• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氣體在無定型聚異戊二烯中擴(kuò)散的分子動(dòng)力學(xué)模擬

    2016-11-22 09:48:59汪亞順譚源源高木子源
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:力場(chǎng)異戊二烯阿爾伯

    魯 相 陳 循 汪亞順 譚源源 高木子源

    (1國防科學(xué)技術(shù)大學(xué)機(jī)電工程與自動(dòng)化學(xué)院,裝備綜合保障技術(shù)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410073;2阿爾伯塔大學(xué)化學(xué)與材料工程系,埃德蒙頓T6G0X6,加拿大)

    氣體在無定型聚異戊二烯中擴(kuò)散的分子動(dòng)力學(xué)模擬

    魯相1,*陳循1汪亞順1譚源源1高木子源2

    (1國防科學(xué)技術(shù)大學(xué)機(jī)電工程與自動(dòng)化學(xué)院,裝備綜合保障技術(shù)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410073;2阿爾伯塔大學(xué)化學(xué)與材料工程系,埃德蒙頓T6G0X6,加拿大)

    采用分子動(dòng)力學(xué)模擬方法研究了多個(gè)溫度下氧氣、氮?dú)饧凹淄樵跓o定型順式1,4-聚異戊二烯中的擴(kuò)散系數(shù)。在模擬過程中,使用COMPASS力場(chǎng)作為分子力場(chǎng)。應(yīng)用COMPASS力場(chǎng)的勢(shì)能函數(shù),聚合物的密度及玻璃化轉(zhuǎn)變溫度的計(jì)算結(jié)果與實(shí)驗(yàn)值有較好吻合。在278-378 K的溫度范圍內(nèi),通過3或1.5 ns時(shí)長(zhǎng)的正則系綜動(dòng)力學(xué)模擬,計(jì)算了不同溫度下氧氣、氮?dú)饧凹淄榈臄U(kuò)散系數(shù)。結(jié)果表明,根據(jù)愛因斯坦關(guān)系式計(jì)算得到的擴(kuò)散系數(shù)與實(shí)驗(yàn)結(jié)果比較接近。對(duì)氣體擴(kuò)散系數(shù)與溫度的關(guān)系進(jìn)一步研究,發(fā)現(xiàn)在278-378 K溫度范圍內(nèi),甲烷的擴(kuò)散系數(shù)隨溫度變化的半對(duì)數(shù)曲線圖是非線性的,而氧氣和氮?dú)獾臄U(kuò)散系數(shù)隨溫度變化的半對(duì)數(shù)曲線圖是線性的。本文研究結(jié)果有助于理解溫度對(duì)氣體擴(kuò)散的影響機(jī)制,并為高溫下氣體在天然橡膠中擴(kuò)散系數(shù)的測(cè)定及天然橡膠熱氧老化建模分析提供依據(jù)。

    氣體;擴(kuò)散系數(shù);聚異戊二烯;分子動(dòng)力學(xué);分子模擬

    1 Introduction

    The transport(diffusion)of gas in polymers has been a subject of ongoing interest for several decades.Many important practical applications depend on the information of transport phenomena, such as protective coatings,food packaging materials,and selective membranes for separation technology1-3.In addition,the diffusion data of oxygen are vital parameters for understanding and modeling the thermo oxidative degradation of polymers4,5. However,experimental measurements of the diffusion coefficients of gas over a wide temperature range are difficult and expensive, especially for the case of high temperatures4,6.When the temperature exceeds 373 K,elastomers begin to give off gas and the traditional measurements could not be continued6.Moreover, oxygen inevitably reacts with the polymer during the diffusion process at sufficiently high temperatures,thus the measured diffusion rate without special correction will not increase but decrease with temperatures under these conditions4.

    By reasonable solutions of Fick′s law,the process of gas transport in polymers can be well depicted from a macroscopic point of view7,8.In order to get a better understanding of the phenomena of gas diffusion in polymers,the elucidation of diffusion mechanism on a microscopic level is necessary.Unfortunately,although there are many theoretical models at present, including the free-volume9and the dual-mode sorption10models, the elucidations based on these models are not satisfactory11-13.The chemical structure of polymers can be considered to be the predominant factor which controls the magnitude of permeability(or diffusion)coefficient14.However,even if knowledge on the polymer structure is obtained,the diffusion coefficient can not be estimated by these theoretical models because the unknown parameters in these models are not directly related to the polymer structure.

    To overcome the above-mentioned obstacles existing in the experiment and theory,computer modeling is increasingly used as a standard tool in the investigation of gas diffusion in polymeric materials.MD simulation based on computer modeling has been proven to be a useful tool for exploring the structure-property relationship of amorphous polymeric materials15-17.Due to the fast development of high-speed computational facilities in recent years,MD becomes a powerful tool for predicting diffusion constants of gas in natural and synthetic polymers at room temperature,and it can be utilized to describe the complex transport mechanism18,19.For example,Tao et al.20discussed the effect of polymerization degree of polypropylene on the diffusion coefficient of oxygen.Lü et al.21calculated the diffusion coefficients of the oxygen molecules in NaOH and KOH solutions.Liu and Huang22studied the transport properties of oxygen and nitrogen in the para-substituted polystyrenes.

    Much work on MD simulation of gas diffusion through rubbery and glassy polymers has been reported15-18,22-28,but only a few studies deal with the temperature dependence of diffusion coefficients and diffusion mechanism29-32.Gee and Boyd29employed MDsimulation to estimate the methane diffusion in amorphous cis-1,4-polybutadiene(rubbery polymer)in the temperature range of 250-450 K.Their study showed a decrease of activation energy with the temperature for methane.Mozaffari et al.32performed MD simulation to study the gas diffusion in polystyrene over a wide range of temperatures,300-500 K.For the logarithm of diffusivity versus inverse temperature data,their calculated results showed that a discontinuity in slope of these data was seen at the glass transition temperature for some gases.But the plot was linear over the whole temperature range for some other light gases.The diffusion coefficients calculated by their model were in good agreement with the experimental data.

