• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    2016-11-22 09:48:53張桂玲孫翠翠
    物理化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:鐵磁性基態(tài)導(dǎo)電性

    裴 蕾 張桂玲 尚 巖 孫翠翠 甘 甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    裴蕾張桂玲*尚巖孫翠翠甘甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    利用密度泛函理論和非平衡格林函數(shù)的方法對硅橋調(diào)控后的聚茂釩體系([V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=環(huán)戊二烯基))的電子結(jié)構(gòu)和輸運性質(zhì)進行了研究。研究結(jié)果表明:隨著硅橋的增長,V-V的鐵磁性耦合變?nèi)醵磋F磁性耦合增強。a和b證實為鐵磁性基態(tài),而c更傾向為反鐵磁性基態(tài)。a和b的鐵磁性基態(tài)中的每個釩原子的磁距為3.0μB,超過釩-苯絡(luò)合物或者純聚茂釩體系的3倍。a-c的輸運性質(zhì)同它們的電子結(jié)構(gòu)相一致,導(dǎo)電性變化規(guī)律為c>b>a。對于a和b,自旋向下狀態(tài)的導(dǎo)電性略強于自旋向上狀態(tài)。a和c都發(fā)生了明顯的負微分電阻效應(yīng)而b卻沒有,這主要是由于兩個二茂釩的排列取向不同:a和c(SiH2為奇數(shù))中二茂釩呈V-型取向排列,進而導(dǎo)致了類似于離子鍵的量子點耦合,而b(SiH2是偶數(shù))中二茂釩是平行-型取向排列,從而導(dǎo)致了類似于共價鍵的量子點耦合。此外,由于散射區(qū)和兩個電極之間的不對稱耦合,a-c的導(dǎo)電性對電壓施加方向較敏感。

    硅橋鍵;聚茂釩;電子結(jié)構(gòu);輸運性質(zhì);理論研究

    1 Introduction

    Bridge linked polymetallocenes have attracted continuous interest over the past decade due to their unusual electrical,magnetic,and optical properties1-8.Abroad variety of such polymers has been synthesized in laboratory.The bridge moiety can vary fromgroup 13(B,Al,Ga,In)9-12to group 14(Si,Ge,Sn)13-17,group 15(P,As)18-20,and group 16 elements(S,Se)21,22.The metallocene can cover almost the whole first-row transition metal series(Sc-Ni)and some second-and third-row transition metal species(Zr, Hf,Pt)23-27.Much of the interest in these polymers has been focused on the saturated silicon-bridged polymetallocenes;representative examples are the silicon-bridged polyferrocenes28-33.It is confirmed that these copolymers can be utilized as charge dissipation coatings,variable refractive index sensing materials, and magnetic ceramic precursors over a range of length scales34-39.

    The silicon linkages possess a remarkable ability to tune the physicochemistry property of the resulting bridged polymetallocenes.The frontier orbitals of a metallocene largely preserve the d character of the transition metal atom;the cyclic π-coordinated carbon ligands confine the d states,making the metal atom an intrinsic molecular quantum dot.The saturated silicon bridges block the adjacent metallocene units spatially and energetically, ensuring the quantum dot behavior of the metal atom40.Quantum dots are of great interest in many research applications such as transistors,solar cells,light emitting diodes(LEDs),and diode lasers because electron transport through quantum dots can be precisely controlled by tailoring the molecular size41,42.The length of the silicon bridge plays a significant role in the interdot coupling.For example,Dement′ev et al.43have shown that the Fe-Fe interaction decreases with increasing of the bridge length in a series of silicon-bridged biferrocenes.Experiments have demonstrated that the conducting behavior of ferrocenylsilane polymers is highly dependent on the length of silicon bridge44. Studying the silicon moiety effect on the electronic and transport properties of the silicon-bridged polymetallocenes is desirable for the generation of functioned molecular devices.

    Recently,polymers derived from sandwiched vanadium complexes are of particular hot topics owing to the high density of unpaired spins of V atoms which are expected to exhibit remarkable physical properties with regard to magnetism or conductivity19.So far,much effort has been invested in the synthesis of silicon bridged polymers of vanadium complexes.Pioneering work in this area includes that of Elschenbroich et al.44-49and Braunschweig et al.50-52,who were the first to obtain such silicon bridged polymers by using ring-opening polymerization method of[V(η6-C6H5)2SiMeiPr]and[V(η5-C5H5)(η7-C7H7)SiMeiPr].They demonstrated that these polymers show a pronounced intramolecular electronic and magnetic communication.The silicon bridged vanadium containing polymers[V(Cp)2(SiH2)n]mare expected to be excellent candidates for exploring novel functional materials with fantastic magnetism and conductivity.Similar to the case in ferrocenylsilane polymers41,the silicon bridge length n in [V(Cp)2(SiH2)n]mmay play important role in governing the electronic and transport properties.

    In this context,three polyvanadocenes,[V(Cp)2(SiH2)n]m(n= 1,2,3;Cp=cyclopentadienyl),are the major focus of our studies by using density functional method(DFT)and non-equilibrium Green′s function(NEGF)methods(Fig.1).We first investigate the electronic properties of their infinite long systems(n=∞),followed by computing the transport properties of their two-probe devices by curving out one supercell(n=2)sandwiched between two Au electrodes.For the sake of facilitating discussions,we denote infinite long systems of[V(Cp)2(SiH2)]∞,[V(Cp)2(SiH2)2]∞, and[V(Cp)2(SiH2)3]∞as a,b,and c,respectively(Fig.1(a));we also denote two-probe devices of Au/[V(Cp)2(SiH2)]2/Au,Au/ [V(Cp)2(SiH2)2]2/Au,andAu/[V(Cp)2(SiH2)3]2/Au as D-a,D-b,and D-c(Fig.1(b)).We find that the length of the silicon moiety has notable effects on the electronic and transport properties of the silicon bridged polyvanadocenes.

    2 Models and computational methods

    For computing electronic structures,the infinite long systemsof a,b,and c are modeled via using the periodic condition in the axial direction(Fig.1(a)).Each repeated cell included two vanadocene units.Such supercell could facilitate to consider the magnetic coupling between V atoms.The polymers are separated by~2.4 nm from each other to neglect inter-chain interaction.All the periodic systems are fully optimized until the maximum absolute force is less than 0.2 eV·nm-1.

