• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理論研究BBPQ-PC61BM體系的光伏性質

    2016-11-22 09:48:55趙蔡斌葛紅光靳玲俠王文亮尹世偉
    物理化學學報 2016年10期
    關鍵詞:激子理工學院電荷

    趙蔡斌 葛紅光 張 強 靳玲俠 王文亮 尹世偉

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    理論研究BBPQ-PC61BM體系的光伏性質

    趙蔡斌1,*葛紅光1,*張強1靳玲俠1王文亮2尹世偉2

    (1陜西理工學院化學與環(huán)境科學學院,陜西省催化基礎與應用重點實驗室,陜西漢中723000;2陜西師范大學化學化工學院,陜西省大分子科學重點實驗室,西安710062)

    探索和制備具有高能量轉換效率(PCE)的有機太陽能電池體系是有機電子學的重要領域和研究熱點。本文利用量子化學和分子動力學計算結合Marcus-Hush電荷傳輸模型理論研究了BBPQ-PC61BM(BBPQ:7, 12-二((三異丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2′,3′:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)體系的光伏性質。結果表明,BBPQ-PC61BM體系具有相當大的開路電壓(1.22 V)、高的填充因子(0.90)和高的光電轉換效率(9%-10%)。此外,本文研究還發(fā)現(xiàn)BBPQ-PC61BM體系擁有中等大小的激子結合能(0.607 eV),但相對較小的激子分離和電荷復合重組能(0.345和0.355 eV)。借助于一個簡單的分子復合物模型,本文預測BBPQ-PC61BM體系的激子解離速率常數(shù)kdis高達1.775×1013s-1,而預測的電荷復合速率常數(shù)krec相當小(<1.0 s-1),這表明在BBPQ-PC61BM相界面上,激子解離效率非常高??傊?,理論研究表明,BBPQ-PC61BM是一個非常有前途的有機太陽能電池候選體系,值得實驗上做出進一步研究。

    BBPQ;PC61BM;理論研究;光伏性質;密度泛函理論

    1 Introduction

    Organic solar cells(OSCs)have attracted continuous interest in the past several decades due to their numerous advantages compared to traditional silicon-based solar cells,such as lightweight,low cost,adjustable properties,and ease of solvent processing1-4.The power conversion efficiency(PCE)is one of most parameters that character the performance of OSC devices,which is directly related with the open-circuit voltage,Voc,short-circuit current density,Jsc,and fill factor,FF.Previous studies have shown that electron-donating materials in high PCE devices with(6,6)-phenyl-C61-butyric acid methyl ester(PC61BM)as acceptor,should possess(1)the strong optical absorption to harvest more sunlight, (2)high hole mobility to transport holes as efficient as possible, (3)low-lying lowest unoccupied molecular orbital(HOMO)level close to-4.0 eV,and(4)low highest occupied molecular orbital (HOMO)level to obtain large Voc5-7.

    Recently,Engelhart et al.8synthesized a series of novel nitrogendoped pentacene derivatives.Interestingly,most of these compounds exhibit the very strong optical response and low LUMO level of~4.0 eV,which makes them seem to be very suitable as an ideal electron donor material.In current work,taking the PC61BM as acceptor and 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido (2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one(BBPQ)as donor, we carried out systematic quantum chemistry and molecular dynamics investigations for the photovoltaic properties of BBPQPC61BM system in order to verify our speculation.The main objectives of this work are to explore the feasibility of BBPQPC61BM system as a potential organic solar cell.Calculations show that BBPQ is an excellent electron donor material,and the PCE of BBPQ-PC61BM system can theoretically reach up to 9%or more.