    The cis-1,4-polyisoprene(natural rubber)is selected as the polymer system in this study.It is still a widely used rubber at present and many experimental studies with regard to its physical properties and diffusivity to gases have been carried out14.Experimental data concerning the diffusion of nitrogen have been obtained over a temperature range of 293-373 K33.For comparison with experimental data,MD simulations are performed for the calculation of diffusion of gases(oxygen,nitrogen and methane)at temperatures ranging from 278 to 378 K.Meanwhile the calculated density and glass transition temperature are used to validate the availability of the utilized force field in the simulation. Finally,the temperature dependence of diffusion coefficients and diffusion mechanism are examined.

    2 Methodology

    The transmission of gas through polymer films is defined as permeability P.Permeability is in nature the normalized permeating flux with reference to thickness and pressure.Fick′s law and Henry′s law apply to the actual process of gas permeation through nonporous polymer film.The permeability coefficient P can also be referred to as the product of the diffusivity and solubility,that is P=DS,where D stands for diffusion coefficient and S stands for the solubility coefficient.The value of diffusivity could be determined by the product.Consequently,the error in values of D comprises the experimental error in measurements of P and S,and it may be very large under the worst case1,6.A more accurate diffusivity is derived from the lag time of the permeation6.

    In MD simulation,the trajectories of an ensemble of particles are tracked by iteratively solving Newton′s equation of motion. For the sake of calculation of the diffusion coefficient,the particle center-of-mass mean-square displacement(MSD)has to be calculated using the obtained trajectory.When the long-time limit has been reached,the MSD is linear in time,and then the diffusion coefficient of penetrants can be calculated by means of the Einstein equation11,32

    where ridenotes the cartesian position vector of atom i,N is the total number of identical atoms,t is the simulation time and the bracket denotes the average over all possible time origins alongthe trajectory.It deserves notice that the diffusion coefficient calculated from Eq.(1)is designated as the self diffusion coefficient,whereas the experimental measurements yield mutual diffusion coefficients1,7.However,the self diffusion coefficient is equal to the mutual diffusion coefficient in the limit of infinite dilution7,26.The gas concentration is usually very low both in the simulation and measurement for the diffusion of gas molecules. Thus the discrepancy between calculated diffusion coefficient and experimental value should be small.

    In general,the plot of MSD can be divided into three distinct parts.The first part is characterized by the short-time ballistic motion.Then the case of anomalous diffusion occurs,which is first reported by Müller-Plathe2,and the slope of log-log representation of MSD versus time is smaller than unity.Finally when the simulation time is long enough,the case of normal diffusion occurs and the mean square displacement is proportional to the time t.Eq.(1)depends on the assumption that the penetrant follows a random walk in the simulation runs.For a short simulation time, the motion of penetrant at various times may be correlated and this may lead to the anomalous diffusion18.In the case of anomalous diffusion,the Einstein equation is no longer valid and it will lead to an overestimation of diffusion constants.To ensure that the system has reached the normal diffusion regimes,the slope of loglog plot of MSD versus time must approach to unity11,22.

    According to the free volume model,there is a volume unoccupied by the polymeric molecules(namely free volume)in the polymer matrix.Gas molecules could reside in the suitable microcavities of free volume.With the motion of segments of the polymer chain,a microcavity adjacent to the gas molecule may be created during the redistribution of the free volume.From time to time,the molecule obtains sufficient thermal energy to be able to jump into the neighboring cavity.If the microcavity is vacant and capable of holding the molecule simultaneously,a diffusive motion is completed by the successful jump of the molecule to the cavity.

    When polymer system with penetrant is at equilibrium,the jumping model of diffusion stated above may also be related to the stochastic equation proposed by Bueche25,31

    where δ is the average jump displacement or hopping distance and τ is the average residence time between jumps.For sufficient statistics used in the calculation of diffusion coefficient,10 jump occurrences for a single gas molecule may need to be sampled from the trajectory of dynamics simulation.

    3 Simulation details

    The Materials Studio(MS)software of Accelrys Inc.was used to perform the MD simulation.To successfully predict the transport property by MD simulation,the choice of proper force filed type is of great importance.United-atom(UA)force field has been commonly used in the past simulations to reduce the computational time.However,the obtained calculation results often differ from the experimental value by 1-2 orders of magnitude, which shows that the UA is not detailed enough to describe the local barrier to the penetrant motion15.In contrast,COMPASS force field represents all atoms explicitly,and it has been well validated in prediction of transport properties of small molecules in polymers26.Therefore,the COMPASS force field was used in all the simulations in this study.The detailed atom parameters and potential function are included in the validation of COMPASS34.

    Previous studies on the polymer chain length effect have indicated that many free ends always lead to an overestimation of diffusivity11,22.To reduce such effect of chain ends on the simulation results,the cis-1,4-polyisoprene was modeled by a single chain consisting of 100 monomer units.The length of sides of the cubic unit cell was about 2.3 nm.The generated polymer chain was subsequently subjected to geometry optimization by the Forcite module.Then the cubic amorphous cell of the single chain was developed using the Amorphous module in MS.cis-1,4-polyisoprene is a kind of simple flexible chain polymers,and the original density of the amorphous cell was set to be the measured density 0.913 g·cm-3at 298 K.It should be noted that the atoms contained in the simulated system is much smaller than that in a real molecular system.If simulation is carried out on this isolated system containing such a small quantity of atoms,significant surface effect would be evident.Consequently,periodic boundary conditions were imposed on the cubic cell to avoid surface effects while the number of atoms was still tractable11.The construction of the amorphous cell was based on the“self-avoiding”randomwalk method of Theodorou and Suter35and on the Meirovitch scanning method36.During the construction process,the length of the backbone chain was increased stepwisely under periodic boundary conditions.A total of 10 cells have been constructed using this method.

    The gas diffusion under low temperatures is slow,and the hop of gas in the polymer matrix is rare.Reliable prediction of the diffusion coefficient needs more statistics under this case. Therefore,four molecules of gas(oxygen,nitrogen,and methane) were inserted into each cell to improve sampling from the subsequent dynamic trajectories at various temperatures.

    The initial microstructures constructed by the procedure stated above were usually not distributed uniformly in the cubic unit cell. Because of the overlap of atoms,the total potential energy of the initial system was abnormally higher than that of practical system1. Therefore,the geometry optimization of the Forcite module was used to minimize the potential energy of the initial system.After geometry optimization on ten cells,the specific cell with the lowest energy is taken as the representative of the simulated system.Fig.1 shows the cubic cell for the system of polyisoprene and oxygen.

