• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    2016-11-23 03:30:18FUYundLIAOHong
    關(guān)鍵詞:異戊二烯前體氣溶膠

    FU Yund LIAO Hong

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    FU Yuaand LIAO Hongb

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 2006-2011 using a global chemical transport model (GEOSChem) driven by meteorological felds from the assimilated meteorological data from MERRA. The authors incorporate three diferent parameterizations of isoprene-CO2interaction into the model,and perform three sensitivity simulations to investigate the efect of CO2inhibition on isoprene emissions for the period 2006-2011 in China. The annual isoprene emissions rate across China is simulated to be 12.62 Tg C yr-1, averaged over 2006-2011, and decreases by about 2.7%-7.4% when the CO2inhibition schemes are included. The CO2inhibition efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. Estimates of isoprene emissions can difer depending on the scheme of CO2inhibition. According to the results obtained from the sensitivity simulations, the authors fnd that the CO2inhibition efect leads to 5.6% ± 2.3% reductions in annual isoprene emissions over China. The authors also fnd that inclusion of CO2inhibition can substantially alter the sensitivity of isoprene emissions to the changes in meteorological conditions during the study period.

    ARTICLE HISTORY

    Revised 5 January 2016

    Accepted 1 April 2016

    Isoprene emissions; CO2;

    inhibition; GEOS-Chem model

    陸地植被排放的異戊二烯是對流層臭氧及二次有機(jī)氣溶膠的形成重要前體物之一。已有研究表明,當(dāng)CO2濃度超過一定水平時可能使得葉片氣孔關(guān)閉,對葉片釋放異戊二烯產(chǎn)生直接的抑制作用。而這一影響機(jī)制在目前大多數(shù)異戊二烯排放估算時并沒有考慮在內(nèi),對其排放的估算仍存在很大的不確定性。本文基于GEOS-Chem及其耦合的MEGAN模式模擬了2006-2011年中國異戊二烯的排放變化。通過引入三種不同CO2抑制作用參數(shù)化因子的模擬試驗(yàn),定量評估了CO2抑制作用對異戊二烯排放的影響及不確定性。結(jié)果表明:考慮CO2抑制參數(shù)因子后,中國年平均異戊二烯的排放量平均減少了5.6% ± 2.3%。不同參數(shù)化方案對排放的抑制程度存在差異。CO2對異戊二烯排放的影響將會改變其對氣象條件變化的敏感性,從而影響空氣質(zhì)量。

    1. Introduction

    Isoprene is a volatile organic compound (VOC) mainly emitted from terrestrial vegetation, and it makes up the largest fraction of non-methane biogenic VOCs, with an estimated emissions rate of 400-600 Tg C yr-1at the global scale (Guenther et al. 2006; Arneth et al. 2008). In polluted regions, biogenic isoprene emissions are an important contributor to tropospheric ozone formation in the presence of nitrogen oxides (NOx), but in remote regions with low-NOxconcentration, isoprene could reduce ozone by sequestering NOxas isoprene nitrate or by ozonolysis(Fiore et al. 2012). In addition, isoprene acts as a major precursor for secondary organic aerosol (SOA) formation,and can afect the atmospheric oxidation capacity through infuencing the regional level of tropospheric hydroxyl radicals (OH) and the lifetime of methane (Pe?uelas and Staudt 2010). Therefore, changes in isoprene emissions could modulate atmospheric composition and chemistry. An accurate estimate of isoprene emissions is important for air quality and climate change studies, and thus warrants in-depth investigation.

    Many previous studies have shown that biogenic isoprene emissions are not only dependent on changes in environmental factors, such as canopy temperature, light,soil moisture etc., but also related to changes in vegetation type, vegetation distribution, leaf area, and leaf age(Guenther et al. 2006). Some recent studies have reported that changes in atmospheric CO2concentration mightpromote or limit isoprene emissions from vegetation. Increasing CO2concentration could enhance vegetation productivity (Piao et al. 2011), and hence indirectly promote isoprene emissions. However, it is unclear whether a raised atmospheric CO2concentration would increase isoprene emissions intrinsically (Pe?uelas and Staudt 2010). Several laboratory and feld studies have indicated that the isoprene emissions rate has an inverse relationship in response to rising CO2concentration in the short and long term because an elevated CO2concentration might uncouple isoprene emissions from photosynthesis and suppress isoprene emissions at leaf level (Rosenstiel et al. 2003; Possell, Hewitt, and Beerling 2005) (known as ‘the CO2-inhibition efect').

    A number of previous studies have attempted to introduce the CO2-inhibition efect into chemical transport models for examining the impact of climate change on isoprene emissions, although the relationship between CO2and isoprene is not fully understood (Arneth et al. 2007;Heald et al. 2009; Wilkinson et al. 2009; Lathière, Hewitt,and Beerling 2010; Possell and Hewitt 2010). Arneth et al.(2007) found that observed leaf isoprene emissions were reproduced well by implementing the isoprene response to CO2concentration into the model used in their study,which is expressed as the ratio of the leaf internal CO2concentration at ambient CO2= 370 ppmv to the leaf internal CO2concentration. They also suggested the CO2-inhibition efect could be large enough to counteract the increases in isoprene emissions due to CO2-induced enhancement of vegetation productivity and leaf area growth. According to the isoprene measurements taken from aspen trees growing under four diferent CO2concentrations, Wilkinson et al. (2009) proposed a sigmoidal, Hill-reaction type isoprene-CO2curve to describe the short-term and longterm isoprene response to changes in atmospheric CO2. Heald et al. (2009) used a global coupled land-atmosphere model with the CO2-isoprene parameterization of Wilkinson et al. (2009) to explore the potential role of CO2in isoprene emissions over 2000-2100. They suggested the projected increases in isoprene emissions due to the warming climate in 2100 could be signifcantly modifed by including the CO2inhibition efect. Recently, Possell and Hewitt (2010) improved the isoprene-CO2response curve by considering a wide range of tree species from tropical to temperate regions. The aforementioned studies indicate the important impacts of changes in atmospheric CO2concentration on isoprene emissions simulation, but large discrepancies remain among these isoprene-CO2relationships and related parameters. Such diferences can result in diferent isoprene emissions predictions. Recently,a number of studies have examined biogenic emissions in China (Li et al. 2012; Li, Chen, and Xie 2013; Fu and Liao 2014; Li and Xie 2014). However, those studies were mostly focused on the estimation and spatiotemporal variation of biogenic VOC emissions, and investigating the roles of meteorological factors and vegetation parameters in biogenic emissions. No previous studies have quantifed the impact of CO2concentration on isoprene emissions in China, or evaluated the uncertainty of the CO2-inhibition efect.

