen. 2005. “Impact study on the calculation of vertical velocity in diferent vertical coordinate.”Journal of Tropical Meteorology 21: 265-276 (In Chinese).

    Li, Y. Y., B. Wang, and D. H. Wang. 2011. “Characteristics of a terrain-following sigma coordinate.” Atmospheric and Oceanic Science Letters 4: 157-161. doi:http://dx.doi.org/10.1080/167 42834.2011.11446922.

    Li, Chao, D. H. Chen, and X. L. Li. 2012. “A design of heightbased terrain-following coordinates in the atmospheric numerical model: theoretical analysis and idealized tests.”Acta Meteorologica Sinica 70 (6): 1247-1259 (In Chinese).

    Li, Y. Y., D. H. Wang, and B. Wang. 2012. “A new approach to implement sigma coordinate in a numerical model.”Communications in Computational Physics 12: 1033-1050. doi:http://dx.doi.org/10.4208/cicp.030311.230911a.

    Li, Y. Y., B. Wang, D. H. Wang, and J. X. Li, and L. Dong. 2014.“An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments.”Geoscientifc Model Development 7: 1767-1778. doi:http:// dx.doi.org/10.5194/gmd-7-1-2014.

    Li, J. X., Y. Y. Li, and B. Wang. 2016. “Characteristics of Pressure Gradient Force Errors in a Terrain-Following Coordinate.” Atmospheric and Oceanic Science Letters 9(3): 211-218. doi:http://dx.doi.org/10.1080/16742834.2 016.1164570.

    Lin, S. J. 1997.“A fnite-volume integration method for computing pressure gradient force in general vertical coordinates.”Quarterly Journal of the Royal Meteorological Society 123: 1749-1762. doi:http://dx.doi.org/10.1002/qj.49712354214.

    Ly, L. N., and L. Jiang. 1999. “Horizontal pressure gradient errors of the Monterey bay sigma coordinate ocean model with various grids.” Journal of Oceanography 55: 87-97. doi:http:// dx.doi.org/10.1023/A:1007865223735.

    Mahrer, Y. 1984. “An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system.” Monthly Weather Review 112 (5): 918-922. doi:http:// dx.doi.org/10.1175/1520-0493(1984)112<0918:AINAOT>2.0 .CO;2.

    Qian, Y. F., and Z. Zhong. 1986. “General forms of dynamic equations for atmosphere in numerical models with topography.” Advances in Atmospheric Sciences 3: 10-22. doi:http://dx.doi.org/10.1007/BF02680042.

    Qian, Y. F., and T. J. Zhou. 1994. “Error subtraction method in computing pressure gradient force for high and steep topographic areas.” Journal of Tropical Meteorology 10: 358-368.

    Shchepetkin, A. F., and J. C. McWilliams. 2003. “A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate.” Journal of Geophysical Research 108: 3090-3123. doi:http://dx.doi. org/10.1029/2001JC001047.

    Smagorinsky, J., R. F. Strickler, W. E. Sangster, S. Manabe,J. L. Halloway Jr., and G. D. Hembree. 1967. “Prediction experiments with a general circulation model.” Paper presented at Dynamics of Large Scale Atmospheric Processes,Moscow, USSR, 70-134.

    Steppeler, J., R. Hess, U. Sch?ttler, and L. Bonaventura. 2003.“Review of numerical methods for nonhydrostatic weather prediction models.” Meteorology and Atmospheric Physics 82: 287-301. doi:http://dx.doi.org/10.1007/s00703-001-0593-8.

    Weller, H., and A. Shahrokhi. 2014. “Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves.” Monthly Weather Review 142: 4439-4457. doi:http:// dx.doi.org/10.1175/MWR-D-14-00054.1.

    Yan, H., and Y. F. Qian. 1981. “On the problems in the coordinate transformation and the calculation of the pressure gradient force in the numerical models with topography.” Chinese Journal of Atmospheric Sciences 5: 175-187. doi:http://dx.doi. org/10.3878/j.issn.1006-9895.1981.02.07.

    Yu, R. C. 1989. “Design of the limited area numerical weather prediction model with steep mountains.” Chinese Journal of Atmospheric Sciences 13: 145-158 (In Chinese). doi:http:// dx.doi.org/10.3878/j.issn.1006-9895.1989.02.02.