    Next the microstructure was equilibrated to make sure that the system is close to the state of equilibrium before the production runs of the simulation.Annealing was performed by the isothermal-isobaric(NPT)dynamic runs at 1.013×105Pa using Annealing procedure of the Forcite module.During an annealingcycle,the cell was first heated by a step of 20 K from 278 to 378 K,and then the cell was cooled back to 298 K using the same step increments.There are 2 to 3 cycles in the entire annealing process and the duration for the NPT dynamic run at each temperature was 10 ps.The annealed cell was further relaxed by a NPT dynamic run of 250-350 ps at a target temperature(278-378 K)and a pressure of 1.013×105Pa.The fluctuations of potential and kinetic energies with the simulation time were plotted.The small deviation from the average of the plot needs to be verified to ensure the microstructure in equilibrium.

    Fig.1 Acubic cell for the system of cis-1,4-polyisoprene and oxygen

    The summation method for nonbond interactions has great effect on the accuracy and efficiency of the energy calculation11. The commonly used summation method includes Ewald and group based summation method.Ewald summation method may provide better accuracy for the calculation of coulombic terms than other summation methods,but it is more computationally intensive26. Thus group-based and Ewald summation method were used for the van der Waals and electrostatic interactions respectively in the present study.This manner could take advantages of both the accuracy of Ewald and the efficiency of group-based summation method.The cutoffs are used in group-based summation method to increase the speed of calculation of nonbond interactions.It is crucial to note that the cutoff distance must be less than one half of the shortest side length of the cell11,12.The spline function is simultaneously employed to avoid the discontinuities caused by the direct cutoffs.During the simulations,a cutoff distance of 1 nm with a spline function of 0.1 nm was applied to the energy calculation.The accuracy of Ewald was 0.004 kJ·mol-1.The time step of 1 fs was employed throughout the simulations.

    A short simulation time may lead to the overestimation of diffusivity and an overlong simulation time induces a waste of the computational facilities.To obtain accurate predictions of diffusion coefficients at reasonable cost,the length of production run at each temperature should be determined in advance.According to Eq.(3),if D is considered to be 1.5×10-10m2·s-1,a 3-ns simulation will meet 10 jump occurrences on the assumption thatδis 0.5 nm.Based on this fact and the measured diffusion coefficients of gases at 298 and 315 K,the arrangement on the production run time is shown in Table 1.In all simulation runs,both the temperature and pressure was controlled by the Berendsen′s method37, where the decay constant was 0.1 ps.

    Table 1 Settings for the simulation time of production runs at various temperatures

    4 Results and discussion

    4.1Model verification

    The density of polymers greatly affects the diffusion coefficient of penetrant within the polymeric materials16,18.Correspondingly, the predictions of density at various temperatures should be close to the available experimental values.As a validation,the specific volume is determined from NPT dynamic runs with a stepwise cooling procedure.The plot of the obtained specific volume versus temperature is shown in Fig.2.

    The simulation data falling above and below the reported glass transition temperature was fitted by the least-square fitting method. Then volumetric thermal expansion coefficient can be derived from the obtained fitting equation combined with the expression38

    whereαdenotes the thermal expansion coefficient andυis the specific volume at one temperature.Large change in density is found at the glass transition temperature Tgdue to the drastic change in the local movement of polymer chains at this temperature.Thus glass transition temperature is determined as the temperature at the intersection of the two line segments in Fig.239. Simulation results and corresponding experimental data at 298 K are shown in Table 2.

    Fig.2 Specific volume versus temperature for amorphous cis-1,4-polyisoprene

    Table 2 shows that the relevant experimental data are reproduced well by the results calculated from the model used in this study,especially for the case of glass transition temperature.Dueto the finite chain length effect,the estimated density is a little smaller than the experimental value31.It is also noticeable that the experimental values of density and glass transition temperature are subject to some uncertainties.In summary,the simulation result of density is accurate enough to be expected to have a minor effect on the calculation of diffusion coefficient.

    Table 2 Comparison of estimated and experimental properties

    4.2Motion of gas molecules

    One of the simple ways of qualitatively studying the motion of individual gas molecules is to monitor the trace of the molecule. Fig.3(a)and(b)show the typical trace of an oxygen molecule diffusing through amorphous cis-1,4-polyisoprene at 298 and 358 K,respectively.Two types of motion can be identified in the diffusion process described by the picture.On the one hand,the gas molecules stay in the microcavities in the polymer for a long period of time.When they are confined in the microcavities,their motions cover most regions of the microcavity because of their randomly oscillatory motion.The amplitude of oscillations depends on the size of the visited microcavities.On the other hand, the gas molecules occasionally stop to perform a quick hop from one microcavity to another neighboring microcavity.The length of the trajectory in Fig.3(b)is apparently larger than that in Fig.3 (a).This discrepancy between Fig.3(a)and 3(b)implies that the gas molecules move faster at high temperatures,which is also an indication of the faster redistribution of the free volume at high temperatures.

    Fig.3 Typical trajectories of an oxygen molecule in amorphous cis-1,4-polyisoprene(a)at 298 K and(b)at 358 K during a period of 1.5 ns

    According to the procedure described in the second section of this study,the MSD of all gas molecules is calculated over a wide range of temperatures 278-378 K.Fig.4 displays the mean square displacement of oxygen molecules at 298 and 318 K respectively. It can be seen that each MSD is indeed a linear function over a period of time in this plot.The slopes of the straight lines fitted for the log-log plot of MSD versus time at 298 and 318 K are 1.05 and 1.08,respectively,which confirm the case of normal diffusion. Fig.4 is characterized with different starting times of normal diffusion at various temperatures.Further investigation of the MSD at various temperatures in Fig.4 reveals that the transition from abnormal diffusion to Einstein diffusion takes place earlier at high temperatures.