    In this study, we use a global chemical transport model(GEOS-Chem) to estimate the biogenic isoprene emissions in China over 2006-2011, and examine the efect of CO2inhibition on regional isoprene emissions. We quantify the CO2-inhibition efect on the simulation of isoprene emissions and the uncertainty in comparison with diferent CO2inhibition parameterizations in the model, based on previous studies. We further discuss the implications for regional air quality due to the inclusion of CO2inhibition efects on isoprene emissions.

    2. Model and methods

    We use the GEOS-Chem global 3D chemical transport model, version 9-02 (http://acmg.seas.harvard.edu/geos/)to simulate the biogenic isoprene emissions in China over 2006-2011. The model is driven by the assimilated meteorological data from MERRA (http://gmao.gsfc.nasa.gov/ merra/), with a horizontal resolution of 2.0° latitude × 2.5° longitude and a reduced vertical resolution of 47 levels. A similar modelling framework was used by Fu and Tai (2015). In GEOS-Chem, biogenic isoprene emissions are calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) (Guenther et al. 2006, 2012), which is estimated as a function of plant functional type-specifc emission factors (E0, μg C m-2h-1) modulated by environmental activity factors (normalized ratio) to account for the efects of temperature (γT), light (γp), leaf age (γage) ,LAI, soil moisture (γsm) and CO2concentration (γCO2). The biogenic isoprene emissions rate (E) in each model grid cell is computed as

    However, the default model does not consider the efect of soil moisture and CO2inhibition by settingγsm=1 and γCO2=1. To account for the CO2-inhibition efect,the empirical relationships between CO2concentration and the isoprene emissions rate from previous studies are applied in this work. For examining the impact of CO2inhibition on isoprene simulation, we perform four sets of simulations: [noCO2_ctrl], [wCO2_A], [wCO2_W],and [wCO2_P]. For each set, a six-year simulation is performed with meteorological felds from 2006 to 2011, present-day vegetation parameters and fxed anthropogenic emissions at year-2005 levels (Streets et al. 2003; Zhang et al. 2009). The simulation [noCO2_ctrl] is the controlsimulation without the CO2-inhibition efect. The simulations [wCO2_A], [wCO2_W], and [wCO2_P] are the sensitivity simulations, which are similar to [noCO2_ctrl] but with diferent CO2-inhibition parameterizations. In the simulation [wCO2_A], the empirical CO2-isoprene relationship is from Arneth et al. (2007) (Equation (2)); and in the simulation [wCO2_W], the CO2inhibition parameterization of Wilkinson et al. (2009) is used (Equation (3)). The simulation[wCO2_P] applies the CO2-inhibition efect given by Possell and Hewitt (2010) (Equation (4)). The CO2concentrations used for calculating the γCO2in all the simulations are from the GEOS-Chem CO2simulation during the same period.

    As shown in Arneth et al. (2007), the additional activity factor associated with the CO2suppressed efect can be modelled in Equation (2): where Ciis the leaf internal CO2concentration, and Ci-370is the leaf internal concentration at ambient CO2= 370 ppmv(under non-water-stressed conditions). According to Possell, Hewitt, and Beerling (2005),Ciis about 70% of the ambient CO2concentration (Ca).

    We also apply the isoprene-CO2relationship from Wilkinson et al. (2009), which is

    where Isis the isoprene emissions rate,Ismaxis the estimated asymptote at which further decreases in CO2concentration (Ci) would suppress isoprene emissions, andC?and h are the Hill-type coefcients used to adjust the sigmoidal slope of the relationship between Isand Ci. In this study,the Ismax, C?, and h are determined from the measurements of plants grown at four diferent CO2concentrations (400,600, 800, and 1200 ppmv), by best-ft lines. The parameters are obtained from Wilkinson et al. (2009, Table 1).

    The third normalized ratio to account for the efect of CO2concentration is provided by Possell and Hewitt(2010),

    where γCO2=1at a CO2concentration equal to 370 ppmv,and a and b are empirical coefcients. Here, we use the ftting parameters a = 8.9406 and b = 0.0024 ppm-1, which are provided in Possell and Hewitt (2010, Figure 5).

    3. Results

    Without the CO2efect ([noCO2_ctrl]), the simulated annual isoprene emissions rate averaged over 2006-2011 across China is about 12.62 Tg C yr-1. The annual isoprene emissions rate simulated in this study is within the range of 9.3-23.4 Tg C yr-1reported for China (Fu and Liao 2012;Li, Chen, and Xie 2013). Isoprene emissions are highest in summer (June-July-August, JJA) and lowest in winter (December-January-February, DJF). The isoprene emissions in DJF, MAM (March-April-May), JJA, and SON(September-October-November) account for 4.8%, 18.5%,55.0%, and 21.7% of the annual emissions, respectively(Table 1). Figure 1(a) shows the spatial distribution of summertime and annual mean isoprene emissions from the[noCO2_ctrl] simulation averaged over 2006-2011. We fnd that, largely, isoprene emissions are simulated over southern (south of 35°N) and northeastern China in summer,which are within the range of 10-40 mg C m-2d-1, and mostly attributable to the increases in temperature and vegetation density. In addition, the spatial distribution of isoprene emissions is generally consistent with the distribution of trees in China, as trees are considered the highest isoprene emitter, compared with other vegetation types such as crops and grass.