    Z?ngl, G. 2012. “Extending the numerical stability limit of terrain following coordinate models over steep slopes.”Monthly Weather Review 140: 3722-3733. doi:http://dx.doi. org/10.1175/MWR-D-12-00049.1.

    Zeng, Q. C. 1979. “Basic equations and coordinate transformation.” Mathematical and physical fundamental theory for numerical weather prediction. vol. 1, 22-25. Beijing: Science Press.

    Zeng, X. P., and Z. H. Ren. 1995. “Quantitative analysis of the discretization errors of the horizontal pressure gradient force over sloping terrain.” Chinese Journal of Atmospheric Sciences 19: 722-732. doi:http://dx.doi.org/10.3878/j.issn.1006-9895.1995.06.09.

    氣壓梯度誤差;

    協(xié)變方案; 陡峭地形; 計(jì)算空間和物理空間; 幾何分析; 正交地形追隨坐標(biāo)

    9 November 2015

    CONTACT LI Yi-Yuan liyiyuan@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    氣壓梯度理想
    理想之光,照亮前行之路
    金橋(2022年7期)2022-07-22 08:32:10
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    看不見(jiàn)的氣壓
    2021款理想ONE
    理想
    你是我的理想型
    花火彩版A(2021年11期)2021-02-08 12:42:52
    一種自適應(yīng)Dai-Liao共軛梯度法
    壓力容器氣壓端蓋注射模設(shè)計(jì)
    模具制造(2019年4期)2019-06-24 03:36:46
    一類(lèi)扭積形式的梯度近Ricci孤立子
    電滲—堆載聯(lián)合氣壓劈烈的室內(nèi)模型試驗(yàn)
    国产精品福利在线免费观看| 成人欧美大片| 久久久久久久亚洲中文字幕| 国产高清三级在线| 少妇的逼水好多| 亚洲第一区二区三区不卡| 又粗又爽又猛毛片免费看| 亚洲成人精品中文字幕电影| 亚洲18禁久久av| 国产亚洲5aaaaa淫片| 日日撸夜夜添| а√天堂www在线а√下载| 嫩草影院精品99| 观看美女的网站| 一级毛片久久久久久久久女| 午夜亚洲福利在线播放| 天美传媒精品一区二区| 搡老妇女老女人老熟妇| 亚洲美女视频黄频| 色哟哟哟哟哟哟| 99视频精品全部免费 在线| 九草在线视频观看| 欧美激情国产日韩精品一区| 亚洲精华国产精华液的使用体验 | 天堂av国产一区二区熟女人妻| 欧美成人免费av一区二区三区| 久久99热6这里只有精品| 麻豆成人午夜福利视频| 国产亚洲精品久久久com| 嫩草影院新地址| 校园人妻丝袜中文字幕| 久久韩国三级中文字幕| 欧美3d第一页| 成人一区二区视频在线观看| 99视频精品全部免费 在线| 黄片无遮挡物在线观看| 国国产精品蜜臀av免费| 国产亚洲av嫩草精品影院| 免费看日本二区| 成人综合一区亚洲| 91狼人影院| 久久久久国产网址| 日韩av不卡免费在线播放| 最新中文字幕久久久久| 青青草视频在线视频观看| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 在线国产一区二区在线| 不卡一级毛片| 五月伊人婷婷丁香| 日韩欧美一区二区三区在线观看| 亚洲国产欧美在线一区| 免费看美女性在线毛片视频| 日韩 亚洲 欧美在线| 久久精品国产鲁丝片午夜精品| 国产成人一区二区在线| 久久精品人妻少妇| 国产国拍精品亚洲av在线观看| 久久九九热精品免费| 内地一区二区视频在线| 91狼人影院| 91久久精品电影网| 日韩三级伦理在线观看| 99久久精品国产国产毛片| 啦啦啦啦在线视频资源| 免费av观看视频| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区| 色吧在线观看| 能在线免费看毛片的网站| 亚洲欧美日韩高清专用| 欧美日本视频| 国产高潮美女av| 国产国拍精品亚洲av在线观看| videossex国产| 又爽又黄无遮挡网站| 成人欧美大片| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 国产精品精品国产色婷婷| 欧美色视频一区免费| 美女 人体艺术 gogo| 麻豆一二三区av精品| av.