    Based on the definition in Eq.(2),MSD is calculated by averaging the square displacements over all gas molecules and all possible time origins along the time trajectory.However,the total number of possible time origins is much less at long simulation times.This event leads to an increase of statistics error towards the end of the trajectory2,29.Consequently,the resultant nonlinear part adjacent to the end of the run is abandoned during the calculation of diffusion coefficients.A linear regression is performed on the remaining linear portion of MSD to calculate the diffusion coefficients.The calculated diffusion coefficients of gas molecules at 298 K are summarized in Table 3,together with the experimental data.The calculation results are in good agreement with experimental data.To the best of our knowledge,there are few studies on diffusion of gas molecules in amorphous cis-1,4-polyisoprene at various temperatures.Attention is paid to theprevious study of Meunier on diffusion of gas molecules in similar polymer amorphous cis-1,4-polybutadiene31.The agreement between calculation results and experimental data is better in the present study than that in former simulation study of Meunier,due to the differences in summation method and polymer chain length.

    Fig.4 MSD of oxygen molecules in amorphous cis-1,4-polyisoprene at 298 and 318 K

    Table 3 Comparison of the calculated diffusion coefficients with experimental data for oxygen,nitrogen,and methane at 298 K

    4.3Temperature dependence of diffusion coefficients

    Many experimental observations suggest that the diffusion coefficients increase exponentially with increasing temperature on a narrow range of temperatures.The temperature dependence of diffusion coefficient can be expressed by means of Arrhenius equation

    where D0is a pre-exponential factor,EDis the apparent activation energy and R is gas constant.Eq.(5)indicates that diffusion of small molecules in polymer is visualized as a thermal-activated process,which is first proposed by Barrer40.However,according to free volume models of diffusion,the temperature dependence is of the Williams-Landel-Ferry(WLF)form41.Regardless of the existing difference in detailed description of the diffusion process, both models suggest activation energy decreases with increasing temperature.

    Diffusion coefficients of oxygen,nitrogen,and methane molecules in amorphous cis-1,4-polyisoprene are shown in Figs.5-7 as a function of temperature.Calculated activation energies are 36.0 and 30.1 kJ·mol-1for oxygen and nitrogen respectively in the temperature range of 278-378 K.Experimental activation energies are 31.4-33.5 and 31.4-36.4 kJ·mol-1for oxygen and nitrogen respectively in the temperature range of 293-323 K6,14. The calculation results for oxygen and nitrogen compare well with the experimental data in the same temperature range.As for the activation energy of methane,it decreases with the temperature, as shown in Fig.7.The linearity in Arrhenius plots of diffusion coefficients for oxygen and nitrogen is distinctly different from the curvature in the similar plot for methane.This discrepancy may be attributed to the differences in penetrant size and intermolecular interactions.

    Fig.5 Temperature dependence of diffusion coefficients for oxygen in amorphous cis-1,4-polyisoprene

    Fig.6 Temperature dependence of diffusion coefficients for nitrogen in amorphous cis-1,4-polyisoprene

    Fig.7 Temperature dependence of diffusion coefficients for methane in amorphous cis-1,4-polyisoprene

    Some literature has reported that the curvature is also observed for nitrogen diffusion through natural rubber over 293-373 K4,6. The curvature is gradually evident with the increase of the combined sulfur content in the previous study42.However,it should be noticed that the early experimental measurements are taken on the natural rubber vulcanizates,while the effect of vulcanization is not considered in this simulation.Further,the linearity is also reported by previous simulation for oxygen and nitrogen diffusion through polybutadiene and polystyrene,together with the nonlinearity for methane over a wide range of temperatures29-32.Consequently,the simulation results of diffusion for oxygen and nitrogen are still reasonable at high temperatures.From the results of our research and previous simulation study,it is concluded that for methane and other large-size penetrants in most amorphous polymers(except polyisobutylene),the temperature dependence of diffusion coefficients is of the WLF type over a large temperature regime.But for oxygen and nitrogen,theArrhenius-type temperature dependence appears to be valid for the diffusion coefficients over the whole temperature studied.

    Fig.8 exhibits the displacements of methane in amorphous cis-1,4-polyisoprene at 318 and 358 K.The displacement of methane increases with the temperature.In addition,the jumps of gas molecules are more frequent and the jump size is larger at 358 Kthan that at 318 K.In fact,the movement of the polymer chain is slow at low temperatures,thus the formation and closing of those microcavities are infrequent.Moreover,the higher density of polymer at lower temperatures causes a small probability of largesize microcavities.Small probability of successful jump may correspond to the increase of activation energy at low temperature for large-size gas molecules.According to free volume models, gas molecules follow a liquidlike mechanism at high temperatures. When the temperature increases,the total accessible free volume for gas molecules increases and gas molecules can move more freely within amorphous polymers.Temperature greatly affects the motion of methane molecules,and the change of diffusion mechanism comes with the decrease of activation energy for methane molecules.To be more specific,the diffusion mechanism changes from jumping mechanism at low temperatures to the liquidlike mechanism at high temperatures for methane molecules. In contrast,the diffusion of oxygen and nitrogen molecules follows the hopping mechanism over the temperature range investigated.

    Fig.8 Displacements of a methane molecule fromits initial position at 318 and 358 K

    5 Conclusions

    MD simulations were used to study the diffusion of oxygen, nitrogen,and methane in amorphous cis-1,4-polyisoprene.The starting structures for classical MD simulations were generated and equilibrated using the full atomistic potential of COMPASS force filed.The model used in this study accurately reproduced the experimental values of density and glass transition temperature. The diffusion coefficients of gas molecules were calculated by MD simulations over a wide range of temperatures,278-378 K. The calculation results were in good agreement with available experimental data.Simulation results show that the higher the temperature,the earlier the transition from abnormal diffusion to normal diffusion will be.

    As the calculation results at high and low temperatures show, the Arrhenius plot of diffusivity versus inverse temperature is nearly linear over the investigated temperatures for oxygen and nitrogen.But for the case of diffusion for methane,significant curvature to lower activation energy is observed in the Arrhenius plot as the temperature increases,which is consistent with the analysis based on the free volume model and Barrer′s theory.The change in the slope of Arrhenius plot indicates a gradual transition of diffusion mechanism,that is,a crossover from jumping mechanism at low temperatures to the liquidlike mechanism at high temperatures.