    2 Computational methods

    As is well-known,the density functional theory(DFT)is an accurate formalism that simulates the molecular structures and electronic properties of organic compounds9-11.However,recent studies show that traditional hybrid density functionals,such as B3LYP,are unsuitable to estimate the excited-state properties for large π-conjugated molecules since their non-Coulomb term of exchange functionals dies off too rapidly12-14.Consequently,the long-range-corrected functional(CAM-B3LYP)15coupled with the 6-311G(d,p)basis set was used to calculate the properties of ground state and excited state in this work,which has been verified to be more reliable and accurate than the other hybrid density functionals16-20.For comparison,some results calculated with the B3LYP/6-311G(d,p)method were also provided.To explore the rational geometry of BBPQ-PC61BM complex,a detailed potentialsurface scan was performed between PC61BM and BBPQ with the CAM-B3LYP-D3(BJ)/6-311G(d,p)scheme.As seen in Fig.S1(in Supporting Information),the BBPQ-PC61BM complex is found to be most stable when the centroids distance of BBPQ and PC61BM is at 0.80 nm,which is in good agreement with the recent study21. Then,in subsequent calculations for the BBPQ-PC61BM complex, the centroid distance of BBPQ and PC61BM is invariably fixed at 0.80 nm.Moreover,the influence of molecular orientation was also considered.As shown in Fig.S2(in Supporting Information), the molecular orientation has a very weak influence on the total energy of BBPQ-PC61BMcomplex.Total density of states(TDOS) and partial density of states(PDOS)were visualized with the Multiwfn 3.37 software package22-24.In addition,the direct-coupling(DC)strategy under one-electron approximation and the PW91PW91/6-31G(d)method25,26was used to estimate the charge transfer integral(VDA)in Marcus-Hush model,which have been illustrated to provide the most accurate VDAvalue at the DFT level27,28.All quantum chemistry calculations were completed with the Gaussian 09 software29.

    Fig.1 Molecular structures of BBPQ and PC61BM

    3 Results and discussion

    3.1Electronic properties and open-circuit voltage

    The structures of BBPQ and PC61BM were depicted in Fig.1. Our optimization reveals that BBPQ core keeps an excellent planar geometry(Fig.S3,in Supporting Information),which indicates its good electronic delocalization.With the optimized ground-state geometries of PC61BM and BBPQ,the TDOS and PDOS were calculated and presented in Fig.2.With the PDOS,the contribution from each substituent to the frontier molecular orbital can be directly observed.As seen,for PC61BM most density of HOMOs and LUMOs concentrates on the C60spheroid in energyrange from-10.0 to 2.0 eV,and the contribution of substituent (methyl-4-phenylbutanoate)is very small.This result indicates that the substituent only enhances the C60solubility in organic solvents,and has hardly influence on its electronic properties, which is in good accord with the previously experimental result30,31.Furthermore,it is found that,as expected,the contribution to the HOMO and LUMO of BBPQ from the trimethylsilyl is very small,which indicates that the electronic structure of BBPQ is almost completely determined by its core skeleton.According to the previous study,the Vocof OSCs can be estimated with32

    Fig.2 Total and partial density-of-states of PC61BM and BBPQ

    where EHOMO(D)and ELUMO(A)are the HOMO level of donor and the LUMO level of PC61BM,respectively,e is the electronic charge,and the value of 0.3 V is an empirical factor.Then,based on the LUMO level(-4.3 eV)for PC61BM,as well as the HOMO level(-5.82 eV)of BBPQ,the Vocis estimated to be as large as 1.22 V for the BBPQ-PC61BM system.More interestingly,the PCE of BBPQ-PC61BM system is predicted to reach up 9%-10%or more(Fig.3)by means of the Scharber diagram32,which indicates the BBPQ-PC61BM system being a very promising OSC.

    3.2Short-circuit current density(JSC)and fill factor(FF)

    The Jscis another important factor that determines the PCE of OSC devices.Simply,the Jscis viewed as a function of the lightabsorbing efficiency(η(λ)),internal quantum efficiency(ηIQE(λ)), and the spectral irradiance of incident light(S(λ)),which can be expressed as33-35,