在线天堂| 日韩精品有码人妻一区| 亚洲aⅴ乱码一区二区在线播放| 人妻系列 视频| 啦啦啦韩国在线观看视频| 日本成人三级电影网站| 国产伦精品一区二区三区四那| 亚洲国产精品合色在线| 国产 一区精品| 欧美一区二区国产精品久久精品| 麻豆国产av国片精品| 内地一区二区视频在线| 国产精品一区二区在线观看99 | 麻豆成人午夜福利视频| 可以在线观看毛片的网站| 熟女电影av网| 草草在线视频免费看| 美女黄网站色视频| 男女边吃奶边做爰视频| 亚洲欧洲日产国产| 国产一区二区在线av高清观看| 亚洲精品影视一区二区三区av| 亚洲婷婷狠狠爱综合网| 啦啦啦啦在线视频资源| 特级一级黄色大片| 99国产极品粉嫩在线观看| 爱豆传媒免费全集在线观看| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 国产亚洲精品av在线| 22中文网久久字幕| av在线播放精品| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 成人三级黄色视频| 一夜夜www| 秋霞在线观看毛片| 熟妇人妻久久中文字幕3abv| 亚洲,欧美,日韩| 一个人免费在线观看电影| 久久午夜福利片| 亚洲最大成人手机在线| 国产视频内射| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 亚洲精品成人久久久久久| 国产成人精品婷婷| 国产精华一区二区三区| 青春草视频在线免费观看| 在线天堂最新版资源| 草草在线视频免费看| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 精品久久国产蜜桃| 国内精品宾馆在线| 亚洲,欧美,日韩| 亚洲乱码一区二区免费版| 久久久精品94久久精品| 国产视频内射| 少妇高潮的动态图| 99热网站在线观看| 搡老妇女老女人老熟妇| 啦啦啦观看免费观看视频高清| 国产熟女欧美一区二区| 草草在线视频免费看| 卡戴珊不雅视频在线播放| 99久久人妻综合| 网址你懂的国产日韩在线| eeuss影院久久| 免费看美女性在线毛片视频| 蜜桃久久精品国产亚洲av| 国产精品.久久久| av免费观看日本| 国产一区二区三区在线臀色熟女| 久久精品久久久久久久性| 在线播放无遮挡| 日韩av不卡免费在线播放| 久久久久久大精品| 国产美女午夜福利| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 亚洲欧美精品综合久久99| 国产成人freesex在线| 国产爱豆传媒在线观看| 中文精品一卡2卡3卡4更新| 成人无遮挡网站| 99久久人妻综合| 亚洲无线观看免费| 日韩中字成人| 最近手机中文字幕大全| 国产精品麻豆人妻色哟哟久久 | 99riav亚洲国产免费| 国产精品久久久久久久久免| 女同久久另类99精品国产91| 变态另类丝袜制服| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 九九热线精品视视频播放| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 美女国产视频在线观看| 欧美丝袜亚洲另类| 特级一级黄色大片| 少妇被粗大猛烈的视频| 1024手机看黄色片| 国产在线男女| 婷婷色综合大香蕉| 嫩草影院入口| 久久这里有精品视频免费| 日韩av不卡免费在线播放| 乱人视频在线观看| 人妻久久中文字幕网| 国内精品美女久久久久久| 国产成人精品婷婷| 国产一级毛片在线| 不卡视频在线观看欧美| 美女国产视频在线观看| 久久精品国产亚洲网站| 欧美日韩国产亚洲二区| 爱豆传媒免费全集在线观看| 麻豆av噜噜一区二区三区| 不卡视频在线观看欧美| 黑人高潮一二区| 亚洲婷婷狠狠爱综合网| 天堂网av新在线| 亚洲成人久久性| 中文字幕熟女人妻在线| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| 久久久久久久久久黄片| 久久久国产成人免费| 美女被艹到高潮喷水动态| 日韩av不卡免费在线播放| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 国产午夜精品论理片| 亚洲乱码一区二区免费版| 精品久久国产蜜桃| 国产爱豆传媒在线观看| 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 日韩精品有码人妻一区| 精品欧美国产一区二区三| 午夜精品一区二区三区免费看| 久久热精品热| 日韩av在线大香蕉| 美女被艹到高潮喷水动态| 国产高清激情床上av| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 国产精品久久久久久亚洲av鲁大| 国产淫片久久久久久久久| 国产伦理片在线播放av一区 | 日韩三级伦理在线观看| 日韩高清综合在线| 看片在线看免费视频| 日韩欧美 国产精品| 欧美激情在线99| 日本一本二区三区精品| 男人舔奶头视频| 日本爱情动作片www.在线观看| 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 国产精品麻豆人妻色哟哟久久 | 亚洲三级黄色毛片| 中文欧美无线码| 日韩成人av中文字幕在线观看| 高清毛片免费看| 久久精品91蜜桃| 精品久久国产蜜桃| 国产精品久久久久久久久免| 日本成人三级电影网站| 黄色视频,在线免费观看| 国产精品蜜桃在线观看 | 国产乱人视频| 亚洲高清免费不卡视频| 日韩大尺度精品在线看网址| 亚洲成人精品中文字幕电影| 久久久色成人| 亚洲人成网站在线观看播放| 欧美日韩精品成人综合77777| 日韩高清综合在线| 97超碰精品成人国产| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说 | 在线观看美女被高潮喷水网站| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 菩萨蛮人人尽说江南好唐韦庄 | av在线播放精品| 久久精品国产鲁丝片午夜精品| 