    We fnd that the spatial patterns of CO2efects on isoprene emissions are similar over China, despite the amount of infuence exhibiting some discrepancies among the three diferent CO2-inhibition parameterizations (Figure 1(b-d)). As shown in Figure 1, the CO2efect can substantially reduce isoprene emissions in summer in most of eastern China, especially in the eastern regions of Sichuan Province and southeastern China. The strong reductions in isoprene emissions in those regions are primarily due to the atmospheric CO2concentrations in those regions being generally higher than in other regions. As reportedby a number of laboratory-based studies, when CO2changes within the range of 200-1200 ppmv, trees grown at lower CO2concentrations exhibit signifcantly higher isoprene emission rates compared with those grown at higher CO2concentrations (Possell, Hewitt, and Beerling 2005; Wilkinson et al. 2009). The plant physiological and biochemical mechanisms responsible for the CO2suppression of isoprene emissions are poorly understood, but likely relate to the changes in the substrates for isoprene biosynthesis and metabolism at leaf level under increased CO2concentrations (Rosenstiel et al. 2003). In the eastern regions of Sichuan Province and parts of southeastern China, isoprene emissions decline by more than 9% to a maximum of -3.5 mg C m-2d-1in summer when the CO2-inhibition efects are included, indicating the importance of the CO2-inhibition efect on estimates of isoprene emissions. The consideration of CO2inhibition reduces annual isoprene emissions by around 2.7%-7.4% (Table 1).

    Table 1.Estimates of isoprene emission rates in China averaged over 2006-2011 (Tg C yr-1). Also shown are the percentage changes of isoprene emissions (%) between the experiments with ([wCO2_A], [wCO2_P], and [wCO2_W]) and without ([noCO2_ctrl]) the CO2-inhibition efect.

    Figure 1.(a) Simulated summertime (left column) and annual (right column) biogenic isoprene emissions averaged over 2006-2011 in China in [noCO2_ctrl]. (b) Spatial distribution of changes in isoprene emissions as a result of the CO2-inhibition efect using the scheme of Arneth et al. (2007) ([wCO2_A] - [noCO2_ctrl]). (c) As in (b) but with the scheme of Possell and Hewitt (2010) ([wCO2_P] - [noCO2_ctrl]).(d) As in (b) but with the scheme of Wilkinson et al. (2009) ([wCO2_W] - [noCO2_ctrl]).

    Figure 2.Box-plots for the annual variations of the CO2-inhibition efect on seasonal isoprene emissions in China from three diferent parameterizations of the isoprene-CO2relationship during the years 2006-2011.

    Figure 2 represents the efects of CO2inhibition on seasonal isoprene emissions over China during 2006-2011 from [wCO2_A] - [noCO2_ctrl], [wCO2_P] - [noCO2_ctrl],and [wCO2_W] - [noCO2_ctrl]. In all seasons, the maximum reduction in isoprene emissions due to the CO2efect is obtained in [wCO2_A], followed by [wCO2_P] and [wCO2_W]. The CO2efect on isoprene emissions exhibits little seasonal variation in all sensitivity simulations. However, the changes in isoprene emissions resulting from CO2inhibition display interannual variation during 2006-2011, except those in[wCO2_W]. In [wCO2_A], the isoprene emissions in DJF over China decrease by -7.8% (median value) when taking into account CO2inhibition, and the decline in isoprene emissions in MAM due to CO2inhibition varies from -9.8% to-6.6%, with a median of -8.4%. In JJA and SON, the CO2efect leads to a decrease in isoprene emissions of -8.5% to -6.0% in [wCO2_A] over 2006-2011. The reductions in isoprene emissions induced by the CO2efect in [wCO2_P]are similar to the results of [wCO2_A]. We also fnd that the interannual variation in isoprene emissions, induced by the efect of CO2inhibition, is quite important compared to the impact of land-cover and land-use change. As shown by Fu and Liao (2012), simulated isoprene emissions in summer over eastern China change by 5%-8% as a result of vegetation change alone over 2001-2006.

    As shown above, estimates of isoprene emissions can difer depending on the CO2-isoprene response curve,which also represents a major source of uncertainty in projecting future isoprene emissions as the atmospheric CO2concentration continues to rise. The discrepancies in the three CO2-isoprene relationships likely result from the diferences in quantitative algorithms and empirical coefcients, which are obtained from diferent plant species in growth-chamber experiments. For example, some studies describe the response as a purely mathematical relationship based on the experimental growth of two isoprene-emitting herbaceous species under diferent CO2levels (Possell, Hewitt, and Beerling 2005; Arneth et al. 2007). Whereas, Wilkinson et al. (2009) constructed an empirical relationship through consideration of the principles of enzyme kinetics based on the measured responses of temperate cottonwood and aspen trees under controlled-environment growth chambers. Possell and Hewitt (2010) attempted to defne the CO2-inhibition efect using laboratory measurements of tropical tree species (Acacia nigrescens). In order to better understand the calculated CO2inhibition in the model, we further quantify the CO2-inhibition efect and its uncertainty according to the results of the sensitivity simulations. As shown in Figure 3, in the presence of CO2-isoprene interaction, the annual present-day (2006-2011) isoprene emissions over China reduce by 5.6% ± 2.3%, while the isoprene emissions in DJF, MAM, JJA, and SON are cut by 5.9% ± 2.5%,6.2% ± 2.7%, 5.3% ± 2.1%, and 5.5% ± 2.2%, respectively.

    Figure 3.Estimates of the CO2-inhibition efect on isoprene emissions from existing parameterizations in the model.