    References

    (1) Charati,S.G.;Stern,S.A.Macromolecules 1998,31(16),5529. doi:10.1021/ma980387e

    (2) Müller-Plathe,F.J.Chem.Phys.1991,94(4),3192. doi:10.1063/1.459788

    (3) Kucukpinar,E.;Doruker,P.Polymer 2003,44(12),3607. doi:10.1016/S0032-3861(03)00166-6

    (4) Celina,M.;Gillen,K.T.Macromolecules 2005,38(7),2754. doi:10.1021/ma0487913

    (5) Wise,J.;Gillen,K.T;Clough,R.L.Polymer 1997,38(8), 1929.doi:10.1016/S0032-3861(96)00716-1

    (7) Frish,H.L.;Stern,S.A.CRC Crit.Rev.Solid State Mater.Sci. 1983,11(2),123.doi:10.1080/01611598308244062

    (8) Crank,J.The Mathematics of Diffusion,2nd ed.;Clarendon Press:Oxford,1975;pp 2-8.

    (9) Fujita,H.Fortschr.Hochpolym.-Forsch.1961,3,1. doi:10.1007/BFb0050514

    (10) Stern,S.A.;Frisch,H.L.Annu.Rev.Mater.Sci.1981,11,523. doi:10.1146/annurev.ms.11.080181.002515

    (11) Hofmann,D.;Fritz,L.;Ulbrich,J.;Schepers,C.;Bohning,M. Macromol.Theory Simul.2000,9(6),293.doi:10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1

    (12) Hofmann,D.;Fritz,L.;Ulbrich,J.;Paul,D.Comput.Theor. Polym.Sci.2000,10(5),419.doi:10.1016/S1089-3156(00) 00007-6

    (13) Guevara-Carrion,G.;Nieto-Draghi,C.;Vrabec,J.;Hasse,H.J. Phys.Chem.B 2008,112(51),16664.doi:10.1021/jp805584d

    (14) Furuta,I.;Kimura,S.I.;Iwama,M.Physical Contants of Rubbery Polymers.In Polymer Handbook,4th ed.;Brandrup,J., Immergut,E.H.,Crulke,E.A.Eds.;Wiley:New York,1998;pp V5-V6.

    (15) Tamai,Y.;Tanaka,H.;Nakanishi,K.Macromolecules 1994,27 (16),4498.doi:10.1021/ma00094a011

    (16) Cuthbert,T.R.;Wagner,N.J.;Paulaitis,M.E.;Murgia,G.; D′Aguanno,B.Macromolecules 1999,32(15),5017. doi:10.1021/ma980997e

    (17) Fried,J.R.;Goyal,D.K.J.Polym.Sci.:Part B:Polym.Phys. 1998,36(3),519.doi:10.1002/(SICI)1099-0488(199802)36:3< 519::AID-POLB13>3.0.CO;2-J

    (18) Müller-Plathe,F.J.Chem.Phys.1992,96(4),3200. doi:10.1063/1.461963

    (19) Feng,H.J.;Gao,W.;Sun,Z.F.;Lei,B.X.;Li,G.N.;Chen,L. P.J.Phys.Chem.B 2013,117(41),12525.doi:10.1021/ jp401824d

    (20) Tao,C.G.;Feng,H.J.;Zhou,J.;Lü,L.H.;Lu,X.H.Acta Phys.-Chim.Sin.2009,25(7),1373.[陶長(zhǎng)貴,馮海軍,周健,呂玲紅,陸小華.物理化學(xué)學(xué)報(bào),2009,25(7),1373.] doi:10.3866/PKU.WHXB20090719

    (21) Lü,Y.Q.;Zheng,S.L.;Wang,S.N.;Du,H.;Zhang,Y.Acta Phys.-Chim.Sin.2015,31(6),1045.[呂頁清,鄭詩禮,王少娜,杜浩,張懿.物理化學(xué)學(xué)報(bào),2015,31(6),1045.] doi:10.3866/PKU.WHXB201504071

    (22) Liu,Q.L.;Huang,Y.J.Phys.Chem.B 2006,110(35),17375. doi:10.1021/jp063174x

    (23) Fried,J.R.;Ren,P.Comput.Theor.Polym.Sci.2000,10(5), 447.doi:10.1016/S1089-3156(00)00005-2

    (24) Lim,S.Y.;Tsotsis,T.T.;Sahimi,M.J.Chem.Phys.2003,119, 496.doi:10.1063/1.1576755

    (26) Fried,J.R.;Sadat-Akhavi,M.;Mark,J.E.J.Membr.Sci.1998, 149(1),115.doi:10.1016/S0376-7388(98)00151-3

    (27) Tocci,E.;Bellacchio,E.;Russo,N.;Diroli,E.J.Membr.Sci. 2002,206(1-2),389.doi:10.1016/S0376-7388(01)00784-0

    (28)Wang,X.Y.;Willmore,F.T.;Raharjo,R.D.;Wang,X.C.; Freeman,B.D.;Hill,A.J.;Sanchez,I.C.J.Phys.Chem.B 2006,110(33),16685.doi:10.1021/jp0622334

    (29) Gee,R.H.;Boyd,R.H.Polymer 1995,36(7),1435. doi:10.1016/0032-3861(95)95922-N

    (30) Pant,P.V.K.;Boyd,R.H.Macromolecules 1993,26(4),679. doi:10.1021/ma00056a019

    (32) Mozaffari,F.;Eslami,H.;Moghadasi,J.Polymer 2010,51(1), 300.doi:10.1016/j.polymer.2009.10.072

    (33) VanAmerongen,G.J.J.Polym.Sci.1950,5(3),307. doi:10.1002/pol.1950.120050304

    (35) Theodorou,D.N.;Suter,U.W.Macromolecules 1985,18(7), 1467.doi:10.1021/ma00149a018

    (36) Meirovitch,H.J.J.Chem.Phys.1983,79(1),502.doi:10.1063/ 1.445549

    (37) Berendsen,H.J.C.;Postama,J.P.M.;Van Gunsteren,W.F.; DiNola,A.;Haak,J.R.J.Chem.Phys.1984,81(8),3684. doi:10.1063/1.448118

    (38) Fried,J.R.;Ren,P.Comput.Theor.Polym.Sci.1999,9(2),111. doi:10.1016/S1089-3156(99)00002-1

    (39) Yu,K.Q.;Li,Z.S.;Sun,J.Z.Macromol.Theory Simul.2001, 10(6),624.doi:10.1002/1521-3919(20010701)10:6<624::AIDMATS624>3.0.CO;2-K

