• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    2016-11-23 03:30:18FUYundLIAOHong
    關(guān)鍵詞:異戊二烯前體氣溶膠

    FU Yund LIAO Hong

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Biogenic isoprene emissions over China: sensitivity to the CO2inhibition effect

    FU Yuaand LIAO Hongb

    aClimate Change Research Center (CCRC), Chinese Academy of Sciences, Beijing, China;bSchool of Environmental Science and Engineering,Nanjing University of Information Science & Technology, Nanjing, China

    Isoprene emissions emitted from vegetation are one of the most important precursors for tropospheric ozone and secondary organic aerosol formation. The authors estimate the biogenic isoprene emissions in China over 2006-2011 using a global chemical transport model (GEOSChem) driven by meteorological felds from the assimilated meteorological data from MERRA. The authors incorporate three diferent parameterizations of isoprene-CO2interaction into the model,and perform three sensitivity simulations to investigate the efect of CO2inhibition on isoprene emissions for the period 2006-2011 in China. The annual isoprene emissions rate across China is simulated to be 12.62 Tg C yr-1, averaged over 2006-2011, and decreases by about 2.7%-7.4% when the CO2inhibition schemes are included. The CO2inhibition efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. Estimates of isoprene emissions can difer depending on the scheme of CO2inhibition. According to the results obtained from the sensitivity simulations, the authors fnd that the CO2inhibition efect leads to 5.6% ± 2.3% reductions in annual isoprene emissions over China. The authors also fnd that inclusion of CO2inhibition can substantially alter the sensitivity of isoprene emissions to the changes in meteorological conditions during the study period.

    ARTICLE HISTORY

    Revised 5 January 2016

    Accepted 1 April 2016

    Isoprene emissions; CO2;

    inhibition; GEOS-Chem model

    陸地植被排放的異戊二烯是對流層臭氧及二次有機(jī)氣溶膠的形成重要前體物之一。已有研究表明,當(dāng)CO2濃度超過一定水平時可能使得葉片氣孔關(guān)閉,對葉片釋放異戊二烯產(chǎn)生直接的抑制作用。而這一影響機(jī)制在目前大多數(shù)異戊二烯排放估算時并沒有考慮在內(nèi),對其排放的估算仍存在很大的不確定性。本文基于GEOS-Chem及其耦合的MEGAN模式模擬了2006-2011年中國異戊二烯的排放變化。通過引入三種不同CO2抑制作用參數(shù)化因子的模擬試驗(yàn),定量評估了CO2抑制作用對異戊二烯排放的影響及不確定性。結(jié)果表明:考慮CO2抑制參數(shù)因子后,中國年平均異戊二烯的排放量平均減少了5.6% ± 2.3%。不同參數(shù)化方案對排放的抑制程度存在差異。CO2對異戊二烯排放的影響將會改變其對氣象條件變化的敏感性,從而影響空氣質(zhì)量。

    1. Introduction

    Isoprene is a volatile organic compound (VOC) mainly emitted from terrestrial vegetation, and it makes up the largest fraction of non-methane biogenic VOCs, with an estimated emissions rate of 400-600 Tg C yr-1at the global scale (Guenther et al. 2006; Arneth et al. 2008). In polluted regions, biogenic isoprene emissions are an important contributor to tropospheric ozone formation in the presence of nitrogen oxides (NOx), but in remote regions with low-NOxconcentration, isoprene could reduce ozone by sequestering NOxas isoprene nitrate or by ozonolysis(Fiore et al. 2012). In addition, isoprene acts as a major precursor for secondary organic aerosol (SOA) formation,and can afect the atmospheric oxidation capacity through infuencing the regional level of tropospheric hydroxyl radicals (OH) and the lifetime of methane (Pe?uelas and Staudt 2010). Therefore, changes in isoprene emissions could modulate atmospheric composition and chemistry. An accurate estimate of isoprene emissions is important for air quality and climate change studies, and thus warrants in-depth investigation.

    Many previous studies have shown that biogenic isoprene emissions are not only dependent on changes in environmental factors, such as canopy temperature, light,soil moisture etc., but also related to changes in vegetation type, vegetation distribution, leaf area, and leaf age(Guenther et al. 2006). Some recent studies have reported that changes in atmospheric CO2concentration mightpromote or limit isoprene emissions from vegetation. Increasing CO2concentration could enhance vegetation productivity (Piao et al. 2011), and hence indirectly promote isoprene emissions. However, it is unclear whether a raised atmospheric CO2concentration would increase isoprene emissions intrinsically (Pe?uelas and Staudt 2010). Several laboratory and feld studies have indicated that the isoprene emissions rate has an inverse relationship in response to rising CO2concentration in the short and long term because an elevated CO2concentration might uncouple isoprene emissions from photosynthesis and suppress isoprene emissions at leaf level (Rosenstiel et al. 2003; Possell, Hewitt, and Beerling 2005) (known as ‘the CO2-inhibition efect').