    Table 1 Calculation results of reaction energy(ΔEreaction),supercell length(L),total energy in the FM andAFM states(ETot,FMand ETot,AFM), energy difference between FM andAFM states(ΔEFM-AFM),magnetic moment(S)for a,b,c,D-a,D-b,and D-c

    For computing transport properties,the two-probe devices of D-a,D-b,and D-c are adopted(Fig.1(b)).We carved out one supercell,i.e.,[V(Cp)2(SiH2)]2,[V(Cp)2(SiH2)2]2,and[V(Cp)2(SiH2)3]2,as the central scatter region based on the optimized periodic structures to be sandwiched between two Au electrodes. The semi-infinite Au electrodes were modeled by two Au(111)-(3×3)surfaces,and five layers were used for the left and right sides.As the sulfur atom has good affinity with the gold surface, dithiolate derivatives have been used for the construction of metal/ molecule/metal junctions in general53-56.Therefore,in the present work,we also used the sulfur atom as the junction to link the Au electrode and the bivanadocene system.The sulfur atom was set to the hollow site of the electrode as most of the studies had elucidated that the hollow site was more favorable in energy than the top and bridge adsorption sites53-56.In this model,the S-Au distance was set as 0.2341 nm according to the reported literature57,58.Calculations were carried out by changing the applied bias in the step of 0.2 V in the range of-1.0-1.0 V.

    All the computations for the infinitely long and two-probe systems are performed using an ab initio code package,Atomistix ToolKit(ATK),which is based on combination of DFT and NEGF methods59-62.Ageneralized gradient approximation(GGA)within the Perdew-Burke-Ernzerhof(PBE)formalism is employed to describe the exchange correlations between electrons.Spin polarization of V atom is considered in all calculations.The on-site correlation effects among 3d electrons of the Vatom are accounted for by using the GGA+U scheme62,where the parameter U-J (Ueff)62is set to be 3.4.A double-ζ basis functional with polarization(DZP)is used for all atoms.A(1×1×100)k-point in string Brillouin zone(x,y,z directions,respectively)is employed. 150 Ry cutoff energy is applied to describe the periodic wave function.

    3 Results and discussion

    The stability of introducing silicon bridge between vanadocenes is evaluated by the reaction energy ΔE as given following:

    Fig.2 Computed projected density of states(PDOS)of polymetallocenes a,b,and c

    The calculated ΔEreactionare listed in Table 1.These values of ΔEreactionare all negative indicating exothermic reaction.Hence, inserting silicon bridge between vanadocenes is energetically reasonable.

    In this section,we first show results of magnetism and band structures of a-c,followed by transport properties computed based on the two-probe devices of D-a-D-c.

    3.1Magnetism

    Both the AFM state and FM state of a-c are considered.The calculated energy differences ΔEFM-AFMbetween the FM and AFM states are listed in Table 1.The values of ΔEFM-AFMare-5.88,-0.11,and 0.53 meV for a,b,and c,respectively.This case clearly demonstrates that the length of the silicon bridge plays important role in governing the magnetism.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.The polymers a and b favor the FM ground state while c prefers the AFM state.The same case is also found for the two-probe devices D-a,D-b,and D-c(Table 1).In fact,the short SiH2unit in a serves as a FM coupling unit for two spin V atoms to be FM coupled.However,in c,the V spin dots are separated far away by the long(SiH2)3segment,direct V-V FM coupling is destroyed.The FM state of a and b shows a magnetic moment S~6.0μBper supercell,i.e.,~3.0μBper V atom(Table 1), three times larger than that of the V-benzene or V-cyclopentadiene multidecker complex63.This value is in agreement with that in vanadocene64.The magnetic behavior of the FM and AFM states is reflected in the projected density of states(PDOS)shown in Fig.2.For the FM state of a and b,the majority spin below the Fermi level(Ef)is greater than the minority spin.The spin polarization is mainly due to the Vatoms.For theAFM state of c,the majority spin and the minority spin are nearly the same near the Efso that their net magnetic moments are nearly zero.These novel magnetic properties of a-c may have potential applications for magnetic nanodevices.

    Fig.3 Computed band structures(left panels)of(a,b)polymetallocene a,(c,d)polymetallocene b,and(e,f)polymetallocene c and the Kohn-Sham orbitals(right panels)corresponding to the energy levels(highlighted in color lines)near Efat the Γ point The iso-surface value is 5 e·nm-3.

    3.2Band structure

    Fig.3 plots the band structures of a-c.It is known that in vanadocene the five d orbitals of V atom split into adz2(a1)orbital and two sets of doubly degeneratedxy,x2-y2(e2)anddxz,yz(e1)orbitals under the Cp ligand field.Here,the a-c supercell contains two V atoms which contribute ten d orbitals to couple with the Cp π orbitals,thereby resulting in ten bands:two a1-like bands,four e2-like bands,and four e1-like bands.In the spin-up state of a and b, the a1-like bands and the e2-likebands are occupied while the e1-likebands are unoccupied.However,in the spin-down state,all the a1-,e2-,and e1-like bands are unoccupied.Therefore,each vanadocene unit in a and b possesses a magnetic moment of S~3.0μB, in line with the computed magnetism.Clearly,the spin-down state has a slightly lower band gap than the spin-up state,suggesting a slightly stronger conductivity in the spin-down state of a and b. In the AFM c,the spin-up state and the spin-down state exhibit a symmetrical band structure.The band gaps are in the order of a> b>c,indicating that the conductivity should follow the sequence of c>b>a.Another feature can be found that the valence and conduction bands in the spin-down state of b display larger dispersion owing to the good coupling between the vanadocene unit and the silicon bridge while those of c show evident flat character due to the block effect of the long silicon bridge.From the PDOS, one can see that the valence band mainly comes from the Vd state, while the conduction band stems from both V d and Si p states. Therefore,the silicon σ orbitals can also participate in conducting by accepting electrons from the V atom.