    Fig.3 Predicted PCE for BBPQ-PC61BM cell with the Scharber diagram

    where η(λ)is the light-absorption efficiency,ηIEQ(λ)is the internal quantum efficiency,S(λ)is the spectral irradiance of incident light, and f is the oscillator strength of molecular donor associated with a certain wavelength.From Eq.(2)and Eq.(3),it is clear that the wide and strong optical absorption can remarkably enlarge the Jsc. Here,the η(λ)values of the strongest absorption peak and the second-strongest one were estimated.Calculations show that the η(λ)is equal to 0.55/0.45 for the strongest/second-strongest absorption peak of BBPQ.For the FF calculation,an approximate scheme can be expressed as36,37,

    where νocis the dimensionless voltage,which can be estimated by the following equation38,39,

    where kB,T,and q are Boltzmann constant,temperature(here,we set T=300 K),and the elementary charge respectively,n is the ideality factor of the diode.According to estimated Voc(1.22 V)for the BBPQ-PC61BM system,the νocis estimated to be 46.42 at n= 1,then,the upper-limit of FF is calculated to be as high as 0.90.

    3.3Exciton binding energy

    Generally,the exciton dissociation concludes a two-step process,where excitons are firstly separated to less strongly bound polaron pairs and,finally,to free polarons40.In order to dissociate excitons into free polarons,the exciton binding energy(Eb)has to be overcome.In optoelectronic organic devices,the Ebis one of the most important parameters that govern many physical processes,which is directly related to the charge separation efficiency. Usually the exciton binding energy is taken as the difference between the transport gap(Et)and the optical band one(Eopt).The former is the difference between adiabatic ionization potential (EAIP)and adiabatic electron affinity(EAEA),while the latter is taken as the first-singlet excitation energy.According this scheme,the Ebcan be calculated as the following expression41,

    where EAIP(D)and EAEA(D)are the donor′s AIP and AEA in the solid state,and E0-0(D)is the lowest singlet-excited energy of donor.As is well-known,the solid stack can stabilize the ionic species,lower the IP,and increase the EA.Then,to calculate the Eb,the EAIPand the EAEAof solid donor firstly need to estimated. Here,the EAIPand the EAEAof BBPQ in the solid state were calculated via the scheme reported by Schwenn et al.42,which has been verified being an accurate method to estimate the IP and EA of organic materials in the solid state.Calculated EAIPand EAEAvalues as well as the Ebin the solid and gas states for BBPQ with different DFT methods were listed in Table 1.As seen,the EAIP/ EAEAin the gas phase is clearly larger/smaller than the one in the solid state,which indicates relatively large polarization energies (~0.8 eV)from gas phase to solid state.In addition,the estimated Ebis remarkably large regardless of the solid stacking compared to the measured Ebin numerous organic materials43.Thus,it is essential to consider the solid stacking effect for accurately estimating the Eb.The precious study showed that an exciton breaks free the Coulomb attraction and becomes two carriers with an opposite charge when Eb

    3.4Gibbs free energies of exciton dissociation and charge recombination

    The Gibbs free energy change(ΔG)of electron transfer process can be estimated as the energy difference of constituents in the final and initial states,accounting for the Coulombic attraction between the two charges in the charge-separated state.Thus,for the exciton-dissociation process,the ΔG(ΔGdis)is expressed as45,

    whereED*,ED+,EA,andEA-represent the total energies of the isolated donor in the equilibrium geometries of the lowest singletexcited state and of the cationic state and the total energies of the isolated acceptor in the equilibrium geometries of the ground state and of the anionic states,respectively.qDand qAare the atomic charges(obtained by Mulliken population analysis in this work) on donor and acceptor in their relevant state with a separation rDA, ε0is the vacuum permittivity,and εsis the relative permittivity of material.The ΔG(ΔGrec)in the charge recombination can also be estimated according to the similar expression to Eq.(7)and Eq.(8). For organic compounds,the εscan be accurately estimated by the following Clausius-Mossotti(CM)equation46