    A number of previous studies have attempted to introduce the CO2-inhibition efect into chemical transport models for examining the impact of climate change on isoprene emissions, although the relationship between CO2and isoprene is not fully understood (Arneth et al. 2007;Heald et al. 2009; Wilkinson et al. 2009; Lathière, Hewitt,and Beerling 2010; Possell and Hewitt 2010). Arneth et al.(2007) found that observed leaf isoprene emissions were reproduced well by implementing the isoprene response to CO2concentration into the model used in their study,which is expressed as the ratio of the leaf internal CO2concentration at ambient CO2= 370 ppmv to the leaf internal CO2concentration. They also suggested the CO2-inhibition efect could be large enough to counteract the increases in isoprene emissions due to CO2-induced enhancement of vegetation productivity and leaf area growth. According to the isoprene measurements taken from aspen trees growing under four diferent CO2concentrations, Wilkinson et al. (2009) proposed a sigmoidal, Hill-reaction type isoprene-CO2curve to describe the short-term and longterm isoprene response to changes in atmospheric CO2. Heald et al. (2009) used a global coupled land-atmosphere model with the CO2-isoprene parameterization of Wilkinson et al. (2009) to explore the potential role of CO2in isoprene emissions over 2000-2100. They suggested the projected increases in isoprene emissions due to the warming climate in 2100 could be signifcantly modifed by including the CO2inhibition efect. Recently, Possell and Hewitt (2010) improved the isoprene-CO2response curve by considering a wide range of tree species from tropical to temperate regions. The aforementioned studies indicate the important impacts of changes in atmospheric CO2concentration on isoprene emissions simulation, but large discrepancies remain among these isoprene-CO2relationships and related parameters. Such diferences can result in diferent isoprene emissions predictions. Recently,a number of studies have examined biogenic emissions in China (Li et al. 2012; Li, Chen, and Xie 2013; Fu and Liao 2014; Li and Xie 2014). However, those studies were mostly focused on the estimation and spatiotemporal variation of biogenic VOC emissions, and investigating the roles of meteorological factors and vegetation parameters in biogenic emissions. No previous studies have quantifed the impact of CO2concentration on isoprene emissions in China, or evaluated the uncertainty of the CO2-inhibition efect.

    In this study, we use a global chemical transport model(GEOS-Chem) to estimate the biogenic isoprene emissions in China over 2006-2011, and examine the efect of CO2inhibition on regional isoprene emissions. We quantify the CO2-inhibition efect on the simulation of isoprene emissions and the uncertainty in comparison with diferent CO2inhibition parameterizations in the model, based on previous studies. We further discuss the implications for regional air quality due to the inclusion of CO2inhibition efects on isoprene emissions.

    2. Model and methods

    We use the GEOS-Chem global 3D chemical transport model, version 9-02 (http://acmg.seas.harvard.edu/geos/)to simulate the biogenic isoprene emissions in China over 2006-2011. The model is driven by the assimilated meteorological data from MERRA (http://gmao.gsfc.nasa.gov/ merra/), with a horizontal resolution of 2.0° latitude × 2.5° longitude and a reduced vertical resolution of 47 levels. A similar modelling framework was used by Fu and Tai (2015). In GEOS-Chem, biogenic isoprene emissions are calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) (Guenther et al. 2006, 2012), which is estimated as a function of plant functional type-specifc emission factors (E0, μg C m-2h-1) modulated by environmental activity factors (normalized ratio) to account for the efects of temperature (γT), light (γp), leaf age (γage) ,LAI, soil moisture (γsm) and CO2concentration (γCO2). The biogenic isoprene emissions rate (E) in each model grid cell is computed as

    However, the default model does not consider the efect of soil moisture and CO2inhibition by settingγsm=1 and γCO2=1. To account for the CO2-inhibition efect,the empirical relationships between CO2concentration and the isoprene emissions rate from previous studies are applied in this work. For examining the impact of CO2inhibition on isoprene simulation, we perform four sets of simulations: [noCO2_ctrl], [wCO2_A], [wCO2_W],and [wCO2_P]. For each set, a six-year simulation is performed with meteorological felds from 2006 to 2011, present-day vegetation parameters and fxed anthropogenic emissions at year-2005 levels (Streets et al. 2003; Zhang et al. 2009). The simulation [noCO2_ctrl] is the controlsimulation without the CO2-inhibition efect. The simulations [wCO2_A], [wCO2_W], and [wCO2_P] are the sensitivity simulations, which are similar to [noCO2_ctrl] but with diferent CO2-inhibition parameterizations. In the simulation [wCO2_A], the empirical CO2-isoprene relationship is from Arneth et al. (2007) (Equation (2)); and in the simulation [wCO2_W], the CO2inhibition parameterization of Wilkinson et al. (2009) is used (Equation (3)). The simulation[wCO2_P] applies the CO2-inhibition efect given by Possell and Hewitt (2010) (Equation (4)). The CO2concentrations used for calculating the γCO2in all the simulations are from the GEOS-Chem CO2simulation during the same period.

    As shown in Arneth et al. (2007), the additional activity factor associated with the CO2suppressed efect can be modelled in Equation (2): where Ciis the leaf internal CO2concentration, and Ci-370is the leaf internal concentration at ambient CO2= 370 ppmv(under non-water-stressed conditions). According to Possell, Hewitt, and Beerling (2005),Ciis about 70% of the ambient CO2concentration (Ca).

    We also apply the isoprene-CO2relationship from Wilkinson et al. (2009), which is

    where Isis the isoprene emissions rate,Ismaxis the estimated asymptote at which further decreases in CO2concentration (Ci) would suppress isoprene emissions, andC?and h are the Hill-type coefcients used to adjust the sigmoidal slope of the relationship between Isand Ci. In this study,the Ismax, C?, and h are determined from the measurements of plants grown at four diferent CO2concentrations (400,600, 800, and 1200 ppmv), by best-ft lines. The parameters are obtained from Wilkinson et al. (2009, Table 1).

    The third normalized ratio to account for the efect of CO2concentration is provided by Possell and Hewitt(2010),

    where γCO2=1at a CO2concentration equal to 370 ppmv,and a and b are empirical coefcients. Here, we use the ftting parameters a = 8.9406 and b = 0.0024 ppm-1, which are provided in Possell and Hewitt (2010, Figure 5).

    3. Results

    Without the CO2efect ([noCO2_ctrl]), the simulated annual isoprene emissions rate averaged over 2006-2011 across China is about 12.62 Tg C yr-1. The annual isoprene emissions rate simulated in this study is within the range of 9.3-23.4 Tg C yr-1reported for China (Fu and Liao 2012;Li, Chen, and Xie 2013). Isoprene emissions are highest in summer (June-July-August, JJA) and lowest in winter (December-January-February, DJF). The isoprene emissions in DJF, MAM (March-April-May), JJA, and SON(September-October-November) account for 4.8%, 18.5%,55.0%, and 21.7% of the annual emissions, respectively(Table 1). Figure 1(a) shows the spatial distribution of summertime and annual mean isoprene emissions from the[noCO2_ctrl] simulation averaged over 2006-2011. We fnd that, largely, isoprene emissions are simulated over southern (south of 35°N) and northeastern China in summer,which are within the range of 10-40 mg C m-2d-1, and mostly attributable to the increases in temperature and vegetation density. In addition, the spatial distribution of isoprene emissions is generally consistent with the distribution of trees in China, as trees are considered the highest isoprene emitter, compared with other vegetation types such as crops and grass.