    Fig.4 (a)Total I-V curves of D-a,D-b,and D-c two-probe devices;(b,c,d)Spin polarized I-V curves of D-a,D-b,and D-c two-probe devices,respectively

    3.3Transport properties

    To confirm the predication of the transport property based on the electronic structures,we have also computed transport properties of two-probe devices D-a,D-b,and D-c by sandwiched finite-sized a,b,and c between two Au electrodes(c.f.Fig.1(b)). The computed current-voltage(I-V)curves based on the twoprobe devices are shown in Fig.4,from which several characteristics attributable to silicon bridge can be found at the bias voltage of-1.0-1.0 V.

    First,the silicon bridge could remarkably tune the magnitude of total current(Fig.4(a)).Overall,the two-probe system D-c shows the highest conductivity,followed by D-b,while D-a is the lowest.This is in good agreement with the band structure analysis. Fig.5(a)gives the transmission spectra(TS)at 0.0 V bias voltage. Clearly,near the Ef,D-c shows the largest TS peak,while D-a has the smallest.

    Second,D-a and D-b systems show spin polarized transport property,i.e.,the spin-down state gives a higher conductivity than the spin-up state(Fig.4(b,c)).In contrast,for D-c,the spin-up state and the spin-down state exhibit close magnitude of current under a certain bias voltage,suggesting an unpolarized transport property.These results are consistent with electronic structures of their infinitely long systems.Fig.5(a)also indicates that the spindown states of D-a and D-b offer larger TS peaks than the spin-up state near Ef,while the spin-up state and spin-down state in D-c devote similar TS contributions.

    Third,D-a and D-c give rise to evident negative differentialresistance(NDR)peaks at the considered bias voltage-1.0-1.0 V,while D-b cannot.In fact,in metallocene polymers,the Cp ligands confine the d states of metal atom,making the metal atom an intrinsic molecular dot.Experiments have demonstrated that the metal-to-metal communication plays an important role in the conducting behavior65-67.Fig.6 plots the calculated electrostatic potential for D-a,D-b,and D-c two-probe devices.Evidently,in D-a and D-c,the saturated silicon bridge blocks the two vanadocene units effectively,leading to an ionic-like interdot coupling. Electronic transport through ionic-like coupled quantum dots are covered by Coulomb blockade theory68,69,which usually results in NDR behavior.In contrast,electron delocalization through silicon bridge becomes easier for the parallel orientation compared to the V-shape.The covalent-like interdot coupling occurs in D-b owing to the high electron delocalization through the silicon bridge.The strong covalent-like interdot coupling in D-b induces a coherent tunneling,and thus cannot give a significant NDR behavior.The above differences may be originated from the orientation of the two V(Cp)2,which is V-shape for a and c(odd-numbered SiH2unit)and parallel for b(even-numbered SiH2unit).The NDR phenomenon of D-a and D-c is of important application in multiple-valued logic devices.For D-a,NDR peaks appear at 0.2 and-0.8 V;and for D-c,NDR peaks locate at 0.6 and-0.8 V.This NDR feature can be further interpreted from the TS distribution exemplified by D-a in Fig.5(b).Clearly,at 0.2 V and near the Ef, the magnitude of the TS of D-a is much larger than that of 0.4 V, resulting in the sharp dropping of the current from 0.2 to 0.4 V.

    Fig.5 (a)Transmission spectra(TS)of D-a,D-b,and D-c twoprobe devices at 0.0 V bias voltage;(b)TS of D-a two-probe device at 0.0,0.2,and 0.4 V bias voltages;(c)TS of D-b two-probe device at 1.0 and-1.0 V bias voltages

    Last,the conductivity is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.The magnitude of the current under a negative bias voltage is evidently larger than that under a corresponding positive bias voltage.This phenomenon can be reflected from the TS in Fig.5(c).Take D-b as an example,clearly,TS peaks near Efat V=-1.0 V are larger than those at V=1.0 V.

    Fig.6 Computed contour plot of potential distribution for D-a,D-b,and D-c

    4 Conclusions

    Silicon bridge tuned electronic and transport properties of polymetallocenes,[V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c); m=∞;Cp=cyclopentadienyl),are studied using DFT and NEGF methods.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.a and b favor the ferromagnetic(FM)state ground state,while c prefers the antiferromagnetic(AFM)ground state.Each V atom in the FMstate of a and b shows a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with the electronic structures.The conductivity follows the sequence of c>b>a.For a and b,the spin-down state has a slightly stronger conductivity than the spin-up state.a and c can both give rise to evident negative differential resistance behavior while b cannot.This differences may be originated from the orientation of the two V(Cp)2:V-shape for a and c(odd-numbered SiH2unit) leading to ionic-like interdot coupling while parallel for b(evennumbered SiH2unit)leading to covalent-like interdot coupling.In addition,the conductivity of a-c is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.

    References

    (1) Kim,K.T.;Han,J.;Ryu,C.Y.;Sun,F.C.;Sheiko,S.S.; Winnik,M.A.;Manners,I.Macromolecules 2006,39,7922. doi:10.1021/ma060607l

    (2)Hatanaka,Y.;Okada,S.;Minami,T.;Goto,M.;Shimada,K. Organometallics 2005,24,1053.doi:10.1021/om040132r

    (3) Liu,K.;Clendenning,S.B.;Friebe,L.;Chan,W.Y.;Zhu,X.B.; Freeman,M.R.;Yang,G.C.;Yip,C.M.;Grozea,D.;Lu,Z.H.; Manners,I.Chem.Mater.2006,18,2591.doi:10.1021/ cm052339w

    (4) Friebe,L.;Liu,K.;Obermeier,B.;Petrov,S.;Dube,P.; Manners,I.Chem.Mater.2007,19,2630.doi:10.1021/ cm062470j

    (5) Kumar,M.;Metta-Magana,A.J.;Pannell,K.H. Organometallics 2008,27,6457.doi:10.1021/om800537b

    (6) Huo,J.;Wang,L.;Yu,H.J.;Deng,L.B.;Ding,J.H.;Tan,Q.H.; Liu,Q.Q.;Xiao,A.;Ren,G.Q.J.Phys.Chem.B 2008,112, 11490.doi:10.1021/jp7121888.

