• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    2016-11-22 09:48:57趙宗彥
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:材料科學(xué)工程學(xué)院異質(zhì)

    趙宗彥 田 凡

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    趙宗彥1,2,*田凡1

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    構(gòu)建同質(zhì)異相或異質(zhì)結(jié)構(gòu)是提高光催化材料性能的有效途徑之一,尤其是對于CdS這類具有光腐蝕的材料,這種方法還能起到提高光催化材料穩(wěn)定性的作用。因此目前制備CdS基復(fù)合光催化材料得到了廣泛的研究,但是目前對其中的一些基本問題和關(guān)鍵因素仍需要進(jìn)一步探討和解釋。本文采用第一性原理方法對CdS/FeP復(fù)合光催化材料中異質(zhì)結(jié)構(gòu)的界面微觀結(jié)構(gòu)和性質(zhì)進(jìn)行深入研究。計(jì)算結(jié)果表明,由于在界面上部分懸掛鍵被飽和,界面模型呈現(xiàn)出與體相或表面模型不同的電子結(jié)構(gòu)特征,并且有界面態(tài)的存在。在CdS/ FeP異質(zhì)結(jié)構(gòu)的界面處,CdS和FeP的能帶都相對向下移動,而且FeP的能帶(費(fèi)米能級)插入到CdS的導(dǎo)帶下方;同時在界面達(dá)到平衡態(tài)之后,異質(zhì)結(jié)構(gòu)的內(nèi)建電場由FeP層指向CdS層,因而能夠?qū)崿F(xiàn)光生電子-空穴對在CdS/FeP界面處的空間有效分離,這對于光催化性能的增強(qiáng)極其有利。此外,構(gòu)建CdS/FeP異質(zhì)結(jié)構(gòu)也能夠進(jìn)一步增強(qiáng)CdS在可見光區(qū)的光吸收。本文研究結(jié)果為構(gòu)建具有異質(zhì)結(jié)構(gòu)的高效復(fù)合光催化材料提供了機(jī)理解釋和理論支持。

    光催化;硫化鎘;異質(zhì)結(jié)構(gòu);界面微觀結(jié)構(gòu);界面性質(zhì);密度泛函理論計(jì)算

    1 Introduction

    As strategic resource for social and economic development, energy always shows its importance and irreplaceable1.After longterm over-exploitation and excessive consumption,the fossil energy,including:coal,petroleum,and natural gas,will be exhausted in a few years2,3.What′s more,a series of environmental problems caused by fossil energy utilization could not be ignored, for example,greenhouse gas emissions,water resources pollution, and so on4.Severe energy crisis and environmental pollution makes the development of renewable energy(i.e.sustainable utilization,environment friendly,high efficiency,and cheap)is particularly necessary.In the renewable energy resources,solar energy is inexhaustible and clean.And thus,the technology of its efficient utilization is getting more and more attention from all over the world,becoming the important focus,and the corresponding progress increasingly blooming5.Photocatalysis is just one of the promising technologies of solar energy utilization:to produce hydrogen from water splitting,to produce hydrocarbon fuel from CO2reducing,to degrade the organic pollutants.So, scientists expect that it could help people to do away with dependence on fossil fuels in the future6.

    In 1972,Japanese scientists,Fujishima and Honda7observed water splitting phenomenon on the TiO2photoelectrode under UV-light irradiation.Their work provided preliminary evidence for the hydrogen production from photocatalytic water splitting,and opened the prelude of research on artificial photosynthesis to convert solar energy into chemical energy.Unfortunately,the technological development of photocatalysis is still facing two major obstacles to date:narrow spectral response and low quantum efficiency,leading to a long way to achieve large-scale and low-cost solar energy industrial utilization.Cadmium sulfide (CdS)is a typical visible-light driven semiconductor photocatalyst with a band gap of~2.4 eV,which is well overlapping with the spectrum of sunlight,and could theoretically utilize more 40%of solar energy.Furthermore,its conduction band edge is more negative than the H+/H2redox potential,implying that it is thus able to evolve hydrogen from water splitting under sunlight irradiation8,9.However,CdS has a fatal drawback in practical applications,i.e.its stability is much worse10.This phenomenon is ascribed from its anodic decomposition(the so-called photocorrosion)when CdS is in aqueous solution by long-time light irradiation.In order to improve its stability and activity,to construct hetero-structure(combined with cocatalyst or other semiconductors)has been proposed,which has been proved as an effective modification method.For example:Pt/CdS composite photocatalyst has higher photocatalytic activity than Ru/CdS for hydrogen evolution reaction11;ETS-4 loading not only promotes the efficiency of hydrogen production from water splitting under visible-light irradiation,but also enhances the stability of CdS12. Yan et al.13reported that an artificial photocatalyst(Pt-PdS/CdS) can achieve a quantum efficiency up to 93%in photocatalytic H2production under visible-light irradiation,and is very stable under the photocatalytic reaction conditions.

    Metal cocatalyst(especially noble metal)loading is often used to improve the photocatalytic activity of CdS.However,noble metal is scarce and has high production cost,which is against by the original intention to develop low-cost renewable energy resources.Recently,to replace noble metal cocatalyst with cheap materials for CdS photocatalyst has been attracted more and more attention9,14.On the other hand,the stability and catalytic properties of metal phosphide,such as,MoP,InP,Ni2P,CoP,and FeP, also attract extensive concern,and have been widely investigated, owing to their inexpensive and earth-abundant compositions and highly active hydrodesulfurization catalysis reactions15.Cao et al.16reported at the first time that Ni2P nanoparticles present high photocatalytic hydrogen-generating activity and excellent stability in lactic acid aqueous solution under visible light LED irradiation using CdS nanorods as a photosensitizer.Callejas et al.17synthesized uniform,hollow morphology FeP/TiO2composite,which exhibits the highest hydrogen-evolution reaction activities reported to date in both acidic and neutral-pH aqueous solutions,indicating that FeP is a highly earth-abundant material for efficiently facilitating the hydrogen-evolution reaction both electrocatalytically and photocatalytically.Zhang et al.18also considered FeP as a promising alternative to Pt-based catalysts for the hydrogenevolution reaction,in order to develop inexpensive and highly efficient non-precious-metal electrocatalysts.Motivated by above encouraging experimental observations,we adopt density functional theory(DFT)to further investigate the interfacial structure and properties,in order to deepen the understanding of CdS/FeP composite photocatalyst with hetero-structure.Using theoretical simulations,the atomic-scale interfacial microstructure and the electronic-scale interface properties will be provided.And then, based on the calculated results,the detailed mechanism of CdS/ FeP hetero-structure to improve the photocatalytic performance will be discussed.We hope these findings could provide someuseful reference for the development of efficient photocatalyst with hetero-structure in the future.