    We fnd that the spatial patterns of CO2efects on isoprene emissions are similar over China, despite the amount of infuence exhibiting some discrepancies among the three diferent CO2-inhibition parameterizations (Figure 1(b-d)). As shown in Figure 1, the CO2efect can substantially reduce isoprene emissions in summer in most of eastern China, especially in the eastern regions of Sichuan Province and southeastern China. The strong reductions in isoprene emissions in those regions are primarily due to the atmospheric CO2concentrations in those regions being generally higher than in other regions. As reportedby a number of laboratory-based studies, when CO2changes within the range of 200-1200 ppmv, trees grown at lower CO2concentrations exhibit signifcantly higher isoprene emission rates compared with those grown at higher CO2concentrations (Possell, Hewitt, and Beerling 2005; Wilkinson et al. 2009). The plant physiological and biochemical mechanisms responsible for the CO2suppression of isoprene emissions are poorly understood, but likely relate to the changes in the substrates for isoprene biosynthesis and metabolism at leaf level under increased CO2concentrations (Rosenstiel et al. 2003). In the eastern regions of Sichuan Province and parts of southeastern China, isoprene emissions decline by more than 9% to a maximum of -3.5 mg C m-2d-1in summer when the CO2-inhibition efects are included, indicating the importance of the CO2-inhibition efect on estimates of isoprene emissions. The consideration of CO2inhibition reduces annual isoprene emissions by around 2.7%-7.4% (Table 1).

    Table 1.Estimates of isoprene emission rates in China averaged over 2006-2011 (Tg C yr-1). Also shown are the percentage changes of isoprene emissions (%) between the experiments with ([wCO2_A], [wCO2_P], and [wCO2_W]) and without ([noCO2_ctrl]) the CO2-inhibition efect.

    Figure 1.(a) Simulated summertime (left column) and annual (right column) biogenic isoprene emissions averaged over 2006-2011 in China in [noCO2_ctrl]. (b) Spatial distribution of changes in isoprene emissions as a result of the CO2-inhibition efect using the scheme of Arneth et al. (2007) ([wCO2_A] - [noCO2_ctrl]). (c) As in (b) but with the scheme of Possell and Hewitt (2010) ([wCO2_P] - [noCO2_ctrl]).(d) As in (b) but with the scheme of Wilkinson et al. (2009) ([wCO2_W] - [noCO2_ctrl]).

    Figure 2.Box-plots for the annual variations of the CO2-inhibition efect on seasonal isoprene emissions in China from three diferent parameterizations of the isoprene-CO2relationship during the years 2006-2011.

    Figure 2 represents the efects of CO2inhibition on seasonal isoprene emissions over China during 2006-2011 from [wCO2_A] - [noCO2_ctrl], [wCO2_P] - [noCO2_ctrl],and [wCO2_W] - [noCO2_ctrl]. In all seasons, the maximum reduction in isoprene emissions due to the CO2efect is obtained in [wCO2_A], followed by [wCO2_P] and [wCO2_W]. The CO2efect on isoprene emissions exhibits little seasonal variation in all sensitivity simulations. However, the changes in isoprene emissions resulting from CO2inhibition display interannual variation during 2006-2011, except those in[wCO2_W]. In [wCO2_A], the isoprene emissions in DJF over China decrease by -7.8% (median value) when taking into account CO2inhibition, and the decline in isoprene emissions in MAM due to CO2inhibition varies from -9.8% to-6.6%, with a median of -8.4%. In JJA and SON, the CO2efect leads to a decrease in isoprene emissions of -8.5% to -6.0% in [wCO2_A] over 2006-2011. The reductions in isoprene emissions induced by the CO2efect in [wCO2_P]are similar to the results of [wCO2_A]. We also fnd that the interannual variation in isoprene emissions, induced by the efect of CO2inhibition, is quite important compared to the impact of land-cover and land-use change. As shown by Fu and Liao (2012), simulated isoprene emissions in summer over eastern China change by 5%-8% as a result of vegetation change alone over 2001-2006.

    As shown above, estimates of isoprene emissions can difer depending on the CO2-isoprene response curve,which also represents a major source of uncertainty in projecting future isoprene emissions as the atmospheric CO2concentration continues to rise. The discrepancies in the three CO2-isoprene relationships likely result from the diferences in quantitative algorithms and empirical coefcients, which are obtained from diferent plant species in growth-chamber experiments. For example, some studies describe the response as a purely mathematical relationship based on the experimental growth of two isoprene-emitting herbaceous species under diferent CO2levels (Possell, Hewitt, and Beerling 2005; Arneth et al. 2007). Whereas, Wilkinson et al. (2009) constructed an empirical relationship through consideration of the principles of enzyme kinetics based on the measured responses of temperate cottonwood and aspen trees under controlled-environment growth chambers. Possell and Hewitt (2010) attempted to defne the CO2-inhibition efect using laboratory measurements of tropical tree species (Acacia nigrescens). In order to better understand the calculated CO2inhibition in the model, we further quantify the CO2-inhibition efect and its uncertainty according to the results of the sensitivity simulations. As shown in Figure 3, in the presence of CO2-isoprene interaction, the annual present-day (2006-2011) isoprene emissions over China reduce by 5.6% ± 2.3%, while the isoprene emissions in DJF, MAM, JJA, and SON are cut by 5.9% ± 2.5%,6.2% ± 2.7%, 5.3% ± 2.1%, and 5.5% ± 2.2%, respectively.