    (7) Michinobu,T.;Kumazawa,H.;Noguchi,K.;Shigehara,K. Macromolecules 2009,42,5903.doi:10.1021/ma9013324

    (8) Miles,D.;Ward,J.;Foucher,D.A.Macromolecules 2009,42, 9199.doi:10.1021/ma9018608

    (9) Berenbaum,A.;Braunschweig,H.;Dirk,R.;Englert,U.;Green, J.C.;Jakle,F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 2000,122,5765.doi:10.1021/ja000311

    (10) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,785.doi:10.1021/om049004t

    (11) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,4483.doi:10.1021/om0503951

    (12) Bagh,B.;Sadeh,S.;Green,J.C.;Muller,J.Chem.Eur.J.2014, 20,2318.doi:10.1002/chem.201303925

    (13) Stoeckli-Evans,H.;Osborne,A.G.;Whiteley,R.H. J.Organomet.Chem.1980,194,91.doi:10.1016/S0022-328X (00)90341-3

    (14) Foucher,D.A.;Edwards,M.;Burrow,R.A.;Lough,A.J.; Manners,I.Organometallics 1994,13,4959.doi:10.1021/ om00024a044

    (15) Rulkens,R.;Lough,A.J.;Manners,I.Angew.Chem.1996,108, 1929.doi:10.1002/ange.19961081609

    (16) Jakle,F.;Rulkens,R.;Zech,G.;Foucher,D.A.;Lough,A.J.; Manners,I.Chem.Eur.J.1998,4,2117.doi:10.1002/(SICI) 1521-3765

    (17) Braunschweig,H.;Damme,A.;Demeshko,S.;Duck,K.; Kramer,T.;Krummenacher,I.;Meyer,F.;Radacki,K.;Stellwag-Konertz,S.;Whittell,G.R.J.Am.Chem.Soc.2015,137,1492. doi:10.1021/ja510884h

    (18) Withers,H.P.;Seyferth,D.Organometallics 1982,1,1283. doi:10.1021/om00070a005

    (19) Seyferth,D.;Withers,H.P.Organometallics 1982,1,1275. doi:10.1021/om00070a004

    (20) Butler,I.R.;Cullen,W.R.;Einstein,F.W.B.;Rettig,S.J.; Willis,A.J.Organometallics 1983,2,128.doi:10.1021/ om00073a024

    (21) Pudelski,J.K.;Gates,D.P.;Rulkens,R.;Lough,A.J.; Manners,I.Angew.Chem.1995,107,1633.doi:10.1002/ ange.19951071335

    (22) Rulkens,R.;Gates,D.P.;Balaishis,D.;Pudelski,J.K.; Mcintosh,D.F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 1997,119,10976.doi:10.1021/ja972043u

    (23) Broussier,R.;Da Rold,A.;Gautheron,B.;Dromzee,Y.; Jeannin,Y.Inorg.Chem.1990,29,1817.doi:10.1021/ ic00335a011

    (24) Whittell,G.R.;Partridge,B.M.;Presley,O.C.;Adams,C.J.; Manners,I.Angew.Chem.2008,120,4426.doi:10.1002/ ange.200705672

    (25) Matas,I.;Whittell,G.R.;Partridge,B.M.;Holland,J.P.; Haddow,M.F.;Green,J.C.;Manners,I.J.Am.Chem.Soc. 2010,132,13279.doi:10.1021/ja103367e

    (26) Hu,Y.Q.;Zhu,N.;Han,L.M.Acta Phys.-Chim.Sin.2015,31, 227.[胡宇強,竺寧,韓利民.物理化學(xué)學(xué)報,2015,31,227.] doi:10.3866/PKU.WHXB201411061

    (27) Cao,Q.Y.;Lu,X.;Kuang,R.Y.;Li,Z.H.;Yang,Z.Y.Acta Phys.-Chim.Sin.2010,26,2158.[曹遷永,盧鑫,匡仁云,李志華,楊震宇.物理化學(xué)學(xué)報,2010,26,2158.]doi:10.3866/ PKU.WHXB20100822

    (28) Temple,K.;Dziadek,S.;Manners,I.Organometallics 2002,21, 4377.doi:10.1021/om020492j

    (29) Pannell,K.H.;Dementiev,V.V.;Li,H.;Cervantes-Lee,F.; Nguyen,M.T.;Diaz,A.F.Organometallics 1994,13,3644. doi:10.1021/om00021a043

    (30) Foucher,D.;Ziembinski,R.;Petersen,R.;Pudelski,J.; Edwards,M.;Ni,Y.Z.;Massey,J.;Jaeger,C.R.;Vansco,G.J.; Manners,I.Macromolecules 1994,27,3992.doi:10.1021/ ma00092a046

    (31) Rulkens,R.;Lough,A.J.;Manners,I.J.Am.Chem.Soc.1994, 116,797.doi:10.1021/ja00081a062

    (32) Du,H.;Park,K.C.;Wang,F.;Wang,S.;Liu,Q.;Zhang,S.W.;Huang,Y.L.;Shi,S.J.Organometallics 2007,26,6219. doi:10.1021/om7004468

    (33) Altmann,R.;Gausset,O.;Horn,D.;Jurkschat,K.;Schürmann, M.Organometallics 2000,19,430.doi:10.1021/om9905660

    (34) Resendes,R.;Berenbaum,A.;Stojevic,G.;J?kle,F.;Bartole, A.;Zamanian,F.;Dubois,G.;Hersom,C.;Balmain,K.; Manners,I.Adv.Mater.2000,12,327.doi:10.1002/(SICI)1521-4095(200003)

    (35) Massey,J.A.;Winnik,M.A.;Manners,I.J.Am.Chem.Soc. 2001,123,3147.doi:10.1021/ja003174p

    (36)MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Coyle,T.W.; Raju,N.P.;Greedan,J.E.;Ozin,G.A.;Manners,I.Science 2000,287,1460.doi:10.1126/science.287.5457.1460

    (37) MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Raju,N.P.; Greedan,J.E.;Ozin,G.A.;Manners,I.J.Am.Chem.Soc.2000, 122,3878.doi:10.1021/ja992006y