    2 Computational methods and model

    All of the DFT calculations in the present work are carried out by Cambridge Serial Total Energy Package(CASTEP)codes that are included into the software of Materials Studio19.CASTEP is a quantum mechanics-based program designed specifically for solid-state materials science.For solid-state materials,the interactions between nucleus and electrons are approximately treaded by the Born-Oppenheimer approximation,Hartee-Fock selfconsistent field theory,and periodic potential method.Thus,the interaction between ion cores(i.e.Cd:[Kr],S:[Ne],Fe:[Ar],P: [Ne])are treated by the ultrasoft pesudopotential(USP)20.For expanding the Kohn-Sham wave functions,the energy cutoff is chosen as 330 eV.The exchange-correlation effects of valence electrons(i.e.Cd:4d105s2,S:3s23p4,Fe:3d64s2,P:3s23p3)were described by the revised Perdew-Burke-Ernzerhof for solid (PBEsol)within generalized gradient approximation(GGA)21.In order to overcome the well-known shortcoming of conventional GGA method that underestimates the band gap value of semiconductor by~50%,the GGA+U method is chosen to obtain accurate electronic structure22.The value of effective U is set as 3.6 eV for the Cd-d and Fe-d states,which is obtained by comparison between the calculated results and experimental measurement of band gap value of CdS.A 1×2×1 mesh in the irreducible Brillouin zone was set for Monkhorst-Pack scheme kpoints grid sampling,and a 90×30×360 mesh was set for the fast Fourier transformation.In the geometry optimization process,the minimization algorithm was chosen the Broyden-Fletcher-Goldfarb-Shanno(BFGS)scheme23.The convergence standard was set as follows:the force on the atoms was less than 0.3 eV·nm-1,the stress on the atoms was less than 0.05 GPa,the atomic displacement was less than 1×10-4nm,and the energy change per atom was less than 1×10-5eV.

    To simulate the interfacial structure and properties,the combination model of slab plus vacuum layer was adopted in the present work.The slab contains eight CdS layers and eight FeP layers,in which the two components were boned together. Moreover,the slabs ware separated by a 2 nm-thickness vacuum layer to avoid the mirror self-interaction along the interfacial normal direction.Firstly,the bulk CdS and FeP crystals were fully optimized both cell′s parameters and atomic coordination,and then the corresponding electronic structure and optical properties were calculated.Secondly,the surface with specific direction was cleaved from the optimized bulk phase with eight stoichiometric CdS or FeP layers,and then the atomic coordination was optimized,while the cell′s parameters were restricted.At the same time,the below four CdS layers are constrained to mimic the bulk effects for surface.Then the corresponding electronic structure and optical properties are calculated.Thirdly,two separated slabs of CdS and FeP are combined together,in which the supercell sizes are set as the averages two components.The final supercell sizes parallel to the interface are chose as the average of two components:1.6598 nm×0.5868 nm.Furthermore,the interfacial model is also separated by more than a 2 nm-thickness vacuum layer,and the size of this model along the normal direction interface is up to 7 nm.The total atoms reached to 256.After the interfacial model constructing,the atomic coordination of all atoms in this model are optimized by the BFGS scheme as mentioned above,except those atoms in the below four CdS layers.By this way,the interfacial stress could be reduced to a minimum.Finally,the electronic structure and optical properties are calculated for the interface,based on the optimized model.

    3 Results and discussion

    3.1Interfacial micro-structure

    By the geometry optimizing,we could obtain the accurate lattice constants of bulk CdS and FeP.For diamond-structure(i.e. zincblende structure)CdS(space group:F4ˉ3m),the calculated lattice constants are listed as following:a=b=c=0.5868 nm,α= β=γ=90°,which are very agreement with experimental measurement(a=b=c=0.5811 nm,α=β=γ=90°)24.For orthorhombic-structure FeP(space group:Pnma),the calculated lattice constants are listed as following:a=0.5027 nm,b=0.2962 nm, c=0.5663 nm,α=β=γ=90°,which are very agreement with experimental measurement(a=0.5191 nm,b=0.3009 nm,c= 0.5792 nm,α=β=γ=90°)25.The calculated results indicate that the computational methods are reasonable and credible in the present work.The knowledge of CdS semiconductor atomic surface structure is very important for the tailoring of heterostructure.Anumber of experimental and theoretical investigations have been carried out on CdS semiconductor and its surfaces26,27. In general,the non-polar(101)zincblende surface of CdS semiconductor shows an outward relaxation of the surface-layer anions and an inward relaxation of the surface-layer cations.Our present work well reproduced above conventional phenomenon.