    The signifcance of the variations induced by CO2inhibition can also be demonstrated when compared with the changes in isoprene emissions resulting from climate change alone. For instance, without the CO2efect,changes in meteorological conditions between the two three-year periods of 2006-2008 and 2009-2011 enhances summertime isoprene emissions by about 50 Gg C/ month in China (1 Gg = 109g) (isoprene averaged over 2009-2011 minus isoprene averaged over 2006-2008). However, inclusion of the CO2efect can partly ofset such increases or even reverse the sign. The simulated summertime isoprene increment from the period 2006-2008 to the period 2009-2011 on average shrinks by 20% when the CO2efect is considered in [wCO2_W], while the CO2efect in [wCO2_A] and [wCO2_P] can completely nullify such an increase and lead to 70 Gg C/month and 60 Gg C/month reductions in isoprene emissions, respectively. The results in this study imply that the inclusion of CO2inhibition can substantially afect the sensitivity of isoprene emissions to changes in meteorological conditions. The impact of CO2inhibition can be more signifcant on multi-decadal scales than the magnitudes reported here. Recently, a few studies have indicated that the inclusion of CO2inhibition would generally reduce the sensitivity of air pollution to climate and vegetation change under future projection. Tai et al.(2013) reported that, over 2000-2050, the inclusion of CO2inhibition leads to reduced sensitivity of surface ozone and SOA (by more than 50%) to climate and natural vegetation change where isoprene emissions are important, implying a beneft of air quality in populated, high-NOxregions.

    4. Discussion and conclusions

    A global transport model (GEOS-Chem) is used in this study to simulate the isoprene emissions over China, with the inclusion of CO2-isoprene interaction, from 2006 to 2011. Without the CO2-inhibition efect, the simulated isoprene emissions rate is approximately 12.62 Tg C yr-1across China. To quantify the impact of CO2inhibition on isoprene emissions, three estimates of isoprene emissions with different parameterizations of the CO2-isoprene response are compared. The results indicate that the CO2-inhibition efect, which is not included in most chemistry or climate modelling studies, is signifcant in estimating isoprene emissions. For instance, applying the Wilkinson et al. (2009)scheme in [wCO2_W] decreases annual isoprene emissions by ~3% relative to the control simulation ([noCO2_ctrl])without CO2inhibition. Whereas, applying the CO2inhibition scheme of Arneth et al. (2007) in [wCO2_A] and Possell and Hewitt (2010) in [wCO2_P] reduces annual isoprene emissions by ~7% over China. This efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. To summarize, the impact of CO2inhibition can lead to an annual isoprene emissions decrease of 5.6% ± 2.3%. Regionally, summertime isoprene emissions might be cut by more than 9% when the CO2-inhibition efect is included. Compared with the changes in isoprene emissions resulting from climate change alone on the multi-decadal scale, the reductions in isoprene emissions induced by CO2inhibition are signifcant. Sensitivity studies have shown that, in China, changes in meteorological conditions between the late 1980s and mid-2000s led to increases in isoprene emissions by 17% (Fu and Liao 2014). The changes in isoprene emissions resulting from climate change can be modifed if the CO2inhibition is accounted for in the model.

    There are a few studies that have indicated that the CO2-isoprene efect might have a potential infuence for projected ozone air quality or SOA concentrations under future climate change scenarios (Young et al. 2009; Tai et al. 2013), because they are both sensitive to the spatial and temporal variations of biogenic isoprene emissions (Fu and Liao 2012). In this study, the inclusion of CO2inhibition may lead to a reduction in SOA concentrations (by ~10%)where isoprene emissions largely decrease. Future work should focus on a more systematic analysis of the variation of in ozone and SOA to CO2-isoprene integration under climate change. However, the CO2-isoprene response curves are built on a limited number of measurements for several species in earlier studies, so the parameterizations of CO2-isoprene interaction still pose a challenge for accurate estimates of isoprene emissions in China at present. In addition, a few previous experimental studies pointed out that inhibition of the isoprene emissions rate occurs in the presence of an increased CO2concentration for both short-term exposure (seconds to minutes) and long-term exposure (weeks to months). The responses of isoprene emissions to changes in CO2concentration might be diferent on various time scales. For instance, the response of isoprene emissions might be driven by adjustments in existing metabolic components during a single day. Whereas, on time scales at which leaves develop and grow(weeks or months), the response of isoprene emissions is likely driven by the adjustments in gene expression and the production of new metabolic components (Wilkinson et al. 2009). Here, we only focus on the efects of CO2inhibition on monthly and seasonal isoprene emissions, rather than diurnal isoprene emissions, mostly because the changes in sub-ambient CO2concentration (intercellular CO2) over shorter time scales are scarce. The short-term efect of CO2inhibition on daily isoprene emissions is still a challenge and full of large uncertainty, especially in China. Wilkinson et al. (2009) reported that the sensitivity of the isoprene emissions rate to intercellular CO2could decrease with long-term exposure to increased atmospheric CO2if the intercellular CO2concentration changes between 200 and 400 ppmv. Since the diurnal variation of isoprene emissions is strong, the diurnal efect of CO2concentration on isoprene emissions defnitely warrants further investigation. More specifc information on, and measurements of, extensive and representative plant species from major isoprenerelease regions are required to improve CO2-isoprene parameterization in future studies in China.

    Acknowledgements

    The MERRA data used in this study were provided by the Global Modeling and Assimilation Ofce (GMAO) at the NASA Goddard Space Flight Center through the NASA GES DISC online archive.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41405138]; the National High Technology Research and Development Program of China[grant number 2013AA122002].

    References

    Arneth, A., R. K. Monson, G. Schurgers, U. Niinemets, and P. I. Palmer. 2008. “Why Are Estimates of Global Terrestrial Isoprene Emissions So Similar (and Why is This Not So for Monoterpenes)?” Atmospheric Chemistry and Physics 8: 4605-4620. doi:http://dx.doi.org/10.5194/acp-8-4605-2008.

    Arneth, A., ü. Niinemets, S. Pressley, J. B?ck, P. Hari, T. Karl, S. Noe,et al. 2007. “Process-Based Estimates of Terrestrial Ecosystem Isoprene Emissions: Incorporating the Efects of a Direct CO2-Isoprene Interaction.” Atmospheric Chemistry and Physics 7: 31-53. doi:http://dx.doi.org/10.5194/acp-7-31-2007.

    Fiore, A. M., V. Naik, D. V. Spracklen, A. Steiner, N. Unger,M. Prather, D. Bergmann, et al. 2012. “Global Air Quality and Climate.” Chemical Society Reviews 41: 6663-6683. doi:http:// dx.doi.org/10.1039/C2CS35095E.