    (41) Williams,M.L.;Landel,R.F.;Ferry,J.D.J.Am.Chem.Soc. 1955,77(14),3701.doi:10.1021/ja01619a008

    (42) Barrer,R.M.;Skirrow,G.J.Polym.Sci.1948,3(4),549. doi:10.1002/pol.1948.120030410

    Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene

    LU Xiang1,*CHEN Xun1WANG Ya-Shun1TAN Yuan-Yuan1GAOMU Zi-Yuan2
    (1Laboratory of Science and Technology on Integrated Logistics Support,College of Mechatronic Engineering and Automation,National University of Defense Technology,Changsha 410073,P.R.China;2Department of Chemical and Materials Engineering,University of Alberta,Edmonton T6G0X6,Canada)

    Molecular dynamics(MD)simulations were performed to study the transport properties of gases (oxygen,nitrogen,and methane)in amorphous cis-1,4-polyisoprene over a wide range of temperatures.The COMPASS force field was used as the molecular mechanics force field in the simulations.Experimental values of density and glass transition temperature were successfully reproduced using the atomistic potentials determined by COMPASS.Diffusion coefficients were determined from long NVT simulation times(up to 3 or 1.5 ns)in the temperature range of 278-378 K.The diffusion coefficients calculated fromthe Einstein relationship agree well with available experimental data.Further studies on the temperature dependence of diffusion coefficients indicate that curvature is observed in the Arrhenius plot of diffusivity versus inverse temperature for methane,but the plots are linear over the investigated temperature range for oxygen and nitrogen.These simulation results are useful to understand the temperature dependence of diffusion coefficients,and provide a basis for the determination of diffusion coefficients at high temperatures and the modeling of thermo-oxidative degradation of polyisoprene.

    Gas;Diffusion coefficient;Polyisoprene;Molecular dynamics;Molecular simulation

    April 28,2016;Revised:June 29,2016;Published online:June 29,2016.

    .Email:luxiang9014@126.com;Tel:+86-13549681943.

    O641

    10.3866/PKU.WHXB201606292

    The project was supported by the National Natural Science Foundation of China(51375487,51205402).國家自然科學(xué)基金(51375487,51205402)資助項(xiàng)目?Editorial office ofActa Physico-Chimica Sinica