    To construct hetero-structure model,the important factor is the crystal lattice matching.If the crystal lattice mismatching is too large,the interface is unstable due to the larger interfacial stress. In spite of the large crystal lattice mismatching could be decreased by constructing larger supercells,but the interface stress could not be obviously reduced.In the present work,we found the interface combined by the(101)plane CdS and the(103)plane of FePcould meet the above requirement.The two-dimensional lattice constants of the(101)plane of CdS is listed as following:u=0.4149 nm,v=0.5868 nm,γ=90°;and those of the(103)plane of FeP is listed as following:u=1.6108 nm,v=0.2962 nm,γ=90°.For the interface of 4×1(101)CdS/1×2(103)FeP,the degree of crystal lattice mismatching is:Δu=3.04%,Δv=0.93%,Δγ=0, which are less than 5%,suggesting that the(101)plane of CdS and the(103)plane of FeP could form a stable interface.

    After all atomic coordination optimizing,the interfacial model is presented in Fig.1(a).One can see that the atomic relaxation at the interface is very significant:all the displacements of atoms at the interface are larger than 0.05 nm,and the variation of distancesbetween layers is larger than 0.02 nm.At the same time,the dangling bonds at the interface have been partially saturated. Using the formula defined by Xu et al.28,the adhesion energy(Eadh) of CdS/FeP is also calculated as-7.3 eV·nm2.This litter negative value indicates that the formation process of interface is exothermic and the formation of interface bonds stabilizes the interface.Therefore,the CdS/FeP hetero-structure is composed by the(101)plane of CdS and the(103)plane of FeP has small interface stress,and thus is stable.

    Fig.1 (a)Side view of CdS(101)/FeP(103)interface model, (b)average electrostatic potential,and(c)average electron density difference along the interfacial normal direction

    3.2Electronic structure

    In order to explore the evolution of electronic structure of our interfacial model from bulk,to surface,and to interface,the total and partial density of states(DOS)are illustrated in Fig.2.As shown in Fig.2(a),in the case of CdS@Bulk,the calculated band gap is 2.406 eV,which is very consistent with experimental measurement(~2.4 eV).The upper valence band(VB)is dominantly consisted by the S-3p states.The lower conduction band (CB)is dominantly consisted by the Cd-5s states.Below VB and above CB,another band is consisted by the hybridized state between S-3p and Cd-5s states.Compared with bulk electronic structure,in the cases of surface and interface,above-mentioned main features are also exhibited.In the case of CdS@Surface,the lower band of VB is relatively upward shifting and overlapping with the middle band of VB,while in the case of CdS@Bulk the lower band of VB is relatively separated with the middle band of VB.An opposite situation could be found for CB of CdS@Surface case:the lower CB is relatively separated from the middle band of CB,which is overlapping in the bulk case.These variations are arising from the existence of dangling bonds on the surface,and the obvious surface relaxation.Although the dangling bonds are partially saturated,these variations maybe partially disappeared in the case of CdS@Interface.However,owing to the different bonding ways and chemical environments at the interface,there areobviousdifferentelectronicstructuresinthecaseofCdS@Interface,especially the interfacial states in the band gap,and upper band of VB or the lower band of CB.For the case of FeP,as shown in Fig.2(b),bands near the Fermi energy level(EF)are overlapping with each other,suggesting that FeP is a metallic compound. Furthermore,the bonding information of the three models is similar,which are consisted by the hybridized states between Fe-3d states and P-3p states.The presented obvious differences are as following:(i)in the case of FeP@Surface,the energy bands are concentrated to the EF;(ii)the band gap states(or interfacial states)are more obvious in the case of FeP@Interface,as similar with the case of CdS@Interface,which means that the interfacial states are obvious and important for CdS/FeP hetero-structure.

    Fig.2 Calculated total and partial density of states of(a)CdS and(b)FePin different systems:bulk,surface,and interface

    When CdS(101)surface and FeP(103)surface are contact together to form the interface,the atoms at the interface will be relaxed,in order to reduce the interfacial stress and saturate the dangling bonds,as shown in Fig.1(a).Thus,the interfacial states are presenting in Fig.2.In order to further understand the interfacial states,we plotted the layer-resolution total DOS for the CdSand FeP in the interface model in Fig.3,which are respectively compared with the bulk total DOS of CdS or FeP.In the first two layers,the feature of electronic structure is obviously different with that of bulk phase.While,in the case of 3rd-6th layers,the feature of electronic structure is similar with that of bulk phase. This phenomenon indicates that the interfacial states are localized at the limited layers at the interface that are obviously relaxed. Another important phenomenon can be observed:the relative energy band shifting in the case of interface model.It is obviously seen that the energy bands of CdS and FeP are relatively downshifting compared with those of bulk phase.

    For the electronic structure of interface model,to align the energy bands between two components is the most important task. In the present work,we used the method that is defined by Zhang29and Chen30et al.to estimate the valence band offset ΔEVbetween CdS and FeP.The energy-level differences between valence band maximum(VBM)and core levels for CdS and FeP(i.e.are firstly calculated for the bulk models.For FeP, the VBM means the Fermi energy level in the present work.Then, for the interface model,the core-level difference(ΔEC′,C)between CdS layers and FeP layers is calculated.According to these data, the valence band offset ΔEV(CdS/FeP)can be derived by the following equations:ΔEV(CdS/FeP)=By this way,we estimated the shifting relative value of band:~0.3 eV for CdS and~1.1 eV for FeP in order to quantitatively evaluate the energy band shifting.