    Fu, Y., and H. Liao. 2012. “Simulation of the Interannual Variations of Biogenic Emissions of Volatile Organic Compounds in China: Impacts on Tropospheric Ozone and Secondary Organic Aerosol.” Atmospheric Environment 59: 170-185. doi:http://dx.doi.org/10.1016/j.atmosenv.2012.05.053.

    Fu, Y., and H. Liao. 2014. “Impacts of Land Use and Land Cover Changes on Biogenic Emissions of Volatile Organic Compounds in China from the Late 1980s to the mid-2000s: Implications for Tropospheric Ozone and Secondary Organic Aerosol.” Tellus B 66: 24987. doi:http://dx.doi.org/10.3402/ tellusb.v66.24987.

    Fu, Y., and A. P. K. Tai. 2015. “Impact of Climate and Land Cover Changes on Tropospheric Ozone Air Quality and Public Health in East Asia between 1980 and 2010.” Atmospheric Chemistry and Physics 15: 10093-10106. doi:http://dx.doi. org/10.5194/acp-15-10093-2015.

    Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl,L. K. Emmons, and X. Wang. 2012. “The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions.” Geoscientific Model Development 5: 1471-1492. doi:http://dx.doi.org/10.5194/gmd-5-1471-2012.

    Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron. 2006. “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature).” Atmospheric Chemistry and Physics 6: 3181-3210. doi:http://dx.doi.org/10.5194/acp-6-3181-2006.

    Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. Wang,and A. Guenther. 2009. “Response of Isoprene Emission to Ambient CO2Changes and Implications for Global Budgets.”Global Change Biology 15: 1127-1140. doi:http://dx.doi. org/10.1111/j.1365-2486.2008.01802.x.

    Lathière, J., C. N. Hewitt, and D. J. Beerling. 2010. “Sensitivity of Isoprene Emissions from the Terrestrial Biosphere to 20th Century Changes in Atmospheric CO2Concentration,Climate, and Land Use.” Global Biogeochemical Cycles 24: GB1004. doi:http://dx.doi.org/10.1029/2009gb003548.

    Li, L. Y., Y. Chen, and S. D. Xie. 2013. “Spatio-Temporal Variation of Biogenic Volatile Organic Compounds Emissions in China.”Environmental Pollution 182: 157-168. doi:http://dx.doi. org/10.1016/j.envpol.2013.06.042.

    Li, M., X. Huang, J. Li, and Y. Song. 2012. “Estimation of Biogenic Volatile Organic Compound (BVOC) Emissions from the Terrestrial Ecosystem in China Using Real-Time Remote Sensing Data.” Atmospheric Chemistry and Physics Discussion 12: 6551-6592. doi:http://dx.doi.org/10.5194/acpd-12-6551-2012.

    Li, L. Y., and S. D. Xie. 2014. “Historical Variations of Biogenic Volatile Organic Compound Emission Inventories in China,1981-2003.” Atmospheric Environment 95: 185-196. doi:http:// dx.doi.org/10.1016/j.atmosenv.2014.06.033.

    Pe?uelas, J., and M. Staudt. 2010. “BVOCs and Global Change.”Trends in Plant Science 15: 133-144. doi:http://dx.doi. org/10.1016/j.tplants.2009.12.005.

    Piao, S., P. Ciais, M. Lomas, C. Beer, H. Liu, J. Fang, P. Friedlingstein,et al. 2011. “Contribution of Climate Change and Rising CO2to Terrestrial Carbon Balance in East Asia: A Multi-Model Analysis.” Global and Planetary Change 75: 133-142. doi:http://dx.doi.org/10.1016/j.gloplacha.2010.10.014.

    Possell, M., and C. N. Hewitt. 2010. “Isoprene Emissions from Plants Are Mediated by Atmospheric CO2Concentrations.”Global Change Biology 17: 1595-1610. doi:http://dx.doi. org/10.1111/j.1365-2486.2010.02306.x.

    Possell, M., C. N. Hewitt, and D. J. Beerling. 2005. “The Efects of Glacial Atmospheric CO2Concentrations and Climate on Isoprene Emissions by Vascular Plants.” Global Change Biology 11: 60-69. doi:http://dx.doi.org/10.1111/j.1365-2486.2004.00889.x.

    Rosenstiel, T. N., M. J. Potosnak, K. L. Grifn, R. Fall, and R. K. Monson. 2003. “Increased CO2Uncouples Growth from Isoprene Emission in an Agriforest Ecosystem.” Nature 421: 256-259. doi:http://dx.doi.org/10.1038/nature01312.

    Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu,D. He, Z. Klimont, et al. 2003. “An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000.” Journal of Geophysical Research: Atmospheres 108 (D21): 8809. doi: http://dx.doi.org/10.1029/2002jd003093.

    Tai, A. P. K., L. J. Mickley, C. L. Heald, and S. L. Wu. 2013. “Efect of CO2Inhibition on Biogenic Isoprene Emission: Implications for Air Quality under 2000 to 2050 Changes in Climate,Vegetation, and Land Use.” Geophysical Research Letters 40: 3479-3483. doi:http://dx.doi.org/10.1002/Grl.50650.

    Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown,R. B. Jackson, H. W. Polley, P. A. Fay, and R. A. Y. Fall. 2009.“Leaf Isoprene Emission Rate as a Function of Atmospheric CO2Concentration.” Global Change Biology 15: 1189-1200. doi:http://dx.doi.org/10.1111/j.1365-2486.2008.01803.x.

    Young, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle. 2009. “The CO2Inhibition of Terrestrial Isoprene Emission Signifcantly Afects Future Ozone Projections.” Atmospheric Chemistry and Physics 9: 2793-2803. doi:http://dx.doi. org/10.5194/acp-9-2793-2009.

    Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo,A. Kannari, Z. Klimont, et al. 2009. “Asian Emissions in 2006 for the NASA INTEX-B Mission.” Atmospheric Chemistry and Physics 9: 5131-5153. doi:http://dx.doi.org/10.5194/acp-9-5131-2009.

    異戊二烯排放; 二氧化碳;抑制作用; 模式模擬

    19 November 2015

    CONTACT LIAO Hong hongliao@nuist.edu.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    異戊二烯前體氣溶膠
    N-末端腦鈉肽前體與糖尿病及糖尿病相關(guān)并發(fā)癥呈負(fù)相關(guān)
    氣溶膠傳播之謎
    氣溶膠中210Po測定的不確定度評定
    四川盆地秋季氣溶膠與云的相關(guān)分析
    N-端腦鈉肽前體測定在高血壓疾病中的應(yīng)用研究
    異戊二烯生物合成研究進(jìn)展
    一種室溫硫化聚異戊二烯橡膠的制備方法
    一種制備異戊二烯聚合物的方法
    石油化工(2015年9期)2015-08-15 00:43:05
    大氣氣溶膠成核監(jiān)測
    茶葉香氣前體物研究進(jìn)展
    茶葉通訊(2014年2期)2014-02-27 07:55:40
    91精品三级在线观看| 国产亚洲欧美精品永久| 欧美一级毛片孕妇| 中文字幕高清在线视频| 身体一侧抽搐| 丰满的人妻完整版| 嫩草影院精品99| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点 | 精品国产美女av久久久久小说| 国产av精品麻豆| 国产熟女午夜一区二区三区| 我的亚洲天堂| 999精品在线视频| 91在线观看av| 天堂俺去俺来也www色官网| 男女下面进入的视频免费午夜 | 不卡一级毛片| 一区福利在线观看| 在线看a的网站| 操美女的视频在线观看| 欧美乱码精品一区二区三区| 韩国精品一区二区三区| 国产亚洲欧美在线一区二区| 69精品国产乱码久久久| 人妻丰满熟妇av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人免费av在线播放| 91精品三级在线观看| 久久久久九九精品影院| svipshipincom国产片| 高清欧美精品videossex| 日本免费一区二区三区高清不卡 | 亚洲一区二区三区欧美精品| 最新美女视频免费是黄的| 水蜜桃什么品种好| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| av网站在线播放免费| 精品久久久精品久久久| 在线视频色国产色| 男女午夜视频在线观看| 午夜a级毛片| 黄频高清免费视频| 免费在线观看亚洲国产| 国产av一区在线观看免费| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 精品一品国产午夜福利视频| 日韩精品青青久久久久久| 亚洲伊人色综图| 亚洲国产精品sss在线观看 | 国产主播在线观看一区二区| 亚洲伊人色综图| 亚洲国产毛片av蜜桃av| 日韩精品青青久久久久久| 国产亚洲精品第一综合不卡| 男女下面进入的视频免费午夜 | 成年人黄色毛片网站| 别揉我奶头~嗯~啊~动态视频| 久久影院123| 两性午夜刺激爽爽歪歪视频在线观看 | 别揉我奶头~嗯~啊~动态视频| 在线观看免费午夜福利视频| 99久久国产精品久久久| 久99久视频精品免费| 日韩有码中文字幕| 无人区码免费观看不卡| 女人被狂操c到高潮| 校园春色视频在线观看| 国产日韩一区二区三区精品不卡| 99精品在免费线老司机午夜| 在线国产一区二区在线| 最新在线观看一区二区三区| 88av欧美| 国产主播在线观看一区二区| 日韩欧美一区二区三区在线观看| 亚洲第一av免费看| av欧美777| 久久精品国产清高在天天线| 国产午夜精品久久久久久| 99精品欧美一区二区三区四区| 天堂动漫精品| 欧美激情高清一区二区三区| 精品福利永久在线观看| 18禁黄网站禁片午夜丰满| 久久精品国产99精品国产亚洲性色 | 69精品国产乱码久久久| 精品国产国语对白av| 12—13女人毛片做爰片一| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 热re99久久国产66热| 国产精品影院久久| 黄频高清免费视频| 搡老乐熟女国产| 久久精品91蜜桃| 精品乱码久久久久久99久播| 视频区图区小说| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 国产黄a三级三级三级人| 99香蕉大伊视频| 日日爽夜夜爽网站| 国产野战对白在线观看| 精品福利永久在线观看| 黄色丝袜av网址大全| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看| bbb黄色大片| 黑人操中国人逼视频| 免费看a级黄色片| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美日韩在线播放| 俄罗斯特黄特色一大片| 高清在线国产一区| 国产视频一区二区在线看| 久久天堂一区二区三区四区| 久久久国产成人免费| 久久国产亚洲av麻豆专区| 久久久久亚洲av毛片大全| 大陆偷拍与自拍| 中文字幕人妻丝袜一区二区| 99香蕉大伊视频| 亚洲av片天天在线观看| 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 97碰自拍视频| av在线天堂中文字幕 | 最近最新中文字幕大全电影3 | 成年女人毛片免费观看观看9| 成人18禁高潮啪啪吃奶动态图| 麻豆av在线久日| 欧美老熟妇乱子伦牲交| 国产av在哪里看| 日本五十路高清| 国产又爽黄色视频| 精品人妻在线不人妻| 亚洲精品美女久久久久99蜜臀| 国产一卡二卡三卡精品| 国产免费现黄频在线看| 久久香蕉激情| 免费在线观看日本一区| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 免费人成视频x8x8入口观看| 久9热在线精品视频| 性欧美人与动物交配| 人人澡人人妻人| 国产亚洲精品综合一区在线观看 | 亚洲精品在线美女| 91成人精品电影| 男女之事视频高清在线观看| 黄色怎么调成土黄色| 妹子高潮喷水视频| 国产高清激情床上av| 国产精品二区激情视频| 日本黄色日本黄色录像| 国产精品爽爽va在线观看网站 | 国产精品偷伦视频观看了| 人人妻人人澡人人看| 久久久国产一区二区| 免费观看精品视频网站| 不卡av一区二区三区| 国产精品亚洲一级av第二区| 少妇粗大呻吟视频| 亚洲国产毛片av蜜桃av| 岛国视频午夜一区免费看| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 男女午夜视频在线观看| 