    where V is the Connolly molecular volume,=13∑αii,αiiis the diagonal matrix element of first-order polarizability tensors. Calculation shows that the εsvalue is 2.451 for the solid BBPQ, which is in good agreement with the measured ones(varying in the range from 2 to 547,48)in most organic photoelectric materials. Since the εsof solid PC61BM cannot be accurately computed with the Eq.(9)due to the so-called“tail effect”,the experimental εsof 3.949is used in current calculation.For the BBPQ-PC61BM complex,the total εsis taken as an average of BBPQ and PC61BM. Fig.4 showed the ΔGdis,ΔGrecas well as the ΔEcoulterm estimated in different BBPQ-PC61BM blends.As seen,in BBPQ-PC61BM complexes the ΔGdisand the ΔGrecvalues are calculated to be consistently negative,which indicates that the exciton-dissociation and charge-recombination processes are always favorable thermodynamically.Furthermore,compared to the ΔGdisandthe ΔGrec, it can be noted that the former is remarkably larger than the latter, which denotes that the driving force of charge-recombination is larger than that of exciton-dissociation for the BBPQ-PC61BM system.

    Table 1 Calculated EAIPand EAEAvalues as well as the Ebin gas and solid states for BBPQ with different DFT methods

    3.5Reorganization energies of exciton dissociation and charge recombination

    Generally,the total reorganization energy(λ)accompanying the charge transfer in organic materials can be divided into two sections,namely,the internal reorganization energy(λint)and external one(λext).The λintterm can be calculated with the classic adiabatic potential energy surface(PES)method50,51.For example, in the case of exciton dissociation,the λintis actually taken as the average of the following λ1and λ252,

    where QRand QPrefer to the equilibrium geometries of the reactants(R)and products(P),respectively.Our calculation shows that the λint(λdis)is 0.275 eVin the exciton-dissociation for PC61BMBBPQ complex,which slightly increases to 0.285 eV for the charge recombination.Relatively,the λextis very difficult to be accurately calculated.Here,the λextwas estimated by the classicaldielectric continuum model initially developed by Marcus for electron-transfer reactions between spherical ions in solution. According this model,the λextterm is given by53,

    Fig.4 ΔGdis,ΔGrec,and ΔEcoulvalues calculated in BBPQ and PC61BM blends with different proportions

    where εopis the optical dielectric constant of material,RD(=0.62 nm for BBPQ)and RA(=0.65 nm for PC61BM)are the effective radii of donor and acceptor estimated as the radius of the sphere having the same surface as the surface accessible area of molecule. The qDand qAterms denote the atomic charges on the ions.The εopcan be estimated with the Lorentz-Lorenz equation54,55,

    where n is refractive index,Vmis the molar volume(Vm=M/ρ,M is the molar mass,and ρ is the material density),R is the molar refraction.In this work,the ρ was estimated with the molecular dynamics simulation,and the simulated details were presented in the Supporting Information.Calculations show that the ρ and R of BBPQ solid are 1.066 g·cm-3and 127.4 cm3·mol-1,respectively, yielding the εopof 2.145 for BBPQ.The εopof PC61BM is estimated to be 3.482 with its experimental refractive index of 1.866.Based on the above parameters,the λextis estimated to be 0.060 eV in BBPQ-PC61BM complex(1:1).Summary,the total λ is 0.335 eV in the exciton-dissociation process for BBPQ-PC61BM complex. However,for the charge-recombination process,it further increases to 0.345 eV.According to the Marcus model,the large λ decreases the charge transfer rate;our results show that the exicton-dissociation rate is faster than the charge-recombination one without considering the VDA.

    3.6Exciton dissociation and charge recombination rates

    As is known to all,the charge transfer process occurring in organic solid materials under the high temperature approximation obeys the incoherent hopping mechanism56,57,and the rate constant, k,can be evaluated using the classical Marcus-Hush model58,59,

    where λ is the total reorganization energy,VDAis the effective charge transfer integration between donor and acceptor,ΔG is the Gibbs free energy difference between the initial and final states, kBis Boltzmann constant,h is Planck constant,and T is the temperature.In the exciton-dissociation and charge-recombination processes,ΔG=ΔGdisand ΔGrec,respectively.In terms of the DC scheme,the VDAin the charge transfer process can be calculated by the following expression60,