    Fig.3 Calculated layer-resolution total density of states of CdS(a)and FeP(b)in the CdS/FePmodel compared with the total density of states of bulk phase

    The electrostatic potential along the interfacial normal direction was illustrated in Fig.1(b),in compared with that of CdS surface along the[101]direction or FeP surface along the[103]direction. The obvious feature is the potential of CdS slab(with average potential of-9.74 eV)is higher than that of FeP slab(with average potential of-17.52 eV).Therefore,the built-in electric field points from FeP slab to CdS slab under equilibrium,after the interface is formed and stable.Compared with bulk counterpart, the average potential of CdS slab is increased by~0.76 eV,while that of FeP slab is decreased by~0.01 eV.For the clean unrelaxed CdS(101)surface,the work function is 5.458 eV,which is higher than that of the clean unrelaxed FeP(103)surface(ΦFeP=4.692 eV).So,when they contact together,the electrons will be transferred from CdS slab to FeP slab,resulting the existence of space charge region(or depletion layer).It is could be confirmed the average electron density difference along the interfacial normal direction as shown in Fig.1(c).The result of electron transfer is the Fermi energy(EF,CdS)and the vacuum energy level(EVac,CdS)of CdS slab is downwards shifting,as well as the EF,FePof FeP slab,until the EF,CdSand the EF,FePare aligned.Finally,the EF,CdS/FePis located at below the bottom of CB of CdS by~0.9 eV.From Fig.1(c),the thickness of space charge region could be estimated by about 0.8 nm.Based on above calculated data and discussion,we proposed the energy band diagram of CdS(101)/FeP(103)interface as illustrated in Fig.4.Because of the existence of built-in electric field,the energy band edges of CdS are shifted downwards,which is called as the band bending.The degree of energy band bending (VBB)is defined as the difference of work function between CdS (101)surface and FeP(103)surface,VBB=ΦCdS-ΦFeP=0.766 eV. The presence of the space charge region can prevent more electrons flow from CdS slab to FeP slab.Thus,under the equilibrium conditions,the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface.

    Fig.4 Proposed energy band diagram of CdS/FePhetero-structure

    3.3Optical properties

    Fig.5 illustrated the calculated absorption spectra of different CdS and FeP systems along the[101](for CdS)or[103](for FeP) directions.The optical properties of different systems are determined by their composition,crystal structure,and electronic structure.For example,the fundamental absorption band edge of bulk CdS is located about 550 nm,which is determined by the ~2.4 eV band gap.While the absorption spectra of bulk FeP has no obvious absorption band edge in the visible-light region. Furthermore,the absorption coefficient of FeP is obviously larger than that of CdS,owing to its intrinsic metallic or semi-metallic characters.Compared to bulk CdS,the fundamental absorption band edge of CdS(101)surface along the normal direction is obviously blue-shifting.In the case of FeP(103)surface,the absorption coefficient is significantly decreased.In the case of CdS/ FeP composite photocatalyst,the optical properties have significant difference compared with bulk CdSor bulk FePin the visiblelight region.Importantly,the absorption coefficient of CdS/FeP composite photocatalyst is obviously increasing in the visible-light region in comparison with CdS(101)surface or bulk CdS.This calculated result suggests that the FeP loading could enhance the visible-light absorption of CdS.

    Fig.5 Calculated absorption spectra of CdS or FePin different systems:bulk,surface,and interface

    4 Conclusions

    To in-depth investigate the interfacial properties of CdS/FeP composite photocatalyst with hetero-structure,its atomic-scale structure,electronic structure,and optical properties are calculated by density functional theory in the present work.Firstly,the interface is consisted by the CdS(101)crystalline plane and FeP (103)crystalline plane,which have slight lattice mismatching(less than 5%)and could form a stable interface.Owing to partially saturated dangling bonds,the electronic structure of interface model exhibits both the features of bulk and surface references. At the interface of CdS/FeP hetero-structure,the energy bands of CdS and FeP are relatively down-shifting,and the energy band of FeP inserts at the below of conduction band of CdS,which is very favorable for the improvement of photocatalytic performance. Moreover,the built-in electric field of hetero-structure points from FeP layer to CdS layer under equilibrium,so the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface,which is the improvement mechanism for photocatalytic performance.Based on the calculated results,the energy band diagram of CdS(101)/FeP(103)interface is proposed.In addition, to construct CdS/FeP hetero-structure also can further improve the absorption properties of CdS in visible-light region.

    References

    (1)Guo,Q.;Zhou,C.Y.;Ma,Z.B.;Ren,Z.F.;Fan,H.J.;Yang,X. M.Acta Phys.-Chim.Sin.2016,32,28.[郭慶,周傳耀,馬志博,任澤峰,樊紅軍,楊學(xué)明.物理化學(xué)學(xué)報(bào),2016,32,28.] doi:10.3866/PKU.WHXB201512081

    (2) Chang,X.X.;Gong,J.L.Acta Phys.-Chim.Sin.2016,32,2. [常曉俠,鞏金龍.物理化學(xué)學(xué)報(bào),2016,32,2.]doi:10.3866/ PKU.WHXB201510192

    (5) Schultz,D.M.;Yoon,T.P.Science 2014,343,1239176. doi:10.1126/science.1239176

    (8) Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (9) Zong,X.;Yan,H.;Wu,G.;Ma,G.;Wen,F.;Wang,L.;Li,C. J.Am.Chem.Soc.2008,130,7176.doi:10.1021/ja8007825

    (10) Yang,S.;Wen,X.;Zhang,W.;Yang,S.J.Electrochem.Soc. 2005,152,G220.doi:10.1149/1.1859991

    (11) Sathish,M.;Viswanathan,B.;Viswanath,R.P.Int.J.Hydrog. Energy 2006,31,891.doi:10.1016/j.ijhydene.2005.08.002

    (12) Guan,G.;Kida,T.;Kusakabe,K.;Kimura,K.;Fang,X.;Ma,T.; Abe,E.;Yoshida,A.Chem.Phys.Lett.2004,385,319. doi:10.1016/j.cplett.2004.01.002

    (13) Yan,H.;Yang,J.;Ma,G.;Wu,G.;Zong,X.;Lei,Z.;Shi,J.;Li, C.J.Catal.2009,266,165.doi:10.1016/j.jcat.2009.06.024

    (14) Walter,M.G.;Warren,E.L.;McKone,J.R.;Boettcher,S.W.; Mi,Q.;Santori,E.A.;Lewis,N.S.Chem.Rev.2010,110,6446. doi:10.1021/cr1002326