麻豆久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 一进一出抽搐动态| 不卡视频在线观看欧美| 亚洲自偷自拍三级| 91精品国产九色| 日本成人三级电影网站| 免费大片18禁| 联通29元200g的流量卡| 久久99蜜桃精品久久| 99久久无色码亚洲精品果冻| 麻豆一二三区av精品| 亚洲成人中文字幕在线播放| av卡一久久| 国产成人精品一,二区 | 欧美激情在线99| 国产av一区在线观看免费| 一进一出抽搐gif免费好疼| 岛国在线免费视频观看| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 黄色日韩在线| 舔av片在线| 亚洲第一电影网av| 国产三级在线视频| 麻豆成人午夜福利视频| 岛国毛片在线播放| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 在线观看66精品国产| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 在现免费观看毛片| 国产精品一区二区三区四区免费观看| 国产成人福利小说| 黄色欧美视频在线观看| 国产成人91sexporn| 少妇人妻精品综合一区二区 | 男人舔奶头视频| 久久久久网色| 国产黄片美女视频| 久久久久久国产a免费观看| 亚洲人成网站在线播| 亚洲成人久久性| 亚洲av免费高清在线观看| 日韩,欧美,国产一区二区三区 | 最近中文字幕高清免费大全6| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 69av精品久久久久久| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出| 久久久久久久久久久丰满| av天堂在线播放| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 午夜久久久久精精品| 亚洲欧美成人综合另类久久久 | 少妇人妻精品综合一区二区 | 精品一区二区免费观看| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 欧美极品一区二区三区四区| 99久久久亚洲精品蜜臀av| 国内精品宾馆在线| 欧美最新免费一区二区三区| 国产精品精品国产色婷婷| 免费av观看视频| 日韩三级伦理在线观看| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 99热6这里只有精品| 小说图片视频综合网站| 国产精品女同一区二区软件| 亚洲三级黄色毛片| 久久久久久久久大av| 色视频www国产| 你懂的网址亚洲精品在线观看 | 偷拍熟女少妇极品色| 午夜爱爱视频在线播放| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 美女大奶头视频| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| av免费观看日本| 亚洲国产精品成人综合色| 高清毛片免费看| 插逼视频在线观看| 五月玫瑰六月丁香| 好男人在线观看高清免费视频| 尤物成人国产欧美一区二区三区| 免费av不卡在线播放| www.色视频.com| 国产成人影院久久av| 天堂网av新在线| 国产精品综合久久久久久久免费| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 久久精品国产亚洲av香蕉五月| 国产日本99.免费观看| 亚洲人成网站在线播放欧美日韩| 91在线精品国自产拍蜜月| 国产在线男女| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 国产真实伦视频高清在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 国产亚洲91精品色在线| 国产大屁股一区二区在线视频| av免费观看日本| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看| 成人午夜高清在线视频| 18+在线观看网站| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 热99在线观看视频| 国产精品蜜桃在线观看 | 久久国产乱子免费精品| 欧美xxxx黑人xx丫x性爽| 日本熟妇午夜| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 成人国产麻豆网| 蜜桃亚洲精品一区二区三区| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 国产高清不卡午夜福利| 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 亚洲欧洲日产国产| 亚洲欧美日韩高清在线视频| 亚洲综合色惰| 成年av动漫网址| 中文欧美无线码| 高清毛片免费观看视频网站| 美女被艹到高潮喷水动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 深爱激情五月婷婷| 久久这里有精品视频免费| 又粗又硬又长又爽又黄的视频 | 熟妇人妻久久中文字幕3abv| 舔av片在线| 成人欧美大片| 国产精品人妻久久久影院| 国产乱人偷精品视频| av国产免费在线观看| 99久国产av精品国产电影| .国产精品久久| 卡戴珊不雅视频在线播放| 人体艺术视频欧美日本| 亚洲五月天丁香| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 国产精品1区2区在线观看.