    where TD(i)A(j)is the charge transfer integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,SD(i)A(j)is the spatial overlap integral of the ith molecular orbital of donor and the jth molecular orbital of acceptor,and eD(i)/eA(j)is the site energy.The TD(i)A(j),SD(i)A(j),and eD(i)/eA(j)can be obtained from the TD(i)A(j)=<ψD(i)|FKS|ψA(j)>,SD(i)A(j)=<ψD(i)|ψA(j)>,and eD(i)/eA(j)=<ψD(i)/ψA(j)|FKS|ψD(i)/ψA(j)>.Among them,ψD(i)is the HOMO or LUMO of donor, ψA(j)is LUMO of acceptor,and FKSis the Kohn-Sham matrix of donor-acceptor system.The FKScan be estimated from

    where S is the intermolecular overlap matrix,C is the molecular orbital coefficient matrix from the isolated monomer,and ε is the orbital energy from one-step diagonalization without iteration. Consideration the LUMO+1 and LUMO+2 in PC61BM are degenerate in energy with its LUMO,the total VDAwere estimated as an average value of three VDAvalues between the LUMO of BBPQ and the LUMO/LUMO+1/LUMO+2 of PC61BM.Based on the calculated VDAand λ,the exciton-dissociation rate constant, kdis,is estimated to be as high as 1.775×1013s-1in BBPQ-PC61BM blend with a ratio of 1:1,but the charge recombination rate constant,krec,is predicted to be quite small(<1.0 s-1),which indicates very high exciton-dissociation efficiency in BBPQ-PC61BM interface.As observed in Eq.(14),the large kdisvalue can be attributed the large ΔGdis.According our calculations,the excitondissociation process,really occurs in the normal region of Marcus since|ΔG|<λ(0.245 eV versus 0.335 eV).As a result,the k will increase significantly if the|ΔG|and the λ are to converge toward a similar value.Unlike the exciton dissociation,the charge recombination process happens in the inverted region of Marcus due to the|ΔG|>>λ(1.803 eV versus 0.345 eV).Thus,the large|ΔG| remarkably decreases the krec.

    Table 2 Calculated λintfor BBPQ in solid and gas states with different DFT methods

    3.7Charge transport in BBPQ solid

    As is well known,the charge transport ability of donor also affects remarkably the solar cell performance.According to the previous investigation,for high-performance OSC devices,the hole carrier mobility should be as high as 10-3cm2·V-1·s-1at least32.Hence,we estimated the charge-transport performance by means of calculating the λ and VDAvalues with a simplified dimer model,which has been widely applied to evaluate the charge-transport performance of organic material61-63.Table 2 displayed the calculated λintvalues with the PES and normal mode(NM) analysis.As seen,the λintestimated with two approaches are quite close,which shows that the harmonic oscillator approximation can describe well for the charge transfer process of studied molecule64. In addition,it can be also noticed that the λintin the solid state are obviously smaller than that in the gas state,which indicates that the solid stack can limit the structural relaxation of BBPQ in charge transfer process to a certain extent.Considering the practical operating condition of OSC devices,the λintestimated in the solid state is more reasonable.

    Fig.5 Contribution of each vibration mode to the λintfor BBPQ calculated in gas(up)and solid(down)states

    To clarify the λintorigin,the contribution from each vibrational mode to the λintwas calculated with the DUSHIN program developed by Reimers et al.65,66.Fig.5 visualized the contribution from each vibrational mode to the λintestimated at the CAMB3LYP/6-311G(d,p)level in the solid and gas states.As seen, although numerous modes couple with the hole transport in BBPQ,the main contribution to the λintderives from the highfrequency region of 1200-1600 cm-1,which belongs to the stretching vibration of the C―C/C―N single and double bonds located in the molecular skeleton67.Relatively,the contribution from the middle-and low-frequency region is small.Interestingly, from gas state to solid phase,the contribution from the C―C stretching mode with the frequency of 896 cm-1is found to remarkably decrease(from 31 to 16 meV).In addition,the VDAis estimated to be 3.06 meV by means of the face-to-face dimer with the centroids distance of 0.65 nm(Fig.S4 and Fig.S5,in Supporting Information),and then yielding the hole mobility is as high as 1.180×10-3cm2·V·s-1according to the one-dimensional(1D) charge transfer model.