    (38) Kulbaba,K.;Resendes,R.;Cheng,A.;Bartole,A.;Safa-Sefat, A.;Coombs,N.;Stover,H.D.H.;Greedan,J.E.;Ozin,G.A.; Manners,I.Adv.Mater.2001,13,732.doi:10.1002/1521-4095 (200105)13

    (39) Espada,L.I.;Shadaram,M.;Robillard,J.;Pannell,K.H. J.Inorg.Organomet.Polym.2000,10(4),169.doi:10.1023/A: 1016634505173

    (40) Liu,R.;Ke,S.H.;Baranger,H.U.;Yang,W.T.J.Am.Chem. Soc.2006,128,6274.doi:10.1021/ja057054z

    (41) Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Annu.Rev.Mater. Sci.2000,30,545.doi:10.1146/annurev.matsci.30.1.545

    (42) VanderWiel,W.G.;De Franceschi,S.;Elzerman,J.M.; Fujisawa,T.;Tarucha,S.;Kouwenhoven,L.P.Rev.Mod.Phys. 2003,75,1.doi:10.1103/RevModPhys.75.1

    (43) Dement′ev,V.V.;Cervantes-Lee,F.;Parkanyi,L.;Sharma,H.; Pannell,K.H.Organometallics 1993,12,1983.doi:10.1021/ om00029a067

    (44) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.;Massa, W.;Wocadlo,S.;Pebler,J.Inorg.Chem.1993,32,5421. doi:10.1021/ic00075a080

    (45) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.; Behrendt,A.;Massa,W.;Wocadlo,S.;Reijerse,E.Inorg.Chem. 1995,34,743.doi:10.1021/ic00107a028

    (46) Elschenbroich,C.;Lu,F.;Nowotny,M.;Burghaus,O.; Pietzonka,C.;Harms,K.Organometallics 2007,26,4025. doi:10.1021/om700300j

    (47) Elschenbroich,C.;Lu,F.;Burghaus,O.;Pietzonka,C.;Harms, K.Chem.Commun.2007,30,3201.doi:10.1039/b703349d

    (48) Pannell,K.H.;Imshennik,V.I.;Maksimov,Y.V.;Il′ina,M.N.; Sharma,H.K.;Papkov,V.S.;Suzdalev,I.P.Chem.Mater.2005, 17,1844.doi:10.1021/cm0403558

    (49) Zhang,G.L.;Pei,L.;Yu,J.;Shang,Y.;Zhang,H.;Liu,B.Theor. Chem.Acc.2013,132,1386.doi:10.1007/s00214-013-1386-0

    (50) Adams,C.J.;Braunschweig,H.;Fu?,M.;Kraft,K.;Kupfer,T. Manners,I.Radacki,K.;Whittell,G.R.Chem.Eur.J.2011,17, 10379.doi:10.1002/chem.201100919

    (51) Braunschweig,H.;Kaupp,M.;Adams,C.J.;Kupfer,T.; Radacki,K.;Schinzel,S.J.Am.Chem.Soc.2008,130,11376. doi:10.1021/ja802034p

    (52) Braunschweig,H.;Adams,C.J.;Kupfer,T.;Manners,I.; Richardson,R.M.Whittell,G.R.Angew.Chem.Int.Ed.2008, 47,3826.doi:10.1002/anie.200800081

    (53) Gr?nbeck,H.;Curioni,A.;Andreoni,W.J.Am.Chem.Soc. 2000,122,3839.doi:10.1021/ja993622x

    (54) Johansson,?.;Stafstr?m,S.Chem.Phys.Lett.2000,322,301. doi:10.1016/S0009-2614(00)00468-1

    (55) Kaun,C.C.;Larade,B.;Guo,H.Phys.Rev.B.2003,67,121411 (R).doi:10.1103/PhysRevB.67.121411

    (56)Yin,X.;Liu,H.M;Zhao,J.W.J.Chem.Phys.2006,125, 094711.doi:org/10.1063/1.2345061

    (57)Yin,X.;Li,Y.W.;Zhang,Y.;Li,P.;Zhao,J.W.Chem.Phys. Lett.2006,422,111.doi:10.1016/j.cplett.2006.02.020

    (58) Staykov,A.;Nozaki,D.;Yoshizawa,K.J.Phys.Chem.C 2007, 111,3517.doi:10.1021/jp067612b

    (59) Taylor,J.;Guo,H.;Wang,J.Phys.Rev.B 2001,63,245407. doi:10.1103/PhysRevB.63.245407

    (60) Brandbyge,M.;Mozos,J.L.;Ordejón,P.;Taylor,J.;Stokbro,K. Phys.Rev.B.2002,65,165401.doi:10.1103/ PhysRevB.65.165401

    (61) Soler,J.M.;Artacho,E.;Gale,J.D.;Garcia,A.;Junquera,J.; Ordejon,P.;Sanchez-Portal,D.J.Phys.Condens.Matter 2002, 14,2745.doi:10.1088/0953-8984/14/11/302

    (62)ATK,Version 13.8,atomistix a/s,www.quantumwise.com (accessed Oct 27,2015).

    (63) Miyajima,K.;Nakajima,A.;Yabushita,S.;Knickelbein,M.B.; Kaya,K.J.Am.Chem.Soc.2004,126,13202.doi:10.1021/ ja046151+

    (65) Park,P.;Lough,A.J.;Foucher,D.A.Macromolecules 2002,35, 3810.doi:10.1021/ma0120052

    (66) Rulkens,R.;Lough,A.J.;Manners,I.;Lovelace,S.R.;Grant, C.;Geiger,W.E.J.Am.Chem.Soc.1996,118,12683. doi:10.1021/ja962470s

    (67) Foucher,D.A.;Honeyman,C.H.;Nelson,J.M.;Tang,B.Z.; Manners,I.Angew.Chem.Int.Ed.Engl.1993,32,1709. doi:10.1002/anie.199317091

    (68)Averin,D.V.;Likharev,K.K.J.Low Temp.Phys.1986,62, 345.doi:10.1007/BF00683469

    (69) Van der Vaart,N.C.;Kouwenhoven,L.P.;De Ruyter van Steveninck,M.P.;Nazarov,Y.V.;Harmans,C.J.P.M.Phys. Rev.B 1997,55,9746.doi:10.1103/PhysRevB.55.9746

    Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes

    PEI LeiZHANG Gui-Ling*SHANG YanSUN Cui-CuiGAN Tian
    (College of Chemical and Environmental Engineering,Harbin University of Science and Technology,Harbin 150080,P.R.China)

    Silicon bridge-tuned electronic structures and transport properties of polymetallocenes, [V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=cyclopentadienyl),are studied using the density functional theory(DFT)and non-equilibrium Green′s function(NEGF)methods.As the silicon bridge is lengthened,the V-V ferromagnetic(FM)coupling is weakened,while the antiferromagnetic(AFM)coupling is strengthened.Polymetallocenes a and b favor the FM ground state,while c prefers the AFM ground state.Each V atom in the FM state of a and b has a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with their electronic structures.Their conductivities follow the sequence c>b>a.For a and b,the spin-down state has slightly higher conductivity than the spin-up state.Polymetallocenes a and c can both display evident negative differential resistance(NDR)behavior,while b cannot.This difference may originate from the orientation of the two V(Cp)2units,which is V-shaped for a and c(odd number of SiH2units),leading to ioniclike inter-quantum dot coupling,and parallel for b(even number of SiH2units),leading to covalent-like interquantum dot coupling.In addition,the conductivity of a-c is sensitive to the current direction because of the asymmetric coupling between the scattering region and two electrodes.

    Silicon bridge;Polymetallocene;Electronic structure;Transport property;Theoretical study

    April 5,2016;Revised:June 28,2016;Published online:June 29,2016.

    .Email:guiling-002@163.com;Tel:+86-451-86392705.

    O641

    10.3866/PKU.WHXB201606295

    The project was supported by the National Natural Science Foundation of China(51473042).國家自然科學(xué)基金(51473042)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (64) Barlow,S.;O′Hare,D.Chem.Rev.1997,97,637.10.1021/ cr960083v