| 一本久久精品| 女同久久另类99精品国产91| 一区二区三区免费毛片| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 高清毛片免费观看视频网站| 欧美日韩一区二区视频在线观看视频在线 | 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 成人欧美大片| 麻豆国产97在线/欧美| 欧美最黄视频在线播放免费| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 日韩欧美三级三区| 中文在线观看免费www的网站| 亚洲av成人av| 美女被艹到高潮喷水动态| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 一边亲一边摸免费视频| 久久久欧美国产精品| av视频在线观看入口| 欧美日本视频| 中文字幕熟女人妻在线| 一个人看的www免费观看视频| 有码 亚洲区| 欧洲精品卡2卡3卡4卡5卡区| 精品少妇黑人巨大在线播放 | 六月丁香七月| 日韩欧美国产在线观看| 亚洲精品乱码久久久久久按摩| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 欧美一区二区亚洲| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 18+在线观看网站| 久久精品久久久久久噜噜老黄 | 亚洲最大成人中文| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 亚洲欧美日韩高清在线视频| 国产精品福利在线免费观看| 99久久无色码亚洲精品果冻| 亚洲丝袜综合中文字幕| av天堂在线播放| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| 麻豆成人午夜福利视频| av在线亚洲专区| 99久久精品热视频| 国产麻豆成人av免费视频| 色综合色国产| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看免费完整高清在 | 哪个播放器可以免费观看大片| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 简卡轻食公司| 天天躁夜夜躁狠狠久久av| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 久久精品夜色国产| ponron亚洲| 国产精品美女特级片免费视频播放器| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 又粗又爽又猛毛片免费看| 午夜激情福利司机影院| 久久欧美精品欧美久久欧美| 久久精品久久久久久久性| 日韩欧美精品v在线| 欧美丝袜亚洲另类| av在线蜜桃| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 国产高潮美女av| 午夜激情欧美在线| 国产av在哪里看| 亚洲精品456在线播放app| 免费观看a级毛片全部| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 国产69精品久久久久777片| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| 美女黄网站色视频| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 免费人成在线观看视频色| 亚洲无线在线观看| 亚洲欧美成人精品一区二区| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 日韩欧美在线乱码| 国产黄色小视频在线观看| 人人妻人人澡人人爽人人夜夜 | 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 性色avwww在线观看| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 高清毛片免费看| 五月玫瑰六月丁香| 丝袜喷水一区| 国产不卡一卡二| 免费看av在线观看网站| av天堂中文字幕网| 嫩草影院精品99| 成年免费大片在线观看| 国产一级毛片在线| 午夜视频国产福利| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看| 美女被艹到高潮喷水动态| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区 | 婷婷色av中文字幕| 久久久午夜欧美精品| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 亚洲最大成人手机在线| 亚洲电影在线观看av| 最近2019中文字幕mv第一页| av在线播放精品| 亚洲欧美中文字幕日韩二区| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆乱淫一区二区| 精品午夜福利在线看| 白带黄色成豆腐渣| 国产精华一区二区三区| 26uuu在线亚洲综合色| 欧美高清成人免费视频www| 久久久久九九精品影院| 精品久久久久久久久亚洲| 波多野结衣巨乳人妻| 男插女下体视频免费在线播放| 日本色播在线视频| 亚洲人成网站在线观看播放| 午夜福利视频1000在线观看| 26uuu在线亚洲综合色| kizo精华| 给我免费播放毛片高清在线观看| 精华霜和精华液先用哪个| 午夜免费男女啪啪视频观看| 国内精品宾馆在线|