    Figure 3.Estimates of the CO2-inhibition efect on isoprene emissions from existing parameterizations in the model.

    The signifcance of the variations induced by CO2inhibition can also be demonstrated when compared with the changes in isoprene emissions resulting from climate change alone. For instance, without the CO2efect,changes in meteorological conditions between the two three-year periods of 2006-2008 and 2009-2011 enhances summertime isoprene emissions by about 50 Gg C/ month in China (1 Gg = 109g) (isoprene averaged over 2009-2011 minus isoprene averaged over 2006-2008). However, inclusion of the CO2efect can partly ofset such increases or even reverse the sign. The simulated summertime isoprene increment from the period 2006-2008 to the period 2009-2011 on average shrinks by 20% when the CO2efect is considered in [wCO2_W], while the CO2efect in [wCO2_A] and [wCO2_P] can completely nullify such an increase and lead to 70 Gg C/month and 60 Gg C/month reductions in isoprene emissions, respectively. The results in this study imply that the inclusion of CO2inhibition can substantially afect the sensitivity of isoprene emissions to changes in meteorological conditions. The impact of CO2inhibition can be more signifcant on multi-decadal scales than the magnitudes reported here. Recently, a few studies have indicated that the inclusion of CO2inhibition would generally reduce the sensitivity of air pollution to climate and vegetation change under future projection. Tai et al.(2013) reported that, over 2000-2050, the inclusion of CO2inhibition leads to reduced sensitivity of surface ozone and SOA (by more than 50%) to climate and natural vegetation change where isoprene emissions are important, implying a beneft of air quality in populated, high-NOxregions.

    4. Discussion and conclusions

    A global transport model (GEOS-Chem) is used in this study to simulate the isoprene emissions over China, with the inclusion of CO2-isoprene interaction, from 2006 to 2011. Without the CO2-inhibition efect, the simulated isoprene emissions rate is approximately 12.62 Tg C yr-1across China. To quantify the impact of CO2inhibition on isoprene emissions, three estimates of isoprene emissions with different parameterizations of the CO2-isoprene response are compared. The results indicate that the CO2-inhibition efect, which is not included in most chemistry or climate modelling studies, is signifcant in estimating isoprene emissions. For instance, applying the Wilkinson et al. (2009)scheme in [wCO2_W] decreases annual isoprene emissions by ~3% relative to the control simulation ([noCO2_ctrl])without CO2inhibition. Whereas, applying the CO2inhibition scheme of Arneth et al. (2007) in [wCO2_A] and Possell and Hewitt (2010) in [wCO2_P] reduces annual isoprene emissions by ~7% over China. This efect might be signifcant in regions where the CO2concentration and isoprene emissions are high. To summarize, the impact of CO2inhibition can lead to an annual isoprene emissions decrease of 5.6% ± 2.3%. Regionally, summertime isoprene emissions might be cut by more than 9% when the CO2-inhibition efect is included. Compared with the changes in isoprene emissions resulting from climate change alone on the multi-decadal scale, the reductions in isoprene emissions induced by CO2inhibition are signifcant. Sensitivity studies have shown that, in China, changes in meteorological conditions between the late 1980s and mid-2000s led to increases in isoprene emissions by 17% (Fu and Liao 2014). The changes in isoprene emissions resulting from climate change can be modifed if the CO2inhibition is accounted for in the model.

    There are a few studies that have indicated that the CO2-isoprene efect might have a potential infuence for projected ozone air quality or SOA concentrations under future climate change scenarios (Young et al. 2009; Tai et al. 2013), because they are both sensitive to the spatial and temporal variations of biogenic isoprene emissions (Fu and Liao 2012). In this study, the inclusion of CO2inhibition may lead to a reduction in SOA concentrations (by ~10%)where isoprene emissions largely decrease. Future work should focus on a more systematic analysis of the variation of in ozone and SOA to CO2-isoprene integration under climate change. However, the CO2-isoprene response curves are built on a limited number of measurements for several species in earlier studies, so the parameterizations of CO2-isoprene interaction still pose a challenge for accurate estimates of isoprene emissions in China at present. In addition, a few previous experimental studies pointed out that inhibition of the isoprene emissions rate occurs in the presence of an increased CO2concentration for both short-term exposure (seconds to minutes) and long-term exposure (weeks to months). The responses of isoprene emissions to changes in CO2concentration might be diferent on various time scales. For instance, the response of isoprene emissions might be driven by adjustments in existing metabolic components during a single day. Whereas, on time scales at which leaves develop and grow(weeks or months), the response of isoprene emissions is likely driven by the adjustments in gene expression and the production of new metabolic components (Wilkinson et al. 2009). Here, we only focus on the efects of CO2inhibition on monthly and seasonal isoprene emissions, rather than diurnal isoprene emissions, mostly because the changes in sub-ambient CO2concentration (intercellular CO2) over shorter time scales are scarce. The short-term efect of CO2inhibition on daily isoprene emissions is still a challenge and full of large uncertainty, especially in China. Wilkinson et al. (2009) reported that the sensitivity of the isoprene emissions rate to intercellular CO2could decrease with long-term exposure to increased atmospheric CO2if the intercellular CO2concentration changes between 200 and 400 ppmv. Since the diurnal variation of isoprene emissions is strong, the diurnal efect of CO2concentration on isoprene emissions defnitely warrants further investigation. More specifc information on, and measurements of, extensive and representative plant species from major isoprenerelease regions are required to improve CO2-isoprene parameterization in future studies in China.

    Acknowledgements

    The MERRA data used in this study were provided by the Global Modeling and Assimilation Ofce (GMAO) at the NASA Goddard Space Flight Center through the NASA GES DISC online archive.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41405138]; the National High Technology Research and Development Program of China[grant number 2013AA122002].

    References

    Arneth, A., R. K. Monson, G. Schurgers, U. Niinemets, and P. I. Palmer. 2008. “Why Are Estimates of Global Terrestrial Isoprene Emissions So Similar (and Why is This Not So for Monoterpenes)?” Atmospheric Chemistry and Physics 8: 4605-4620. doi:http://dx.doi.org/10.5194/acp-8-4605-2008.