    猜你喜歡
    鐵磁性基態(tài)導(dǎo)電性
    鐵磁性物質(zhì)對地磁觀測影響的野外測試
    一類非線性Choquard方程基態(tài)解的存在性
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    一類反應(yīng)擴散方程的Nehari-Pankov型基態(tài)解
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    非線性臨界Kirchhoff型問題的正基態(tài)解
    大提離下脈沖渦流對鐵磁性材料測厚研究
    中國測試(2021年4期)2021-07-16 07:48:54
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    核電站鐵磁性高加管漏磁檢測技術(shù)淺析
    科技視界(2015年30期)2015-10-22 11:26:44
    脱女人内裤的视频| 热99在线观看视频| 国产蜜桃级精品一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲成人久久爱视频| 制服人妻中文乱码| 亚洲中文字幕日韩| 久久精品国产清高在天天线| 久久九九热精品免费| 99久久成人亚洲精品观看| 一个人看视频在线观看www免费 | 国产久久久一区二区三区| 久久精品亚洲精品国产色婷小说| 色在线成人网| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 成人高潮视频无遮挡免费网站| 亚洲精品在线观看二区| 噜噜噜噜噜久久久久久91| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片 | 啦啦啦观看免费观看视频高清| 黄色成人免费大全| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| av片东京热男人的天堂| 国产亚洲精品av在线| 嫩草影视91久久| 国产一区二区亚洲精品在线观看| 无人区码免费观看不卡| 亚洲国产日韩欧美精品在线观看 | 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 精品电影一区二区在线| 麻豆国产97在线/欧美| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 亚洲国产色片| 午夜日韩欧美国产| 97人妻精品一区二区三区麻豆| 嫩草影院精品99| 国产成人av教育| 一级毛片高清免费大全| 亚洲乱码一区二区免费版| a级毛片a级免费在线| 国产精品美女特级片免费视频播放器| 精品一区二区三区av网在线观看| 日本免费一区二区三区高清不卡| 超碰av人人做人人爽久久 | 一进一出抽搐gif免费好疼| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 国产亚洲精品一区二区www| 神马国产精品三级电影在线观看| 欧美性感艳星| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 久久久久精品国产欧美久久久| 又黄又爽又免费观看的视频| 国产精品一及| 久久久国产成人免费| 国产色婷婷99| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 亚洲成人久久爱视频| 午夜视频国产福利| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 色av中文字幕| 波多野结衣巨乳人妻| 伊人久久大香线蕉亚洲五| 欧美日韩中文字幕国产精品一区二区三区| 国产成人av教育| 亚洲国产欧美网| 1000部很黄的大片| 九九热线精品视视频播放| 好男人在线观看高清免费视频| 脱女人内裤的视频| 伊人久久大香线蕉亚洲五| 噜噜噜噜噜久久久久久91| 夜夜夜夜夜久久久久| 亚洲无线观看免费| 国产真人三级小视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品日产1卡2卡| 欧美日韩精品网址| 岛国视频午夜一区免费看| 禁无遮挡网站| 91在线观看av| 国产主播在线观看一区二区| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 特级一级黄色大片| 国产私拍福利视频在线观看| 99精品久久久久人妻精品| 中文字幕av在线有码专区| 国产乱人视频| 一个人免费在线观看的高清视频| 国产v大片淫在线免费观看| 国产毛片a区久久久久| 国产主播在线观看一区二区| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 日韩中文字幕欧美一区二区| 久久久精品欧美日韩精品| av片东京热男人的天堂| 久久国产精品影院| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 激情在线观看视频在线高清| 丰满人妻一区二区三区视频av | 成年版毛片免费区| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩卡通动漫| 男女那种视频在线观看| 动漫黄色视频在线观看| 变态另类丝袜制服| 久久久久性生活片| 一个人看的www免费观看视频| 久久久久久久久大av| 99在线视频只有这里精品首页| 看黄色毛片网站| 免费看a级黄色片| 两个人视频免费观看高清| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 床上黄色一级片| 女警被强在线播放| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 国产高清videossex| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看| 久久香蕉国产精品| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 一个人免费在线观看电影| 熟女少妇亚洲综合色aaa.| 国产精品亚洲一级av第二区| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 欧美乱码精品一区二区三区| 欧美午夜高清在线| 欧美乱妇无乱码| 午夜免费男女啪啪视频观看 | 男女那种视频在线观看| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| av专区在线播放| 日本与韩国留学比较| 国产精品 国内视频| 久久国产精品人妻蜜桃| 在线视频色国产色| 在线观看午夜福利视频| 国产伦精品一区二区三区四那| 久久人人精品亚洲av| 啪啪无遮挡十八禁网站| 午夜视频国产福利| 国产精品久久久人人做人人爽| 1024手机看黄色片| 免费av观看视频| 国产不卡一卡二| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 国产精品一及| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 亚洲精品色激情综合| 99精品久久久久人妻精品| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清作品| 在线看三级毛片| 中文字幕av在线有码专区| 欧美bdsm另类| 最近在线观看免费完整版| 一本综合久久免费| 天堂√8在线中文| 美女高潮的动态| 一级黄色大片毛片| av在线天堂中文字幕| 法律面前人人平等表现在哪些方面| 三级国产精品欧美在线观看| 精品免费久久久久久久清纯| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 日韩欧美精品免费久久 | av天堂在线播放| 日本 欧美在线| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 长腿黑丝高跟| 在线播放国产精品三级| 搡老岳熟女国产| 亚洲最大成人手机在线| 国产精品亚洲美女久久久| 国产91精品成人一区二区三区| 三级毛片av免费| 免费无遮挡裸体视频| 九色成人免费人妻av| 少妇的丰满在线观看| 国产午夜福利久久久久久| 日本免费a在线| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 国产一区二区激情短视频| 熟女少妇亚洲综合色aaa.| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件 | 久久草成人影院| 全区人妻精品视频| 成年女人永久免费观看视频| 三级毛片av免费| 国产探花极品一区二区| 99久久精品热视频| 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| eeuss影院久久| av女优亚洲男人天堂| 99国产精品一区二区三区| 97超视频在线观看视频| 最新在线观看一区二区三区| 国产爱豆传媒在线观看| 香蕉丝袜av| 午夜久久久久精精品| 午夜免费成人在线视频| 在线观看免费午夜福利视频| 精品一区二区三区视频在线观看免费| 免费搜索国产男女视频| 欧美乱码精品一区二区三区| 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 欧美日本视频| 国产精品日韩av在线免费观看| 亚洲avbb在线观看| 日本与韩国留学比较| 最近在线观看免费完整版| 免费无遮挡裸体视频| 久久精品综合一区二区三区| 天堂影院成人在线观看| 精品人妻1区二区| 午夜免费激情av| 99国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 日本在线视频免费播放| 欧美bdsm另类| 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 麻豆国产av国片精品| 国产精品1区2区在线观看.