    (15) Song,H.;Wang,J.;Wang,Z.;Song,H.;Li,F.;Jin,Z.J.Catal. 2014,311,257.doi:10.1016/j.jcat.2013.11.021

    (16) Cao,S.;Chen,Y.;Wang,C.J.;He,P.;Fu,W.F.Chem. Commun.2014,50,10427.doi:10.1039/C4CC05026F

    (17) Callejas,J.F.;McEnaney,J.M.;Read,C.G.;Crompton,J.C.; Biacchi,A.J.;Popczun,E.J.;Gordon,T.R.;Lewis,N.S.; Schaak,R.E.ACS Nano 2014,8,11101.doi:10.1021/ nn5048553

    (18) Zhang,Z.;Hao,J.;Yang,W.;Lu,B.;Tang,J.Nanoscale 2015, 7,4400.doi:10.1039/C4NR07436J

    (19) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert,M.J.;Refson,K.;Payne,M.C.Z.Kristallogr.2005,220,567. doi:10.1524/zkri.220.5.567.65075

    (21) Perdew,J.P.;Ruzsinszky,A.;Csonka,G.I.;Vydrov,O.A.; Scuseria,G.E.;Constantin,L.A.;Zhou,X.;Burke,K.Phys. Rev.Lett.2008,100,136406.doi:10.1103/ PhysRevLett.100.136406

    (22) Anisimov,V.I.;Zaanen,J.;Andersen,O.K.Phys.Rev.B 1991, 44,943.doi:10.1103/PhysRevB.44.943

    (23) Pfrommer,B.G.;Caté,M.;Louie,S.G.;Cohen,M.L. J.Comput.Phys.1997,131,233.doi:10.1006/jcph.1996.5612

    (24)Yeh,C.Y.;Lu,Z.W.;Froyen,S.;Zunger,A.Phys.Rev.B 1992, 46,10086.doi:10.1103/PhysRevB.46.10086

    (25) Rundqvist,S.;Nawapong,P.C.Acta Chem.Scand.1965,19, 1006.doi:10.3891/acta.chem.scand.19-1006

    (26) Lin,C.M.;Tsai,M.H.;Yang,T.J.;Chuu,D.S.Phys.Rev.B 1997,56,9209.doi:10.1103/PhysRevB.56.9209

    (27) Schr?er,P.;Krüger,P.;Pollmann,J.Phys.Rev.B 1993,48, 18264.doi:10.1103/PhysRevB.48.18264

    (28) Xu,X.;Sun,X.;Sun,B.;Peng,H.;Liu,W.;Wang,X.J.Colloid Interface Sci.2016,473,100.doi:10.1016/j.jcis.2016.03.059

    (29) Zhang,S.B.;Wei,S.H.;Zunger,A.J.Appl.Phys.1998,83, 3192.doi:10.1063/1.367120

    (30) Chen,S.;Yang,J.H.;Gong,X.G.;Walsh,A.;Wei,S.H.Phys. Rev.B 2010,81,245204.doi:10.1103/PhysRevB.81.245204

    Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst

    ZHAO Zong-Yan1,2,*TIAN Fan1
    (1Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China;2Yunnan Key Laboratory of Micro/Nano Materials&Technology,School of Materials Science and Engineering, Yunnan University,Kunming 650504,P.R.China)

    An effective method for improving the performance of a photocatalyst is to construct a suitable hetero-/homo-structure.This strategy can also lead to improvements in the stability of the photocatalysts that suffer with photo-corrosion(such as CdS).The preparation of CdS-based composite photocatalysts has therefore been widely studied.Unfortunately,however,some of the fundamental and more significant aspects of this strategy still need to be evaluated in greater detail.In this study,we have evaluated the interfacial microstructure and properties of a CdS/FeP composite photocatalyst with a hetero-structure using a series of the firstprinciples calculations.The results revealed that the electronic structure of the interface model exhibited different features compared with the bulk and surface models,because of the partially saturated dangling bonds. However,several obvious interfacial states were observed.At the interface of the CdS/FeP hetero-structure, the energy bands of CdS and FeP were relatively down-shifted,whereas the energy band of FeP was inserted below the conduction band of CdS.Furthermore,the direction of the built-in electric field of the hetero-structureprojected out from the FeP layer towards the CdS layer under the equilibrium conditions.The photo-generated electron-hole pairs were therefore spatially separated by the CdS/FeP interface,which was favorable for improving the photocatalytic performance.The construction of a CdS/FeP hetero-structure can also lead to further improvements in the absorption properties of CdS in the visible-light region.The results of this study have provided mechanical explanations and theoretical support for the construction of highly efficient composite photocatalyst with hetero-structures.

    April 19,2016;Revised:July 13,2016;Published online:July 13,2016.

    .Email:zzy@kmust.edu.cn;Tel:+86-871-65109952.

    Photocatalysis;Cadmium sulfide;Hetero-structure;Interfacial micro-structure;Interfacial property;Density functional theory calculation

    O647

    10.3866/PKU.WHXB201607131

    The project was supported by the National Natural Science Foundation of China(21473082),and 18th Yunnan Province YoungAcademic and Technical Leaders Reserve Talent Project(2015HB015).