    4 Conclusions

    In summary,BBPQ-PC61BM as a promising OSC was investigated theoretically by means of quantum-chemical calculations. Results show that BBPQ-PC61BM system possesses a large opencircuit voltage(1.22 V),high fill factor(0.90),and high PCE (>9%).Also it has a middle-sized exciton binding energy(0.607 eV),relatively large Gibbs free-energy difference(-0.245 eV)in the exciton dissociation,but the very small one(-1.803 eV)in the charge recombination.Using the Marcus′s charge transfer model, the exciton-dissociation rate constant,kdis,is predicted to be as large as 1.775×1013s-1in BBPQ-PC61BM interface.However,the charge-recombination one,kdis,is estimated to be very small(<1.0 s-1)under the same condition.Furthermore,by means of the 1D model,the mobility of BBPQ solid is predicted to be as high as 1.180×10-3cm2·V·s-1,which can be attributed its small inner organization energy(0.261 eV)and relatively large VDA(3.06 meV).In a word,our calculation shows that BBPQ-PC61BM is a promising OSC system,and is worth studying further on the experimental aspect.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Boudreault,P.L.T.;Najari,A.;Leclerc,M.Chem.Mater.2011, 23,456.doi:10.1021/cm1021855

    (2)Cheng,Y.J.;Yang,S.H.;Hsu,C.S.Chem.Rev.2009,109, 5868.doi:10.1021/cr900182s

    (3) Günes,S.;Neugebauer,H.;Sariciftci,N.S.Chem.Rev.2007, 107,1324.doi:10.1021/cr050149z

    (4) Thompson,B.C.;Fréchet,J.M.J.Angew.Chem.Int.Ed.2007, 47,58.doi:10.1002/anie.200702506

    (5) Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater. 2009,21,1521.doi:10.1002/adma.200802559

    (6) Huo,L.;Hou,J.;Chen,H.Y.;Zhang,S.;Jiang,Y.;Chen,T.; Yang,Y.Macromolecules 2009,42,6564.doi:10.1021/ ma9012972

    (7) Sista,P.;Nguyen,H,;Murphy,J.W.;Hao,J.;Dei,D.K.; Palaniappan,K.;Servello,J.;Kularatne,R.S.;Gnade,B.E.; Xue,B.F.;Dastoor,P.C.;Biewer,M.C.;Stefan,M.C. Macromolecules 2010,43,8063.doi:10.1021/ma101709h

    (8) Engelhart,J.U.;Lindner,B.D.;Tverskoy,O.;Rominger,F.; Bunz,U.H.F.Org.Lett.2012,14,1008.doi:10.1021/ ol203334u

    (9) Fabiano,E.;Sala,F.D.;Cingoland,R.;Weimer,M.;G?rling,A. J.Phys.Chem.A 2005,109,3078.doi:10.1021/jp044974f

    (10) Tsai,F.C.;Chang,C.C.;Liu,C.L.;Chen,W.C.;Jenekhe,S.A. Macromolecules 2005,38,1958.doi:10.1021/ma048112o

    (11) Hutchison,G.R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc. 2005,127,2339.doi:10.1021/ja0461421

    (12)Wong,B.M.;Hsieh,T.H.J.Chem.Theory.Comput.2010,6, 3704.doi:10.1021/ct100529s

    (13) Grimme,S.;Parac,M.ChemPhysChem 2003,4,292. doi:10.1002/cphc.200390047

    (14) Song,J.W.;Hirao,K.Theor.Chem.Acc.2014,133,1438. doi:10.1007/s00214-013-1438-5

    (16) Vl?ek,A.;Záli?,S.Coordin.Chem.Rev.2007,251,258. doi:10.1016/j.ccr.2006.05.021

    (17) Zhang,S.;Qu,Z.;Tao,P.;Brooks,B.;Shao,Y.;Chen,X.;Liu, C.J.Phys.Chem.C 2012,116,12434.doi:10.1021/jp3027447