    Arneth, A., ü. Niinemets, S. Pressley, J. B?ck, P. Hari, T. Karl, S. Noe,et al. 2007. “Process-Based Estimates of Terrestrial Ecosystem Isoprene Emissions: Incorporating the Efects of a Direct CO2-Isoprene Interaction.” Atmospheric Chemistry and Physics 7: 31-53. doi:http://dx.doi.org/10.5194/acp-7-31-2007.

    Fiore, A. M., V. Naik, D. V. Spracklen, A. Steiner, N. Unger,M. Prather, D. Bergmann, et al. 2012. “Global Air Quality and Climate.” Chemical Society Reviews 41: 6663-6683. doi:http:// dx.doi.org/10.1039/C2CS35095E.

    Fu, Y., and H. Liao. 2012. “Simulation of the Interannual Variations of Biogenic Emissions of Volatile Organic Compounds in China: Impacts on Tropospheric Ozone and Secondary Organic Aerosol.” Atmospheric Environment 59: 170-185. doi:http://dx.doi.org/10.1016/j.atmosenv.2012.05.053.

    Fu, Y., and H. Liao. 2014. “Impacts of Land Use and Land Cover Changes on Biogenic Emissions of Volatile Organic Compounds in China from the Late 1980s to the mid-2000s: Implications for Tropospheric Ozone and Secondary Organic Aerosol.” Tellus B 66: 24987. doi:http://dx.doi.org/10.3402/ tellusb.v66.24987.

    Fu, Y., and A. P. K. Tai. 2015. “Impact of Climate and Land Cover Changes on Tropospheric Ozone Air Quality and Public Health in East Asia between 1980 and 2010.” Atmospheric Chemistry and Physics 15: 10093-10106. doi:http://dx.doi. org/10.5194/acp-15-10093-2015.

    Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl,L. K. Emmons, and X. Wang. 2012. “The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions.” Geoscientific Model Development 5: 1471-1492. doi:http://dx.doi.org/10.5194/gmd-5-1471-2012.

    Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron. 2006. “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature).” Atmospheric Chemistry and Physics 6: 3181-3210. doi:http://dx.doi.org/10.5194/acp-6-3181-2006.

    Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. Wang,and A. Guenther. 2009. “Response of Isoprene Emission to Ambient CO2Changes and Implications for Global Budgets.”Global Change Biology 15: 1127-1140. doi:http://dx.doi. org/10.1111/j.1365-2486.2008.01802.x.

    Lathière, J., C. N. Hewitt, and D. J. Beerling. 2010. “Sensitivity of Isoprene Emissions from the Terrestrial Biosphere to 20th Century Changes in Atmospheric CO2Concentration,Climate, and Land Use.” Global Biogeochemical Cycles 24: GB1004. doi:http://dx.doi.org/10.1029/2009gb003548.

    Li, L. Y., Y. Chen, and S. D. Xie. 2013. “Spatio-Temporal Variation of Biogenic Volatile Organic Compounds Emissions in China.”Environmental Pollution 182: 157-168. doi:http://dx.doi. org/10.1016/j.envpol.2013.06.042.

    Li, M., X. Huang, J. Li, and Y. Song. 2012. “Estimation of Biogenic Volatile Organic Compound (BVOC) Emissions from the Terrestrial Ecosystem in China Using Real-Time Remote Sensing Data.” Atmospheric Chemistry and Physics Discussion 12: 6551-6592. doi:http://dx.doi.org/10.5194/acpd-12-6551-2012.

    Li, L. Y., and S. D. Xie. 2014. “Historical Variations of Biogenic Volatile Organic Compound Emission Inventories in China,1981-2003.” Atmospheric Environment 95: 185-196. doi:http:// dx.doi.org/10.1016/j.atmosenv.2014.06.033.

    Pe?uelas, J., and M. Staudt. 2010. “BVOCs and Global Change.”Trends in Plant Science 15: 133-144. doi:http://dx.doi. org/10.1016/j.tplants.2009.12.005.

    Piao, S., P. Ciais, M. Lomas, C. Beer, H. Liu, J. Fang, P. Friedlingstein,et al. 2011. “Contribution of Climate Change and Rising CO2to Terrestrial Carbon Balance in East Asia: A Multi-Model Analysis.” Global and Planetary Change 75: 133-142. doi:http://dx.doi.org/10.1016/j.gloplacha.2010.10.014.

    Possell, M., and C. N. Hewitt. 2010. “Isoprene Emissions from Plants Are Mediated by Atmospheric CO2Concentrations.”Global Change Biology 17: 1595-1610. doi:http://dx.doi. org/10.1111/j.1365-2486.2010.02306.x.

    Possell, M., C. N. Hewitt, and D. J. Beerling. 2005. “The Efects of Glacial Atmospheric CO2Concentrations and Climate on Isoprene Emissions by Vascular Plants.” Global Change Biology 11: 60-69. doi:http://dx.doi.org/10.1111/j.1365-2486.2004.00889.x.

    Rosenstiel, T. N., M. J. Potosnak, K. L. Grifn, R. Fall, and R. K. Monson. 2003. “Increased CO2Uncouples Growth from Isoprene Emission in an Agriforest Ecosystem.” Nature 421: 256-259. doi:http://dx.doi.org/10.1038/nature01312.

    Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu,D. He, Z. Klimont, et al. 2003. “An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000.” Journal of Geophysical Research: Atmospheres 108 (D21): 8809. doi: http://dx.doi.org/10.1029/2002jd003093.

    Tai, A. P. K., L. J. Mickley, C. L. Heald, and S. L. Wu. 2013. “Efect of CO2Inhibition on Biogenic Isoprene Emission: Implications for Air Quality under 2000 to 2050 Changes in Climate,Vegetation, and Land Use.” Geophysical Research Letters 40: 3479-3483. doi:http://dx.doi.org/10.1002/Grl.50650.

    Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown,R. B. Jackson, H. W. Polley, P. A. Fay, and R. A. Y. Fall. 2009.“Leaf Isoprene Emission Rate as a Function of Atmospheric CO2Concentration.” Global Change Biology 15: 1189-1200. doi:http://dx.doi.org/10.1111/j.1365-2486.2008.01803.x.

    Young, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle. 2009. “The CO2Inhibition of Terrestrial Isoprene Emission Signifcantly Afects Future Ozone Projections.” Atmospheric Chemistry and Physics 9: 2793-2803. doi:http://dx.doi. org/10.5194/acp-9-2793-2009.

    Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo,A. Kannari, Z. Klimont, et al. 2009. “Asian Emissions in 2006 for the NASA INTEX-B Mission.” Atmospheric Chemistry and Physics 9: 5131-5153. doi:http://dx.doi.org/10.5194/acp-9-5131-2009.

    異戊二烯排放; 二氧化碳;抑制作用; 模式模擬

    19 November 2015

    CONTACT LIAO Hong hongliao@nuist.edu.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    異戊二烯前體氣溶膠
    N-末端腦鈉肽前體與糖尿病及糖尿病相關(guān)并發(fā)癥呈負(fù)相關(guān)
    氣溶膠傳播之謎
    氣溶膠中210Po測定的不確定度評定
    四川盆地秋季氣溶膠與云的相關(guān)分析
    N-端腦鈉肽前體測定在高血壓疾病中的應(yīng)用研究
    異戊二烯生物合成研究進(jìn)展
    一種室溫硫化聚異戊二烯橡膠的制備方法
    一種制備異戊二烯聚合物的方法
    石油化工(2015年9期)2015-08-15 00:43:05
    大氣氣溶膠成核監(jiān)測
    茶葉香氣前體物研究進(jìn)展
    茶葉通訊(2014年2期)2014-02-27 07:55:40
    美女xxoo啪啪120秒动态图| 午夜免费激情av| 国产欧美日韩一区二区精品| 九九热线精品视视频播放| 看免费成人av毛片| 国产极品精品免费视频能看的| 一区二区三区高清视频在线| 国产精品国产高清国产av| 在线国产一区二区在线| 精品人妻偷拍中文字幕| 亚洲自偷自拍三级| 熟女人妻精品中文字幕| av专区在线播放| 免费av观看视频| 精品不卡国产一区二区三区| 一a级毛片在线观看| 久久久久久大精品| 亚洲七黄色美女视频| 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 欧美高清成人免费视频www| 国产高潮美女av| 亚洲av.av天堂| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 日本色播在线视频| 欧美激情在线99| 久久草成人影院| 久久久久免费精品人妻一区二区| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 别揉我奶头~嗯~啊~动态视频| 亚洲不卡免费看| 人妻制服诱惑在线中文字幕| 91精品国产九色| 天堂av国产一区二区熟女人妻| 亚洲国产精品合色在线| 又爽又黄a免费视频| 日本五十路高清| 婷婷精品国产亚洲av在线| 他把我摸到了高潮在线观看| 国产伦人伦偷精品视频| 国产精品一区www在线观看 | 国产精品亚洲美女久久久| .国产精品久久| 999久久久精品免费观看国产| 亚洲真实伦在线观看| 精品一区二区免费观看| 国产av不卡久久| 男女视频在线观看网站免费| 国产亚洲欧美98| 日韩一区二区视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影| a级毛片a级免费在线| 18禁裸乳无遮挡免费网站照片| 欧美xxxx性猛交bbbb| 桃红色精品国产亚洲av| 亚洲人成网站高清观看| 日本-黄色视频高清免费观看| 香蕉av资源在线| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| 他把我摸到了高潮在线观看| 麻豆成人午夜福利视频| 国产亚洲精品av在线| 波多野结衣高清无吗| 亚洲最大成人av| 久久精品国产亚洲网站| 少妇高潮的动态图| 美女黄网站色视频| 亚洲欧美日韩高清专用| 亚洲午夜理论影院| 国产av在哪里看| 嫩草影院精品99| 夜夜夜夜夜久久久久| 欧美日本视频| 少妇丰满av| 性插视频无遮挡在线免费观看| 国产久久久一区二区三区| 看十八女毛片水多多多| 欧美黑人欧美精品刺激| 99热6这里只有精品| 看黄色毛片网站| 免费看a级黄色片| 午夜亚洲福利在线播放| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 精品一区二区三区视频在线观看免费| or卡值多少钱| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 99久久中文字幕三级久久日本| 桃红色精品国产亚洲av| 成人综合一区亚洲| 精品久久久久久,| 一个人免费在线观看电影| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 国产 一区精品| 99国产精品一区二区蜜桃av| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 69人妻影院| 成人亚洲精品av一区二区| 亚洲色图av天堂| 亚洲综合色惰| bbb黄色大片| 中国美白少妇内射xxxbb| 97人妻精品一区二区三区麻豆| 岛国在线免费视频观看| 成人美女网站在线观看视频| 国产男靠女视频免费网站| 一个人免费在线观看电影| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 一级av片app| 老熟妇乱子伦视频在线观看| 九色成人免费人妻av| 无人区码免费观看不卡| 国产黄片美女视频| 国产精品人妻久久久影院| 美女 人体艺术 gogo| 国产成人一区二区在线| 国产私拍福利视频在线观看| 国产日本99.