    國家自然科學(xué)基金(21473082)和云南省第18批中青年學(xué)術(shù)和技術(shù)后備人才項(xiàng)目(2015HB015)資助?Editorial office ofActa Physico-Chimica Sinica

    (3)Hamakawa,Y.Renew.Energy 1994,5,34.10.1016/0960-1481(94)90352-2

    (4) Kamat,P.V.J.Phys.Chem.C 2007,111,2834.10.1021/ jp066952u

    (6) Qu,Y.;Duan,X.Chem.Soc.Rev.2013,42,2568.10.1039/ C2CS35355E

    (7) Fujishima,A.;Honda,K.1972,238,37.10.1038/238037a0

    (20) Vanderbilt,D.Phys.Rev.B 1990,41,7892.10.1103/ PhysRevB.41.7892

    猜你喜歡
    材料科學(xué)工程學(xué)院異質(zhì)
    中海油化工與新材料科學(xué)研究院
    福建工程學(xué)院
    福建工程學(xué)院
    材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    88av欧美| 少妇的逼水好多| 两性午夜刺激爽爽歪歪视频在线观看| 91字幕亚洲| 欧美午夜高清在线| 国产精品久久视频播放| 日韩 亚洲 欧美在线| 看片在线看免费视频| 在线a可以看的网站| av国产免费在线观看| 精品久久久久久久久av| 一本一本综合久久| 中文字幕久久专区| 成人特级黄色片久久久久久久| 一区福利在线观看| 一夜夜www| 日本撒尿小便嘘嘘汇集6| 日日夜夜操网爽| 在线天堂最新版资源| 中文字幕人成人乱码亚洲影| 久久亚洲真实| 亚洲男人的天堂狠狠| 欧美乱色亚洲激情| 国产三级中文精品| 欧美黄色片欧美黄色片| 青草久久国产| 国产大屁股一区二区在线视频| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂最新版资源| 亚洲欧美日韩高清在线视频| 日韩有码中文字幕| 久久午夜亚洲精品久久| 欧美色视频一区免费| 国产真实乱freesex| 桃色一区二区三区在线观看| 色av中文字幕| 日韩欧美国产在线观看| 欧美潮喷喷水| 韩国av一区二区三区四区| 成人国产综合亚洲| 午夜福利在线观看免费完整高清在 | 国产麻豆成人av免费视频| 九色国产91popny在线| 在线a可以看的网站| 婷婷色综合大香蕉| 国产av不卡久久| 国产精品1区2区在线观看.| 99精品在免费线老司机午夜| 午夜免费男女啪啪视频观看 | 日日干狠狠操夜夜爽| 亚洲av.av天堂| 3wmmmm亚洲av在线观看| 人人妻人人澡欧美一区二区| 亚洲精品一区av在线观看| eeuss影院久久| 他把我摸到了高潮在线观看| 久久精品影院6| 超碰av人人做人人爽久久| 色精品久久人妻99蜜桃| 成人性生交大片免费视频hd| 性欧美人与动物交配| 尤物成人国产欧美一区二区三区| 看片在线看免费视频| 丁香六月欧美| 欧美潮喷喷水| 欧美精品啪啪一区二区三区| 午夜福利18| 国产亚洲欧美在线一区二区| 国产高清有码在线观看视频| 在线观看美女被高潮喷水网站 | 欧美激情在线99| 亚洲精品久久国产高清桃花| 熟女人妻精品中文字幕| 蜜桃亚洲精品一区二区三区| 人妻丰满熟妇av一区二区三区| 少妇的逼水好多| 欧美绝顶高潮抽搐喷水| 天天一区二区日本电影三级| 中文字幕av在线有码专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 757午夜福利合集在线观看| 亚洲中文字幕日韩| 亚洲精品在线观看二区| 久久精品国产亚洲av香蕉五月| 国产国拍精品亚洲av在线观看| 51午夜福利影视在线观看| 午夜福利视频1000在线观看| 免费在线观看成人毛片| 一本精品99久久精品77| 久久久久免费精品人妻一区二区| 1000部很黄的大片| 久久亚洲精品不卡| 九色成人免费人妻av| 天堂√8在线中文| 亚洲av一区综合| 久久久久久大精品| 亚洲成av人片免费观看| 日本一二三区视频观看| aaaaa片日本免费| 亚洲精品456在线播放app | 可以在线观看毛片的网站| 日本熟妇午夜| 久久欧美精品欧美久久欧美| 色吧在线观看| 日本与韩国留学比较| 黄色视频,在线免费观看| 欧美3d第一页| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 国产成人欧美在线观看| 久久久色成人| 两个人视频免费观看高清| 97人妻精品一区二区三区麻豆| 亚洲自偷自拍三级| 亚洲av一区综合| 久久久久九九精品影院| 99久久精品国产亚洲精品| 国产精品久久电影中文字幕| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 亚洲国产精品sss在线观看| 观看美女的网站| 欧美日韩亚洲国产一区二区在线观看| 全区人妻精品视频| 国产一区二区在线av高清观看| 国产淫片久久久久久久久 | 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 成人永久免费在线观看视频| 宅男免费午夜| xxxwww97欧美| 亚洲电影在线观看av| 国产成人福利小说| 老司机午夜福利在线观看视频| 日韩精品中文字幕看吧| 国产91精品成人一区二区三区| a在线观看视频网站| 天堂网av新在线| 午夜福利在线在线| 69人妻影院| 黄色丝袜av网址大全| 永久网站在线| 91在线精品国自产拍蜜月| 99久久成人亚洲精品观看| 亚洲第一区二区三区不卡| 国产一区二区激情短视频| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 久久久久久国产a免费观看| 国产视频内射| 亚洲成人免费电影在线观看| 黄色视频,在线免费观看| 亚洲男人的天堂狠狠| 亚洲精品在线美女| 一夜夜www| 国产又黄又爽又无遮挡在线| 丁香欧美五月| 真人一进一出gif抽搐免费| 中文资源天堂在线| 日韩欧美三级三区| 免费在线观看成人毛片| h日本视频在线播放| 天堂√8在线中文| 亚洲一区高清亚洲精品| 亚洲一区二区三区色噜噜| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 欧美在线黄色| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 久久九九热精品免费| 亚洲男人的天堂狠狠| 天堂网av新在线| 精品不卡国产一区二区三区| 国产三级在线视频| 久久久久久久久大av| 床上黄色一级片| 欧美成人一区二区免费高清观看| 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产免费av片在线观看野外av| 