| a级毛片a级免费在线| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 国产精品亚洲av一区麻豆| 91久久精品电影网| 久久久久国内视频| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 国产欧美日韩精品一区二区| 免费av毛片视频| 欧美丝袜亚洲另类 | 欧美不卡视频在线免费观看| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 波多野结衣高清作品| 日本三级黄在线观看| 无遮挡黄片免费观看| 女警被强在线播放| 国产爱豆传媒在线观看| tocl精华| 三级男女做爰猛烈吃奶摸视频| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 热99在线观看视频| 国产精品久久电影中文字幕| 3wmmmm亚洲av在线观看| 最新在线观看一区二区三区| 国产三级在线视频| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 最近最新中文字幕大全免费视频| 香蕉久久夜色| 露出奶头的视频| 夜夜躁狠狠躁天天躁| 久久久成人免费电影| 狂野欧美激情性xxxx| 亚洲 国产 在线| 好男人在线观看高清免费视频| 在线a可以看的网站| 欧美激情在线99| 国产伦一二天堂av在线观看| 香蕉丝袜av| 18+在线观看网站| 19禁男女啪啪无遮挡网站| 日韩欧美国产在线观看| 久久精品夜夜夜夜夜久久蜜豆| 无人区码免费观看不卡| 精品人妻偷拍中文字幕| 一进一出抽搐动态| 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 亚洲精品影视一区二区三区av| 欧美乱色亚洲激情| 深爱激情五月婷婷| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| 小蜜桃在线观看免费完整版高清| 亚洲无线在线观看| 波多野结衣巨乳人妻| 少妇的逼好多水| 精品一区二区三区av网在线观看| 久久久久久久久大av| 亚洲国产精品久久男人天堂| www.色视频.com| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 亚洲久久久久久中文字幕| 18禁黄网站禁片免费观看直播| av片东京热男人的天堂| 久久国产乱子伦精品免费另类| 久久久久性生活片| 久久久久亚洲av毛片大全| 久久九九热精品免费| 欧美最新免费一区二区三区 | 久久天躁狠狠躁夜夜2o2o| 99久久九九国产精品国产免费| 亚洲七黄色美女视频| 亚洲国产日韩欧美精品在线观看 | h日本视频在线播放| 99国产精品一区二区蜜桃av| 成人高潮视频无遮挡免费网站| 国产黄色小视频在线观看| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 啦啦啦韩国在线观看视频| 国产欧美日韩精品亚洲av| 午夜精品一区二区三区免费看| 99热只有精品国产| 国产色婷婷99| 久久久久久国产a免费观看| av专区在线播放| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 色综合站精品国产| 中文资源天堂在线| 69人妻影院| 搞女人的毛片| 一夜夜www| 欧美+日韩+精品| 欧美日韩乱码在线| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看电影| 内射极品少妇av片p| 一夜夜www| www日本在线高清视频| 欧美成人性av电影在线观看| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 精品国产亚洲在线| 亚洲国产色片| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| 精品人妻一区二区三区麻豆 | 内地一区二区视频在线| 久久久久久久久大av| 制服人妻中文乱码| 老汉色av国产亚洲站长工具| av专区在线播放| 成人性生交大片免费视频hd| 久久精品人妻少妇| 国产亚洲欧美98| 亚洲自拍偷在线| www国产在线视频色| 丁香欧美五月| 国产精品永久免费网站| 丰满人妻一区二区三区视频av | 国产伦精品一区二区三区视频9 | 此物有八面人人有两片| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 欧美成人免费av一区二区三区| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 免费av观看视频| 少妇裸体淫交视频免费看高清| 757午夜福利合集在线观看| 天美传媒精品一区二区| 亚洲色图av天堂| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| 欧美日韩福利视频一区二区| 日本与韩国留学比较| 特大巨黑吊av在线直播| 黄色女人牲交| 午夜精品一区二区三区免费看| 久久香蕉国产精品| 欧美+日韩+精品| 丝袜美腿在线中文| 成年女人看的毛片在线观看| 亚洲人成电影免费在线| 特级一级黄色大片| 精品久久久久久久毛片微露脸| 无限看片的www在线观看| 亚洲av熟女| 亚洲国产精品合色在线| 亚洲精品久久国产高清桃花| 悠悠久久av| 精品无人区乱码1区二区| 色在线成人网| 亚洲第一电影网av| 欧美黑人欧美精品刺激| 精品久久久久久久人妻蜜臀av| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| 亚洲av第一区精品v没综合| h日本视频在线播放| 亚洲五月婷婷丁香| 欧美+亚洲+日韩+国产| 性欧美人与动物交配| 亚洲片人在线观看| 久久久精品大字幕| 听说在线观看完整版免费高清| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 午夜福利在线观看免费完整高清在 | 欧美性猛交黑人性爽| 一级毛片高清免费大全| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| 51国产日韩欧美| 国产男靠女视频免费网站| 狂野欧美激情性xxxx| 久久99热这里只有精品18| 久久久精品大字幕| 欧美性感艳星| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器| 搡老岳熟女国产| 级片在线观看| 亚洲av日韩精品久久久久久密| 一个人看视频在线观看www免费 | 婷婷精品国产亚洲av在线| 色综合欧美亚洲国产小说| 国产精品久久久人人做人人爽| 国内精品久久久久精免费| 国产精品自产拍在线观看55亚洲| 国内精品一区二区在线观看| 欧美成狂野欧美在线观看| 午夜福利在线在线| 亚洲国产精品久久男人天堂| 19禁男女啪啪无遮挡网站| 国产精品99久久久久久久久| 18禁裸乳无遮挡免费网站照片| 日韩免费av在线播放| 亚洲成a人片在线一区二区| 最新中文字幕久久久久| 99热精品在线国产| 18禁美女被吸乳视频| 三级男女做爰猛烈吃奶摸视频| 亚洲国产色片| 啦啦啦免费观看视频1| 国产综合懂色| 听说在线观看完整版免费高清| 欧美日韩精品网址| 日韩有码中文字幕| 国产精品香港三级国产av潘金莲| 中文在线观看免费www的网站| 久久久久久久午夜电影| 老熟妇乱子伦视频在线观看| 99精品久久久久人妻精品| 在线视频色国产色| 日本一本二区三区精品| 国产精品女同一区二区软件 | 亚洲欧美日韩东京热| 性色avwww在线观看| 男人舔奶头视频| 国产精品久久电影中文字幕| 99在线人妻在线中文字幕| 好看av亚洲va欧美ⅴa在| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 久久伊人香网站| 成年女人永久免费观看视频| 成年版毛片免费区| 熟女人妻精品中文字幕| 一区福利在线观看| 免费观看精品视频网站| 欧美一区二区亚洲| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 婷婷亚洲欧美| 丝袜美腿在线中文| 国产精品亚洲一级av第二区| 老司机午夜十八禁免费视频| 久久婷婷人人爽人人干人人爱| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 12—13女人毛片做爰片一| 中出人妻视频一区二区| 久久久久久久久久黄片| 内射极品少妇av片p| 国产亚洲精品久久久com| 亚洲精品在线观看二区| 天堂影院成人在线观看| 99国产综合亚洲精品| 精品不卡国产一区二区三区| 国产视频内射| 久久久久久久久久黄片| 欧美绝顶高潮抽搐喷水| 1024手机看黄色片| 一a级毛片在线观看| 可以在线观看毛片的网站| 欧美在线一区亚洲| 91久久精品电影网| 欧美中文综合在线视频| 欧美一区二区国产精品久久精品| 亚洲专区国产一区二区| xxxwww97欧美| 欧美黄色片欧美黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| 亚洲自拍偷在线| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 日本黄大片高清| 国产单亲对白刺激| 老汉色av国产亚洲站长工具| 少妇高潮的动态图| 热99re8久久精品国产| 亚洲精品成人久久久久久| 中文字幕久久专区| 国产精品久久久久久人妻精品电影| 亚洲成人久久性| 亚洲久久久久久中文字幕| 90打野战视频偷拍视频| 全区人妻精品视频| 成年女人毛片免费观看观看9| 免费高清视频大片| 欧美不卡视频在线免费观看| 在线免费观看不下载黄p国产 | 久久人人精品亚洲av| 国产成人a区在线观看| 欧美成人性av电影在线观看| 在线观看av片永久免费下载| av黄色大香蕉| 天美传媒精品一区二区| 91久久精品电影网| 在线播放国产精品三级| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 中亚洲国语对白在线视频| 两个人的视频大全免费| 日韩人妻高清精品专区| 成人av在线播放网站| 国产精品综合久久久久久久免费| 蜜桃亚洲精品一区二区三区| 国产91精品成人一区二区三区| 国产激情欧美一区二区| 听说在线观看完整版免费高清| 波野结衣二区三区在线 | 欧美一级毛片孕妇| 久久久久久久久久黄片| 亚洲无线观看免费| www.www免费av| 色哟哟哟哟哟哟| 国产精品亚洲av一区麻豆| 国产精品久久久久久精品电影| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 动漫黄色视频在线观看| 国产97色在线日韩免费| 免费电影在线观看免费观看| netflix在线观看网站| 亚洲精华国产精华精| 国产精品综合久久久久久久免费| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱| 国产av麻豆久久久久久久| 一二三四社区在线视频社区8| 美女被艹到高潮喷水动态| 日韩欧美免费精品| 网址你懂的国产日韩在线| 久久久色成人| 91av网一区二区| 国产视频内射| 色吧在线观看| 久久久久久久久中文|