    (6) VanAmerongen,G.J.J.Appl.Phys.1946,17,972. 10.1063/1.1707667

    (25) Hu,N.;Fried,J.R.Polymer 2005,46(12),4330.10.1016/j. polymer.2005.03.017

    (31) Meunier,M.J.Chem.Phys.2005,123,134906.10.1063/ 1.2049274

    (34) Sun,H.J.Phys.Chem.B 1998,102(38),7338.10.1021/ jp980939v

    (40) Barrer,R.M.J.Phys.Chem.1957,61(2),178.10.1021/ j150548a012

    猜你喜歡
    力場(chǎng)異戊二烯阿爾伯
    基于物理模型的BaZrO3鈣鈦礦機(jī)器學(xué)習(xí)力場(chǎng)
    力場(chǎng)防護(hù)罩:并非只存在于科幻故事中
    調(diào)性的結(jié)構(gòu)力場(chǎng)、意義表征與聽覺感性先驗(yàn)問題——以貝多芬《合唱幻想曲》為例
    脫氧核糖核酸柔性的分子動(dòng)力學(xué)模擬:Amber bsc1和bsc0力場(chǎng)的對(duì)比研究?
    良心
    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect
    蒲公英種子的大夢(mèng)想
    一種室溫硫化聚異戊二烯橡膠的制備方法
    良 心
    中外文摘(2015年22期)2015-11-22 23:08:52
    一種制備異戊二烯聚合物的方法
    石油化工(2015年9期)2015-08-15 00:43:05
    国产精品久久久久久精品电影小说| 中文字幕精品免费在线观看视频| 啦啦啦在线免费观看视频4| 久久 成人 亚洲| 丰满少妇做爰视频| 色播在线永久视频| 美女福利国产在线| 亚洲自偷自拍图片 自拍| 又紧又爽又黄一区二区| 婷婷成人精品国产| 新久久久久国产一级毛片| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 脱女人内裤的视频| 亚洲 国产 在线| 成年人免费黄色播放视频| 又大又爽又粗| 人人妻人人添人人爽欧美一区卜| 国产亚洲一区二区精品| 久久久欧美国产精品| 大香蕉久久网| 国产真人三级小视频在线观看| 女性生殖器流出的白浆| 国产精品久久久av美女十八| 国产伦理片在线播放av一区| 免费女性裸体啪啪无遮挡网站| a级毛片在线看网站| 国产成人一区二区三区免费视频网站| √禁漫天堂资源中文www| 黄色毛片三级朝国网站| 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看| 在线观看66精品国产| 亚洲欧美激情在线| videos熟女内射| 久久毛片免费看一区二区三区| 久久天堂一区二区三区四区| 久久中文字幕一级| 男女免费视频国产| 香蕉丝袜av| 精品乱码久久久久久99久播| videosex国产| 亚洲第一av免费看| 国产精品影院久久| 国产在线观看jvid| 欧美+亚洲+日韩+国产| 成人av一区二区三区在线看| 亚洲中文字幕日韩| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 亚洲第一青青草原| 国产免费现黄频在线看| 亚洲欧美一区二区三区黑人| 国产精品偷伦视频观看了| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 精品国产乱子伦一区二区三区| 中文字幕精品免费在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 中文欧美无线码| 91老司机精品| 亚洲国产成人一精品久久久| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| av电影中文网址| 一个人免费看片子| 亚洲精华国产精华精| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| av在线播放免费不卡| 亚洲av欧美aⅴ国产| svipshipincom国产片| 精品福利观看| 99国产精品免费福利视频| 欧美日韩视频精品一区| 最近最新中文字幕大全电影3 | videosex国产| 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 国产黄频视频在线观看| 精品国产一区二区久久| 国产成人啪精品午夜网站| 亚洲欧美日韩高清在线视频 | 亚洲熟妇熟女久久| 在线看a的网站| 亚洲熟女精品中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久人妻精品电影 | 菩萨蛮人人尽说江南好唐韦庄| 最新的欧美精品一区二区| 成人特级黄色片久久久久久久 | 热99国产精品久久久久久7| 水蜜桃什么品种好| 天天躁夜夜躁狠狠躁躁| 午夜福利乱码中文字幕| 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区在线不卡| 国产成+人综合+亚洲专区| 在线观看www视频免费| tube8黄色片| 黄色视频不卡| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 欧美大码av| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 国产99久久九九免费精品| 日韩制服丝袜自拍偷拍| 国产成人精品无人区| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 天天添夜夜摸| 国产精品免费大片| 精品国产亚洲在线| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频| 久热爱精品视频在线9| 久久av网站| 国产成人av教育| 亚洲专区字幕在线| 午夜福利,免费看| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 国产主播在线观看一区二区| 日韩人妻精品一区2区三区| 午夜成年电影在线免费观看| 男人舔女人的私密视频| 电影成人av| 天堂8中文在线网| 999久久久国产精品视频| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 亚洲人成77777在线视频| 狂野欧美激情性xxxx| 国产精品免费视频内射| 亚洲人成77777在线视频| 老司机福利观看| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 多毛熟女@视频| 精品一区二区三区视频在线观看免费 | 亚洲av片天天在线观看| 国产不卡av网站在线观看| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影 | 久久精品国产综合久久久| 国产成人系列免费观看| 香蕉国产在线看| 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 狂野欧美激情性xxxx| 国产日韩欧美视频二区| 少妇裸体淫交视频免费看高清 | 亚洲五月婷婷丁香| 久久精品国产综合久久久| 男女无遮挡免费网站观看| 成人手机av| netflix在线观看网站| 久久狼人影院| 久久这里只有精品19| 久久久久网色| 91精品三级在线观看| 亚洲免费av在线视频| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| 一级片'在线观看视频| 另类精品久久| 大型av网站在线播放| 国产成人av激情在线播放| 涩涩av久久男人的天堂| 日本av免费视频播放| 女人爽到高潮嗷嗷叫在线视频| 成年动漫av网址| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 午夜视频精品福利| 1024视频免费在线观看| 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 黄色成人免费大全| 免费观看人在逋| 国产精品一区二区在线不卡| 美女午夜性视频免费| 制服诱惑二区| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 天天添夜夜摸| 欧美黑人精品巨大| 999精品在线视频| 午夜视频精品福利| 婷婷成人精品国产| 国产免费av片在线观看野外av| 99国产精品免费福利视频| 亚洲一码二码三码区别大吗| 性少妇av在线| 黑人操中国人逼视频| 久久人人97超碰香蕉20202| 岛国毛片在线播放| 免费在线观看黄色视频的| 一本久久精品| videos熟女内射| 丝袜美腿诱惑在线| 在线av久久热| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品高潮呻吟av久久| 51午夜福利影视在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 岛国在线观看网站| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | 国产精品亚洲av一区麻豆| 色综合婷婷激情| 自线自在国产av| 极品教师在线免费播放| 18禁黄网站禁片午夜丰满| 91老司机精品| 中文亚洲av片在线观看爽 | 国产欧美日韩一区二区三| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 真人做人爱边吃奶动态| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 青草久久国产| 亚洲欧洲日产国产| 欧美日韩精品网址| 久久亚洲精品不卡| 亚洲精华国产精华精| av一本久久久久| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 伊人久久大香线蕉亚洲五| 国产免费现黄频在线看| 成人国产av品久久久| 久久久精品免费免费高清| 国产成人影院久久av| 日本av手机在线免费观看| 老熟妇仑乱视频hdxx| 午夜福利在线免费观看网站| 人人澡人人妻人| 精品视频人人做人人爽| 狂野欧美激情性xxxx| 狠狠精品人妻久久久久久综合| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 美女高潮到喷水免费观看| 免费av中文字幕在线| tocl精华| 亚洲欧美激情在线| 男女边摸边吃奶| 亚洲自偷自拍图片 自拍| av有码第一页| 日日夜夜操网爽| 1024香蕉在线观看| 法律面前人人平等表现在哪些方面| 97在线人人人人妻| 一区二区av电影网| 久久久久久久国产电影| 午夜精品久久久久久毛片777| 久热爱精品视频在线9| 免费女性裸体啪啪无遮挡网站| 国产1区2区3区精品| a级片在线免费高清观看视频| 