女人十人毛片免费观看3o分钟| 午夜激情福利司机影院| 国产成人影院久久av| 99久久精品热视频| 中亚洲国语对白在线视频| 午夜久久久久精精品| 精品不卡国产一区二区三区| 免费高清视频大片| 国产淫片久久久久久久久 | 成人高潮视频无遮挡免费网站| 日韩欧美国产一区二区入口| 制服丝袜大香蕉在线| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 欧美bdsm另类| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 午夜免费激情av| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 亚洲,欧美,日韩| 色噜噜av男人的天堂激情| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 国产91精品成人一区二区三区| 久久九九热精品免费| 啦啦啦韩国在线观看视频| 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 亚洲人成网站在线播| 小说图片视频综合网站| 久久精品久久久久久噜噜老黄 | 在线免费观看的www视频| 啪啪无遮挡十八禁网站| 亚洲avbb在线观看| 老司机深夜福利视频在线观看| 午夜福利在线在线| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 国产精品一区二区三区四区久久| 亚洲精华国产精华精| 老司机福利观看| 欧美激情国产日韩精品一区| 久久人人精品亚洲av| 国产午夜精品久久久久久一区二区三区 | 亚洲精品456在线播放app | 国产亚洲欧美在线一区二区| 国产精品一区二区免费欧美| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 亚洲色图av天堂| 九九热线精品视视频播放| 亚洲第一电影网av| 在线观看一区二区三区| 最新在线观看一区二区三区| 久久热精品热| 亚洲欧美日韩高清专用| 午夜两性在线视频| 中亚洲国语对白在线视频| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 男人舔奶头视频| 少妇裸体淫交视频免费看高清| 亚洲最大成人手机在线| a级毛片免费高清观看在线播放| 亚洲精品影视一区二区三区av| 久久久久久久亚洲中文字幕 | www.色视频.com| 俄罗斯特黄特色一大片| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 亚洲,欧美,日韩| 91av网一区二区| 欧美成人a在线观看| 最近最新中文字幕大全电影3| 身体一侧抽搐| 亚洲国产欧美人成| 欧美丝袜亚洲另类 | 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 好男人在线观看高清免费视频| 精品久久久久久久人妻蜜臀av| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 黄色丝袜av网址大全| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 老熟妇乱子伦视频在线观看| 国产高清有码在线观看视频| 91狼人影院| 国产欧美日韩精品亚洲av| 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| 一级黄片播放器| 亚洲精品在线美女| 日本一二三区视频观看| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 我的女老师完整版在线观看| 久久伊人香网站| 久久人人精品亚洲av| 熟女人妻精品中文字幕| 日韩欧美 国产精品| 午夜老司机福利剧场| 黄色配什么色好看| 免费观看人在逋| 午夜免费男女啪啪视频观看 | 亚洲综合色惰| 尤物成人国产欧美一区二区三区| 国产蜜桃级精品一区二区三区| 极品教师在线视频| av国产免费在线观看| 国产日本99.免费观看| 老熟妇仑乱视频hdxx| 午夜免费激情av| 一个人看的www免费观看视频| 精品免费久久久久久久清纯| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 免费观看精品视频网站| 天堂动漫精品| 日本一本二区三区精品| 国产91精品成人一区二区三区| 欧美另类亚洲清纯唯美| 午夜a级毛片| 亚洲第一欧美日韩一区二区三区| 亚洲精品日韩av片在线观看| 首页视频小说图片口味搜索| 91午夜精品亚洲一区二区三区 | 99久久精品一区二区三区| 国产精品,欧美在线| 亚洲久久久久久中文字幕| 97人妻精品一区二区三区麻豆| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 简卡轻食公司| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 久久香蕉精品热| 国模一区二区三区四区视频| 在线观看66精品国产| 欧美成人性av电影在线观看| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| 特级一级黄色大片| 91在线精品国自产拍蜜月| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 99在线人妻在线中文字幕| 老女人水多毛片| www.色视频.com| 别揉我奶头 嗯啊视频| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免 | 亚洲成人久久爱视频| 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 午夜福利高清视频| 一级黄片播放器| 国产三级中文精品| 午夜激情福利司机影院| 国产三级在线视频| 久久草成人影院| 日本与韩国留学比较| 久久99热6这里只有精品| 国产av在哪里看| 99久久精品国产亚洲精品| 精品人妻1区二区| 国产成人av教育| 欧美+亚洲+日韩+国产| 国产麻豆成人av免费视频| 大型黄色视频在线免费观看| aaaaa片日本免费| av在线观看视频网站免费| 在线免费观看不下载黄p国产 | 黄色视频,在线免费观看| 久久久久久久久中文| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 中文字幕熟女人妻在线| 国产免费男女视频| 岛国在线免费视频观看| 欧美最新免费一区二区三区 | 又黄又爽又免费观看的视频| 嫩草影院入口| 一级黄色大片毛片| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 在线免费观看不下载黄p国产 | 少妇裸体淫交视频免费看高清| 欧美乱色亚洲激情| 色播亚洲综合网| 国产精品一区二区三区四区免费观看 | 国内精品美女久久久久久| 免费看美女性在线毛片视频| 国产免费男女视频| а√天堂www在线а√下载| 