免费观看| 亚洲欧美日韩东京热| 日韩欧美一区二区三区在线观看| 51国产日韩欧美| 欧美绝顶高潮抽搐喷水| 香蕉av资源在线| 国产人妻一区二区三区在| 久久久久免费精品人妻一区二区| 久久中文看片网| 熟女人妻精品中文字幕| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区久久| 国内精品久久久久久久电影| 不卡视频在线观看欧美| 国产高清视频在线观看网站| 国产v大片淫在线免费观看| 在线观看66精品国产| 长腿黑丝高跟| 色av中文字幕| 午夜福利高清视频| 亚洲精品影视一区二区三区av| 九色国产91popny在线| 日韩人妻高清精品专区| 毛片一级片免费看久久久久 | 搡老岳熟女国产| 亚洲五月天丁香| 天堂网av新在线| 欧美又色又爽又黄视频| 久久久久九九精品影院| 国产成人一区二区在线| 国产亚洲91精品色在线| 精品日产1卡2卡| 小说图片视频综合网站| 乱人视频在线观看| 乱码一卡2卡4卡精品| 欧美+亚洲+日韩+国产| 毛片一级片免费看久久久久 | 精品人妻1区二区| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 午夜免费成人在线视频| 男女视频在线观看网站免费| 精品久久久久久成人av| 一本精品99久久精品77| 亚洲自偷自拍三级| 99热网站在线观看| 国产黄a三级三级三级人| 欧美成人a在线观看| 老司机福利观看| 免费av观看视频| 在线观看av片永久免费下载| 免费高清视频大片| 国产精品嫩草影院av在线观看 | 校园春色视频在线观看| 午夜久久久久精精品| 免费av观看视频| 欧美区成人在线视频| av天堂在线播放| 免费电影在线观看免费观看| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 99热这里只有精品一区| 国产成人一区二区在线| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 狂野欧美激情性xxxx在线观看| 一进一出抽搐动态| 国产黄片美女视频| 免费大片18禁| 国产精品电影一区二区三区| 国产伦精品一区二区三区视频9| 久9热在线精品视频| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美人成| 国产精品一区二区免费欧美| 午夜a级毛片| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 欧美成人性av电影在线观看| 人人妻人人看人人澡| 国产主播在线观看一区二区| 国产麻豆成人av免费视频| 亚洲色图av天堂| 亚洲无线在线观看| 日韩大尺度精品在线看网址| 久久久成人免费电影| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 中文字幕精品亚洲无线码一区| 小说图片视频综合网站| 久久6这里有精品| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 简卡轻食公司| 全区人妻精品视频| 亚洲五月天丁香| 中国美白少妇内射xxxbb| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 全区人妻精品视频| 最近最新免费中文字幕在线| 一个人看视频在线观看www免费| 97超视频在线观看视频| 亚洲人成网站在线播| 久久精品人妻少妇| 成年人黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 色噜噜av男人的天堂激情| 乱系列少妇在线播放| 亚洲经典国产精华液单| 亚洲性夜色夜夜综合| 亚洲在线自拍视频| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| АⅤ资源中文在线天堂| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 无人区码免费观看不卡| 一区二区三区高清视频在线| 中国美女看黄片| 亚洲性久久影院| 国产成人福利小说| 国内精品久久久久精免费| 久久精品国产自在天天线| 99热6这里只有精品| 免费观看在线日韩| 俺也久久电影网| 欧美激情久久久久久爽电影| 免费大片18禁| 中文资源天堂在线| 国产精品,欧美在线| 人妻久久中文字幕网| 亚洲 国产 在线| 禁无遮挡网站| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 国产精品亚洲美女久久久| 国产成人福利小说| 免费观看精品视频网站| 日韩欧美三级三区| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 97超级碰碰碰精品色视频在线观看| 三级国产精品欧美在线观看| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| 一区二区三区四区激情视频 | 精品国内亚洲2022精品成人| 国产精品人妻久久久影院| 久久草成人影院| 婷婷精品国产亚洲av在线| 久9热在线精品视频| 在线观看免费视频日本深夜| 欧美成人a在线观看| 搞女人的毛片| 我要搜黄色片| 在线观看舔阴道视频| 亚洲内射少妇av| 十八禁国产超污无遮挡网站| 99久久中文字幕三级久久日本| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 久久99热6这里只有精品| 22中文网久久字幕| 人妻少妇偷人精品九色| 亚洲成人久久性| 亚洲va在线va天堂va国产| 白带黄色成豆腐渣| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验 | 久久精品国产清高在天天线| 别揉我奶头 嗯啊视频| 搡老岳熟女国产| 久久99热6这里只有精品| 国产乱人视频| 国产麻豆成人av免费视频| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 麻豆成人av在线观看| 91久久精品国产一区二区成人| 欧美日韩国产亚洲二区| 亚洲av一区综合| 日韩在线高清观看一区二区三区 | 久久国产精品人妻蜜桃| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| 看免费成人av毛片| 久久久久久久精品吃奶| 看十八女毛片水多多多| 亚洲精华国产精华精| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 欧美一区二区亚洲| 亚洲,欧美,日韩| 听说在线观看完整版免费高清| 日日夜夜操网爽| 久久精品国产清高在天天线| av在线老鸭窝| 久久久久久久久久黄片| 久久国产精品人妻蜜桃| 亚洲18禁久久av| 观看免费一级毛片| 精品乱码久久久久久99久播| 十八禁国产超污无遮挡网站| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 内地一区二区视频在线| www.