久久久久国产一级毛片高清牌| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 日本a在线网址| 热re99久久国产66热| 人妻一区二区av| 亚洲精品国产一区二区精华液| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 国产视频一区二区在线看| 亚洲一码二码三码区别大吗| 757午夜福利合集在线观看| 日韩视频一区二区在线观看| 精品少妇内射三级| 欧美日韩中文字幕国产精品一区二区三区 | 丰满少妇做爰视频| 国产精品一区二区在线观看99| 精品一区二区三区av网在线观看 | 99热网站在线观看| 97在线人人人人妻| 免费不卡黄色视频| 精品亚洲乱码少妇综合久久| 亚洲人成伊人成综合网2020| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一小说 | 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 欧美在线黄色| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 人妻久久中文字幕网| 亚洲成人免费av在线播放| 视频区图区小说| 悠悠久久av| 亚洲人成电影观看| 亚洲三区欧美一区| 青草久久国产| 一区二区三区激情视频| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 高清毛片免费观看视频网站 | 欧美黄色淫秽网站| 少妇精品久久久久久久| 欧美一级毛片孕妇| 午夜福利欧美成人| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月 | 国产精品98久久久久久宅男小说| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 老司机亚洲免费影院| 少妇裸体淫交视频免费看高清 | 欧美成人免费av一区二区三区 | 国产伦理片在线播放av一区| 91老司机精品| 99在线人妻在线中文字幕 | 久久久精品区二区三区| 亚洲av国产av综合av卡| av电影中文网址| 一进一出好大好爽视频| 久久免费观看电影| 女人久久www免费人成看片| 99久久国产精品久久久| 亚洲国产欧美网| 99re在线观看精品视频| 青草久久国产| 热re99久久国产66热| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 亚洲综合色网址| 欧美成人午夜精品| 亚洲人成77777在线视频| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看| 国产一区二区 视频在线| 丝袜喷水一区| 1024视频免费在线观看| 99精品在免费线老司机午夜| 午夜福利乱码中文字幕| 亚洲国产av影院在线观看| 国产精品98久久久久久宅男小说| 久久免费观看电影| 麻豆成人av在线观看| 夜夜爽天天搞| 9热在线视频观看99| 欧美精品一区二区大全| 国产精品一区二区精品视频观看| 国产成人影院久久av| 亚洲三区欧美一区| 国产熟女午夜一区二区三区| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 国产精品 国内视频| 9热在线视频观看99| 电影成人av| 一级a爱视频在线免费观看| 1024视频免费在线观看| 久久久久久免费高清国产稀缺| 久久精品亚洲av国产电影网| 悠悠久久av| 在线观看免费午夜福利视频| 97在线人人人人妻| 欧美成人免费av一区二区三区 | 国产在线视频一区二区| 国产1区2区3区精品| 色94色欧美一区二区| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 欧美精品一区二区大全| 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 考比视频在线观看| 国产成人av激情在线播放| 亚洲熟妇熟女久久| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 18禁观看日本| 国产成人欧美在线观看 | 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 久久九九热精品免费| 12—13女人毛片做爰片一| 人人妻人人澡人人看| 免费看a级黄色片| 国产单亲对白刺激| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 亚洲精品国产精品久久久不卡| 黄色毛片三级朝国网站| 91av网站免费观看| 九色亚洲精品在线播放| 两性夫妻黄色片| 午夜精品国产一区二区电影| 桃花免费在线播放| 在线观看免费视频网站a站| 中文字幕最新亚洲高清| 国产在线免费精品| 国产精品亚洲一级av第二区| 国产黄频视频在线观看| 日韩制服丝袜自拍偷拍| 欧美成人免费av一区二区三区 | 人妻一区二区av| 精品少妇久久久久久888优播| 性高湖久久久久久久久免费观看| av电影中文网址| 大型av网站在线播放| 亚洲欧美日韩另类电影网站| av福利片在线| 亚洲成人免费av在线播放| 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 色视频在线一区二区三区| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区91| 亚洲欧美精品综合一区二区三区| 欧美日韩视频精品一区| 男女午夜视频在线观看| 国产精品欧美亚洲77777| 国产一卡二卡三卡精品| 亚洲色图综合在线观看| 亚洲av第一区精品v没综合| 成年人午夜在线观看视频| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆| 久热这里只有精品99| 精品一区二区三区av网在线观看 | 精品一区二区三区av网在线观看 | 日本av手机在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 新久久久久国产一级毛片| 欧美成人免费av一区二区三区 | 老司机影院毛片| 老司机亚洲免费影院| 高清毛片免费观看视频网站 | 一级毛片电影观看| 国产淫语在线视频| av超薄肉色丝袜交足视频| 最黄视频免费看| 黄网站色视频无遮挡免费观看| 啪啪无遮挡十八禁网站| 一边摸一边抽搐一进一出视频| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频 | 一本一本久久a久久精品综合妖精| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| www.精华液| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 在线观看www视频免费| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看 | 亚洲五月婷婷丁香| av天堂在线播放| 国产精品 欧美亚洲| 日韩三级视频一区二区三区| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 午夜视频精品福利| 亚洲综合色网址| 亚洲男人天堂网一区| 午夜91福利影院| 交换朋友夫妻互换小说| 老司机靠b影院| 一本—道久久a久久精品蜜桃钙片| 久久久欧美国产精品| 在线观看免费高清a一片| 黄色视频,在线免费观看| 男男h啪啪无遮挡| 一本一本久久a久久精品综合妖精| 91成人精品电影| 青草久久国产| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 老司机影院毛片| 91九色精品人成在线观看| 黄色视频,在线免费观看| 国产亚洲精品一区二区www | 日韩欧美三级三区| 一级毛片电影观看| 在线永久观看黄色视频| 国产高清videossex| 久久天堂一区二区三区四区| 国产高清videossex| 国产不卡av网站在线观看| 欧美大码av| 欧美黑人欧美精品刺激| 人人澡人人妻人| 99国产精品免费福利视频| 免费在线观看日本一区| 国产三级黄色录像| 9191精品国产免费久久| 香蕉丝袜av| 欧美激情久久久久久爽电影 | 激情在线观看视频在线高清 | 精品少妇内射三级| 亚洲精品自拍成人| 极品少妇高潮喷水抽搐| 丰满迷人的少妇在线观看| 欧美日韩亚洲综合一区二区三区_| 黑人巨大精品欧美一区二区mp4| 国产麻豆69| 欧美午夜高清在线| 一本久久精品| 久久午夜亚洲精品久久| 99re在线观看精品视频| 啦啦啦视频在线资源免费观看| 69av精品久久久久久 | 大片电影免费在线观看免费| 亚洲成av片中文字幕在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 久久青草综合色| 天天操日日干夜夜撸| 亚洲专区中文字幕在线| 在线播放国产精品三级| 久久中文字幕人妻熟女| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| 狂野欧美激情性xxxx| 男男h啪啪无遮挡| 亚洲成人国产一区在线观看| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 美女主播在线视频| 老司机靠b影院| 成人国产av品久久久| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 女人久久www免费人成看片| xxxhd国产人妻xxx| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 俄罗斯特黄特色一大片| 五月天丁香电影| 久久久久国内视频| 少妇粗大呻吟视频| 国产精品秋霞免费鲁丝片| 中文字幕制服av| 国产麻豆69| 少妇精品久久久久久久| 欧美中文综合在线视频| 国产伦理片在线播放av一区| 国产单亲对白刺激| av在线播放免费不卡| 91老司机精品| 黄色视频,在线免费观看| 老司机亚洲免费影院| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区mp4| 免费在线观看黄色视频的| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 91av网站免费观看| 变态另类成人亚洲欧美熟女 | 国产单亲对白刺激| 久热这里只有精品99| 国产精品久久久久久精品古装| bbb黄色大片| 国产成人系列免费观看| 在线播放国产精品三级| 捣出白浆h1v1| 久久精品亚洲精品国产色婷小说| 电影成人av| 国产成人欧美| 性少妇av在线| 国产主播在线观看一区二区| 精品国产乱子伦一区二区三区| 露出奶头的视频| a级毛片黄视频| 香蕉国产在线看| 精品亚洲成a人片在线观看| 黑人猛操日本美女一级片| 黄色视频不卡| 老司机深夜福利视频在线观看| 久久精品成人免费网站| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 一二三四社区在线视频社区8|