国产伦在线观看视频一区| 免费观看人在逋| 国产av麻豆久久久久久久| eeuss影院久久| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久亚洲 | 国产久久久一区二区三区| 国产蜜桃级精品一区二区三区| 全区人妻精品视频| 97热精品久久久久久| 在线a可以看的网站| 国产成人影院久久av| 精品国产亚洲在线| 可以在线观看的亚洲视频| 男人舔奶头视频| 桃色一区二区三区在线观看| 欧美bdsm另类| 久久人妻av系列| 久久久久久久久久黄片| 欧美最黄视频在线播放免费| 嫩草影院精品99| 欧美日本视频| 最近中文字幕高清免费大全6 | 老熟妇乱子伦视频在线观看| 中国美女看黄片| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 国产精品久久久久久久电影| 日韩有码中文字幕| av中文乱码字幕在线| 最新在线观看一区二区三区| 午夜福利欧美成人| 精品人妻一区二区三区麻豆 | 色尼玛亚洲综合影院| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| 在线天堂最新版资源| 亚洲国产精品成人综合色| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 在线观看66精品国产| 露出奶头的视频| 国产精品一区二区免费欧美| avwww免费| 国产精品亚洲av一区麻豆| 国内精品美女久久久久久| 欧美黑人巨大hd| 欧美激情国产日韩精品一区| 欧美一区二区国产精品久久精品| 亚洲在线观看片| 中文字幕人成人乱码亚洲影| 国产69精品久久久久777片| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 亚洲精品一区av在线观看| 国产激情偷乱视频一区二区| 亚洲av日韩精品久久久久久密| 欧美+日韩+精品| 欧美黑人巨大hd| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| 午夜福利欧美成人| 99热这里只有是精品50| 久久久久久久午夜电影| 久久久久国产精品人妻aⅴ院| 99riav亚洲国产免费| 熟女电影av网| 午夜激情欧美在线| 色噜噜av男人的天堂激情| 国产成人啪精品午夜网站| 日韩欧美精品v在线| 麻豆av噜噜一区二区三区| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 国产精品女同一区二区软件 | 男人舔女人下体高潮全视频| 亚洲在线自拍视频| 18禁在线播放成人免费| 麻豆成人av在线观看| 成人性生交大片免费视频hd| 91av网一区二区| 尤物成人国产欧美一区二区三区| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 97热精品久久久久久| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频| 香蕉av资源在线| 精品久久久久久久人妻蜜臀av| 狠狠狠狠99中文字幕| 亚洲 欧美 日韩 在线 免费| 欧美色欧美亚洲另类二区| 搡女人真爽免费视频火全软件 | 国产成人aa在线观看| 亚洲精品成人久久久久久| 国产色爽女视频免费观看| 一个人免费在线观看的高清视频| 日韩精品中文字幕看吧| 99在线视频只有这里精品首页| 色在线成人网| 老女人水多毛片| or卡值多少钱| 又紧又爽又黄一区二区| 99热6这里只有精品| 日韩中字成人| 国产探花在线观看一区二区| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看| 99热这里只有是精品在线观看 | 精品久久久久久久人妻蜜臀av| 成人午夜高清在线视频| 999久久久精品免费观看国产| 成年免费大片在线观看| 国产蜜桃级精品一区二区三区| 国产激情偷乱视频一区二区| 亚洲黑人精品在线| 亚洲成人久久性| 极品教师在线视频| 免费高清视频大片| 又黄又爽又免费观看的视频| 麻豆成人午夜福利视频| 久久精品国产自在天天线| 免费在线观看日本一区| 久久6这里有精品| 一级黄色大片毛片| 久久久久性生活片| 少妇丰满av| 欧洲精品卡2卡3卡4卡5卡区| 变态另类丝袜制服| 成人国产综合亚洲| 精品熟女少妇八av免费久了| 少妇被粗大猛烈的视频| 99热精品在线国产| 色播亚洲综合网| 日本免费一区二区三区高清不卡| 蜜桃久久精品国产亚洲av| 久久精品影院6| 757午夜福利合集在线观看| 好男人在线观看高清免费视频| 搡老岳熟女国产| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站 | 老鸭窝网址在线观看| 日韩人妻高清精品专区| 国产精品永久免费网站| 噜噜噜噜噜久久久久久91| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 丰满人妻一区二区三区视频av| 国产熟女xx| 国产亚洲av嫩草精品影院| 少妇人妻一区二区三区视频| 啦啦啦观看免费观看视频高清| av视频在线观看入口| 欧美一区二区精品小视频在线| 色综合欧美亚洲国产小说| 精品久久久久久久久av| 亚洲av二区三区四区| 国产麻豆成人av免费视频| 久久久成人免费电影| 91九色精品人成在线观看| 男插女下体视频免费在线播放| 午夜福利18| 国内精品久久久久精免费| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 听说在线观看完整版免费高清| 麻豆成人av在线观看| 欧美丝袜亚洲另类 | 精品欧美国产一区二区三| 中文字幕人成人乱码亚洲影| 国产在线男女| 97热精品久久久久久| 午夜福利18| 怎么达到女性高潮| 精品乱码久久久久久99久播| 欧美日韩国产亚洲二区| 毛片女人毛片| 一a级毛片在线观看| 看黄色毛片网站| 亚洲五月婷婷丁香| 日韩中字成人| 午夜日韩欧美国产| 99riav亚洲国产免费| 搡老岳熟女国产| 免费一级毛片在线播放高清视频| 嫩草影院入口| 村上凉子中文字幕在线| 99热精品在线国产| 久久天躁狠狠躁夜夜2o2o| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 欧美xxxx黑人xx丫x性爽| 午夜免费成人在线视频| 天堂网av新在线| 一个人观看的视频www高清免费观看| 久久精品人妻少妇| 久久人妻av系列| 丝袜美腿在线中文| 午夜免费成人在线视频| 欧美一级a爱片免费观看看| 久久亚洲真实| 村上凉子中文字幕在线| 国产精品电影一区二区三区| 国模一区二区三区四区视频| 亚洲国产精品999在线| 日日夜夜操网爽| 99riav亚洲国产免费| 亚洲精品成人久久久久久| 在线国产一区二区在线| 久久久色成人| 国产免费av片在线观看野外av| 内射极品少妇av片p| 成人av在线播放网站| 免费av毛片视频| 免费看光身美女| 国产中年淑女户外野战色| 亚洲国产欧洲综合997久久,|