亚洲黑人精品在线| 国产1区2区3区精品| 日本五十路高清| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 亚洲色图av天堂| 国产一区二区三区视频了| 精品一区二区三区四区五区乱码| 久久久精品国产亚洲av高清涩受| 久久伊人香网站| 亚洲色图av天堂| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 精品国产一区二区三区四区第35| 麻豆国产av国片精品| 色播在线永久视频| 亚洲少妇的诱惑av| 成人手机av| 我的亚洲天堂| 精品久久久久久,| 人成视频在线观看免费观看| 99国产精品99久久久久| av在线播放免费不卡| 亚洲精华国产精华精| 亚洲人成电影免费在线| 日韩免费高清中文字幕av| 精品一区二区三卡| 超色免费av| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 午夜福利,免费看| 亚洲七黄色美女视频| 久久草成人影院| 变态另类成人亚洲欧美熟女 | 国产免费现黄频在线看| 在线播放国产精品三级| 99久久人妻综合| 亚洲欧美一区二区三区黑人| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 黑丝袜美女国产一区| 亚洲欧美精品综合久久99| 久久香蕉精品热| 日韩三级视频一区二区三区| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸 | 久久热在线av| 国产精品久久久av美女十八| 国产色视频综合| 亚洲专区字幕在线| 国产精品二区激情视频| 成人亚洲精品av一区二区 | 无人区码免费观看不卡| 麻豆成人av在线观看| 久久久久久久午夜电影 | 国产91精品成人一区二区三区| 男人的好看免费观看在线视频 | 亚洲熟妇中文字幕五十中出 | 国产高清激情床上av| 一区二区三区精品91| 人妻丰满熟妇av一区二区三区| 女人高潮潮喷娇喘18禁视频| 级片在线观看| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 长腿黑丝高跟| 久久久国产一区二区| 国产精品综合久久久久久久免费 | 国产精品久久视频播放| 国产亚洲精品综合一区在线观看 | 国产成人精品久久二区二区91| 欧美日韩一级在线毛片| 国内久久婷婷六月综合欲色啪| 免费日韩欧美在线观看| 色哟哟哟哟哟哟| 一a级毛片在线观看| 国产成人精品在线电影| 中国美女看黄片| www.精华液| 成人永久免费在线观看视频| 999久久久国产精品视频| 国产xxxxx性猛交| 俄罗斯特黄特色一大片| 桃红色精品国产亚洲av| 99久久综合精品五月天人人| 如日韩欧美国产精品一区二区三区| 久久影院123| 婷婷精品国产亚洲av在线| 久久久久久久久久久久大奶| 中文字幕高清在线视频| 日韩欧美三级三区| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 亚洲av熟女| 久久国产精品人妻蜜桃| 搡老岳熟女国产| tocl精华| 久久国产精品影院| 日本a在线网址| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 亚洲精品中文字幕在线视频| av超薄肉色丝袜交足视频| 国产成人免费无遮挡视频| 欧美黑人精品巨大| 久久久国产成人精品二区 | 国产欧美日韩综合在线一区二区| 少妇 在线观看| 国产免费现黄频在线看| 91老司机精品| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 精品国产亚洲在线| 1024视频免费在线观看| 国产亚洲精品一区二区www| 岛国视频午夜一区免费看| 国产单亲对白刺激| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 51午夜福利影视在线观看| 免费观看精品视频网站| 欧美午夜高清在线| 校园春色视频在线观看| 欧美av亚洲av综合av国产av| 69精品国产乱码久久久| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 中文字幕av电影在线播放| 午夜a级毛片| x7x7x7水蜜桃| 精品国产亚洲在线| 在线观看午夜福利视频| 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区久久| 亚洲熟妇中文字幕五十中出 | 亚洲熟妇中文字幕五十中出 | 超碰97精品在线观看| 亚洲第一青青草原| 69av精品久久久久久| 免费不卡黄色视频| 国产精品野战在线观看 | 久久精品亚洲av国产电影网| 久久人妻av系列| 国产亚洲av高清不卡| 国产精品国产av在线观看| a级毛片在线看网站| 国内久久婷婷六月综合欲色啪| 久热爱精品视频在线9| 一区福利在线观看| 亚洲国产欧美一区二区综合| 国产精品永久免费网站| 亚洲精品一卡2卡三卡4卡5卡| 岛国视频午夜一区免费看| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 香蕉国产在线看| 99久久综合精品五月天人人| 老司机亚洲免费影院| av中文乱码字幕在线| 欧美日本中文国产一区发布| 一级作爱视频免费观看| 免费在线观看视频国产中文字幕亚洲| 两个人免费观看高清视频| www.www免费av| 中文字幕最新亚洲高清| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 一级毛片女人18水好多| av天堂在线播放| a级毛片在线看网站| 国产精品电影一区二区三区| 欧美日韩精品网址| 欧美日本亚洲视频在线播放| av有码第一页| 日本一区二区免费在线视频| 看黄色毛片网站| 国产精品影院久久| 黑丝袜美女国产一区| 成人国语在线视频| 丝袜美足系列| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| av免费在线观看网站| 午夜福利一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 在线观看66精品国产| 日韩av在线大香蕉| 757午夜福利合集在线观看| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 日韩视频一区二区在线观看| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 99国产精品99久久久久| 黑丝袜美女国产一区| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 日韩av在线大香蕉| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 91大片在线观看| 精品人妻在线不人妻| 成熟少妇高潮喷水视频| 美女午夜性视频免费| 十分钟在线观看高清视频www| 嫩草影视91久久| 久9热在线精品视频| 国产99白浆流出| av网站免费在线观看视频| 日韩国内少妇激情av| 国产免费现黄频在线看| 精品高清国产在线一区| 五月开心婷婷网| 