色视频.com| 亚洲图色成人| 香蕉av资源在线| 级片在线观看| 在线免费观看的www视频| 老师上课跳d突然被开到最大视频| 婷婷六月久久综合丁香| 国产 一区 欧美 日韩| 国产精品久久久久久精品电影| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 午夜a级毛片| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 日韩中字成人| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 如何舔出高潮| 久久亚洲精品不卡| 级片在线观看| 欧美精品国产亚洲| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 国产伦在线观看视频一区| 免费看美女性在线毛片视频| 久久精品国产亚洲av涩爱 | 久久久精品欧美日韩精品| 亚洲精华国产精华液的使用体验 | 国产一区二区激情短视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧洲综合997久久,| 看片在线看免费视频| 哪里可以看免费的av片| 久久久久久久久中文| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 一区二区三区激情视频| 能在线免费观看的黄片| 亚洲精品在线观看二区| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 内地一区二区视频在线| 国产精品国产三级国产av玫瑰| 久久人妻av系列| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 久久人人爽人人爽人人片va| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 男女啪啪激烈高潮av片| 日本黄色片子视频| 午夜福利欧美成人| 国产 一区 欧美 日韩| 欧美精品国产亚洲| 亚洲午夜理论影院| 久久6这里有精品| av天堂中文字幕网| 国产精品嫩草影院av在线观看 | 久久国内精品自在自线图片| 12—13女人毛片做爰片一| bbb黄色大片| 国产三级在线视频| 欧美高清性xxxxhd video| www.色视频.com| 精品久久久噜噜| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 少妇猛男粗大的猛烈进出视频 | 婷婷精品国产亚洲av| 男插女下体视频免费在线播放| 亚洲一区二区三区色噜噜| 日韩 亚洲 欧美在线| 日日啪夜夜撸| 特大巨黑吊av在线直播| 久久婷婷人人爽人人干人人爱| 午夜久久久久精精品| 久久精品影院6| 色综合婷婷激情| 日本爱情动作片www.在线观看 | 他把我摸到了高潮在线观看| 99热精品在线国产| 在线观看美女被高潮喷水网站| 少妇熟女aⅴ在线视频| 欧美xxxx黑人xx丫x性爽| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区| 精品人妻视频免费看| 亚洲国产精品久久男人天堂| 日本精品一区二区三区蜜桃| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 国产色婷婷99| 亚洲性夜色夜夜综合| 国产精品一区二区三区四区免费观看 | 国产男人的电影天堂91| 中文资源天堂在线| 精品久久久久久久末码| 国产精品综合久久久久久久免费| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 天堂网av新在线| 嫩草影院精品99| 色综合色国产| 亚洲av免费高清在线观看| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 色5月婷婷丁香| 亚洲五月天丁香| 亚洲成人久久性| 亚洲一区高清亚洲精品| 99热网站在线观看| 人人妻人人看人人澡| 岛国在线免费视频观看| 国产极品精品免费视频能看的| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 久久久久精品国产欧美久久久| 亚洲精品粉嫩美女一区| 人妻制服诱惑在线中文字幕| 亚洲四区av| 人人妻人人澡欧美一区二区| 久久精品国产鲁丝片午夜精品 | 亚洲最大成人中文| 亚洲四区av| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 亚洲熟妇熟女久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲va在线va天堂va国产| 嫩草影视91久久| 女的被弄到高潮叫床怎么办 | 日韩在线高清观看一区二区三区 | 国产探花极品一区二区| 免费观看的影片在线观看| av在线观看视频网站免费| 国产久久久一区二区三区| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| 高清毛片免费观看视频网站| 国产av在哪里看| 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 97人妻精品一区二区三区麻豆| av黄色大香蕉| a级毛片a级免费在线| 网址你懂的国产日韩在线| 成人av在线播放网站| eeuss影院久久| 啦啦啦观看免费观看视频高清| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 国产69精品久久久久777片| 99久久精品热视频| 看片在线看免费视频| 日韩av在线大香蕉| 国产免费一级a男人的天堂| 久久草成人影院| 国产高清视频在线观看网站| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 99国产极品粉嫩在线观看| 尤物成人国产欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 熟女人妻精品中文字幕| 婷婷六月久久综合丁香| 午夜日韩欧美国产| www.www免费av| 成人av一区二区三区在线看| 老司机福利观看| 九色成人免费人妻av| 成人国产综合亚洲| 国产精品美女特级片免费视频播放器| 国产一区二区在线观看日韩| 美女被艹到高潮喷水动态| 免费人成视频x8x8入口观看| 91午夜精品亚洲一区二区三区 | 亚洲国产欧美人成| 一个人看的www免费观看视频| 成年人黄色毛片网站| 97人妻精品一区二区三区麻豆| 国内精品久久久久精免费| 狠狠狠狠99中文字幕| 一进一出抽搐gif免费好疼| 亚洲人成网站在线播| 色综合站精品国产| 国产老妇女一区| 久久精品国产亚洲网站| 丰满人妻一区二区三区视频av| 国产成人一区二区在线| 久久久色成人| 最新中文字幕久久久久| 在线国产一区二区在线| 桃红色精品国产亚洲av| 91av网一区二区| 人妻丰满熟妇av一区二区三区| 一区二区三区四区激情视频 | 欧美三级亚洲精品| 如何舔出高潮| 亚洲国产欧美人成| 日本成人三级电影网站| 久久久国产成人精品二区| 深夜精品福利| 又黄又爽又免费观看的视频| 国产人妻一区二区三区在| 久久精品国产亚洲av香蕉五月| 在线播放无遮挡| 国产亚洲精品久久久com| 美女免费视频网站| 免费一级毛片在线播放高清视频| 最近最新免费中文字幕在线| 自拍偷自拍亚洲精品老妇| 久久久精品大字幕| av视频在线观看入口| 久久热精品热| 一本精品99久久精品77| 日本爱情动作片www.在线观看 | 狂野欧美激情性xxxx在线观看| 中文亚洲av片在线观看爽| 亚洲精品456在线播放app | 日本熟妇午夜| 人妻少妇偷人精品九色| 99热网站在线观看| 亚洲va日本ⅴa欧美va伊人久久| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 成人高潮视频无遮挡免费网站| 狂野欧美白嫩少妇大欣赏| 久久精品国产清高在天天线| 日韩国内少妇激情av| bbb黄色大片| 日韩欧美三级三区| 少妇高潮的动态图| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区三区四区久久| 亚洲色图av天堂| 成年免费大片在线观看| 亚洲自偷自拍三级| 国产黄片美女视频| 国产69精品久久久久777片| 亚洲内射少妇av| 久久香蕉精品热| 婷婷丁香在线五月| 中文字幕熟女人妻在线| 色哟哟哟哟哟哟| 尤物成人国产欧美一区二区三区| 一夜夜www| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品50| 99国产精品一区二区蜜桃av| 亚洲真实伦在线观看|