一级毛片精品| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 嫩草影院精品99| 在线国产一区二区在线| 女性生殖器流出的白浆| 精品久久久精品久久久| 国产av精品麻豆| 色综合婷婷激情| 91成年电影在线观看| 黑人操中国人逼视频| 黑丝袜美女国产一区| 午夜日韩欧美国产| 免费女性裸体啪啪无遮挡网站| 黑人操中国人逼视频| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| a级毛片在线看网站| 国产亚洲av高清不卡| 高清毛片免费观看视频网站 | 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 看片在线看免费视频| 久久香蕉国产精品| 亚洲av成人一区二区三| 欧美日韩乱码在线| 中文字幕精品免费在线观看视频| 日本a在线网址| 一边摸一边抽搐一进一出视频| 亚洲国产精品一区二区三区在线| 九色亚洲精品在线播放| 两性夫妻黄色片| 黄色 视频免费看| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 国产av在哪里看| 成人国语在线视频| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 免费高清视频大片| 久久 成人 亚洲| 91成年电影在线观看| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 欧美不卡视频在线免费观看 | 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 日韩免费av在线播放| 久久这里只有精品19| 久久人人精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 精品一品国产午夜福利视频| 国产精品成人在线| 久久国产精品影院| 欧美日韩视频精品一区| 三上悠亚av全集在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲美女黄片视频| 中出人妻视频一区二区| 午夜福利一区二区在线看| 久久国产精品人妻蜜桃| 美女高潮到喷水免费观看| 亚洲午夜理论影院| 满18在线观看网站| 亚洲人成网站在线播放欧美日韩| 免费在线观看黄色视频的| 国产av在哪里看| 久久久国产一区二区| 在线永久观看黄色视频| 人人澡人人妻人| 午夜福利免费观看在线| 无限看片的www在线观看| cao死你这个sao货| 超碰97精品在线观看| 69av精品久久久久久| 中文字幕精品免费在线观看视频| 亚洲av成人不卡在线观看播放网| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品成人在线| 国产精品国产高清国产av| 成在线人永久免费视频| 我的亚洲天堂| 免费av毛片视频| 久久精品国产99精品国产亚洲性色 | 日韩av在线大香蕉| 咕卡用的链子| 19禁男女啪啪无遮挡网站| 丰满迷人的少妇在线观看| 精品一区二区三卡| 成人国语在线视频| 伊人久久大香线蕉亚洲五| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 18禁美女被吸乳视频| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 亚洲熟妇中文字幕五十中出 | 亚洲av熟女| 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 99久久人妻综合| 免费久久久久久久精品成人欧美视频| 欧美黑人欧美精品刺激| 欧美日韩国产mv在线观看视频| 亚洲一码二码三码区别大吗| 亚洲人成网站在线播放欧美日韩| 久久久精品国产亚洲av高清涩受| 日本 av在线| 两个人看的免费小视频| 免费高清在线观看日韩| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| 精品久久久久久久毛片微露脸| 老熟妇乱子伦视频在线观看| 国产色视频综合| 国产三级在线视频| 午夜久久久在线观看| 男女床上黄色一级片免费看| 无限看片的www在线观看| 1024视频免费在线观看| 日韩精品青青久久久久久| 色综合欧美亚洲国产小说| 精品乱码久久久久久99久播| 亚洲欧美一区二区三区久久| 一级,二级,三级黄色视频| 男人舔女人的私密视频| 久久久国产一区二区| 久久精品影院6| av电影中文网址| 一边摸一边抽搐一进一小说| 12—13女人毛片做爰片一| 久久久国产成人精品二区 | 啦啦啦在线免费观看视频4| 午夜亚洲福利在线播放| 成人特级黄色片久久久久久久| 久久久国产成人免费| 久久欧美精品欧美久久欧美| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 日韩精品中文字幕看吧| 香蕉国产在线看| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲国产一区二区在线观看| 午夜福利,免费看| 亚洲 欧美一区二区三区| 嫩草影院精品99| 久久国产精品影院| av片东京热男人的天堂| 亚洲精品一二三| netflix在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国产深夜福利视频在线观看| 日本三级黄在线观看| 琪琪午夜伦伦电影理论片6080| 热99国产精品久久久久久7| 一区在线观看完整版| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜制服| 亚洲精品在线美女| 精品午夜福利视频在线观看一区| 国产欧美日韩精品亚洲av| 热99国产精品久久久久久7| 制服诱惑二区| av在线播放免费不卡| 啦啦啦在线免费观看视频4| 免费看十八禁软件| 日韩精品青青久久久久久| 国产人伦9x9x在线观看| 极品教师在线免费播放| 亚洲成人免费电影在线观看| 97超级碰碰碰精品色视频在线观看| 黄片小视频在线播放| 成人永久免费在线观看视频| 男人的好看免费观看在线视频 | 成熟少妇高潮喷水视频| 在线天堂中文资源库| 又黄又爽又免费观看的视频| 国产熟女午夜一区二区三区| 一级a爱片免费观看的视频| 可以在线观看毛片的网站| 国产精品久久久久久人妻精品电影| 身体一侧抽搐| 精品欧美一区二区三区在线| www.999成人在线观看| 在线十欧美十亚洲十日本专区| 欧美乱妇无乱码| 在线观看一区二区三区激情| 国产成人av激情在线播放| 亚洲欧美一区二区三区黑人| 18禁观看日本| 久久精品国产99精品国产亚洲性色 | 国产男靠女视频免费网站| 国产人伦9x9x在线观看| 极品教师在线免费播放| 激情视频va一区二区三区| 精品久久蜜臀av无| 国产黄a三级三级三级人| 少妇 在线观看| 免费在线观看亚洲国产| 1024香蕉在线观看| 国产免费男女视频| 久久久国产成人免费| 国产高清激情床上av| 香蕉久久夜色| 波多野结衣一区麻豆| 80岁老熟妇乱子伦牲交| 黑人操中国人逼视频| 欧美日韩视频精品一区| 午夜a级毛片| 精品久久久精品久久久| 如日韩欧美国产精品一区二区三区| 一区福利在线观看| 精品国产国语对白av|