    (18) Jacquemin,D.;Perpète,E.A.;Vydrov,O.A.;Scuseria,G.E.; Carlo,A.J.J.Chem.Phys.2007,127,094102.doi:10.1063/ 1.2770700

    (19) Jacquemin,D.;Planchat,A.;Adamo,C.;Mennucci,B.J.Chem. Theory.Comput.2012,8,2359.doi:10.1021/ct300326f

    (20) Jorge,F.E.;Jorge,S.S.;Suave,R.N.Chirality 2015,27,23. doi:10.1002/chir.22384

    (21) Liu,T.;Troisi,A.J.Phys.Chem.C 2011,115,2406. doi:10.1021/jp109130y

    (23) Lu,T.;Chen,F.W.J.Mol.Graph.Model.2012,38,314. doi:10.1016/j.jmgm.2012.07.004

    (24) Lu,T.;Chen,F.W.Acta Chim.Sin.2011,69,2393.[盧天,陳飛武.化學學報,2011,69,2393.]

    (25) Troisi,A.;Orlandi,G.J.Phys.Chem.A 2006,110,4065. doi:10.1021/jp055432g

    (26)Yin,S.W.;Yi,Y.P.;Li,Q.X.;Yu,G.;Liu,Y.Q.;Shuai,Z.G. J.Phys.Chem.A 2006,110,7138.doi:10.1021/jp057291o

    (27) Song,Y.B.;Di,C.A.;Yang,X.D.;Li,S.P.;Xu,W.;Liu,Y.Q.; Yang,L.M.;Shuai,Z.G.;Zhang,D.Q.;Zhu,D.B.J.Am. Chem.Soc.2006,128,15940.doi:10.1021/ja064726s

    (28) Huang,J.S.;Kertesz,M.Chem.Phys.Lett.2004,390,110. doi:10.1016/j.cplett.2004.03.141

    (29) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision D.02;Gaussian Inc.:Wallingford,CT,2009.

    (30) Zheng,L.P.;Zhou,Q.M.;Deng,X.Y.;Yuan,M.;Yu,G.;Cao, Y.J.Phys.Chem.B 2004,108,11921.doi:10.1021/jp048890i

    (31)Wang,X.M.;Guo,Y.L.;Xiao,Y.;Zhang,L.;Yu,G.;Liu,Y.Q. J.Mater.Chem.2009,19,3258.doi:10.1039/B823336E

    (32) Scharber,M.C.;Mühlbacher,D.;Koppe,M.;Denk,P.; Waldauf,C.;Heeger,A.J.;Brabec,C.J.Adv.Mater.2006,18, 789.doi:10.1002/adma.200501717

    (33) Peumans,P.;Yakimov,A.;Forrest,S.R.J.Appl.Phys.2003,93, 3693.doi:10.1063/1.1646446

    (34) Bérubé,N.;Gosselin,V.;Gaudreau,J.;C?té,M.J.Phys.Chem. C 2013,117,7964.doi:10.1021/jp309800f

    (35) Liu,X.R.;Shen,W.;He,R.X.;Luo,Y.F.;Li,M.J.Phys. Chem.C 2014,118,17266.doi:10.1021/jp503248a

    (36) Guo,X.G.;Zhou,N.J.;Lou,S.J.;Smith,J.;Tice,D.B.; Hennek,J.W.;Ortiz,R.P.;Navarrete,J.T.L.;Li,S.Y.; Strzalka,J.;Chen,L.X.;Chang,R.P.H.;Facchetti,A.;Marks, T.J.Nat.Photonics 2013,7,825.doi:10.1038/ nphoton.2013.207

    (37) Gupta,D.;Mukhopadhyay,S.;Narayan,K.Sol.Energy Mater. Sol.Cells 2010,94,1309.doi:10.1016/j.solmat.2008.06.001

    (38) Zhou,Y.H.;Fuentes-Hernandez,C.;Shim,J.W.;Khan,T.M.; Kippelen,B.Energy Environ.Sci.2012,5,9827.doi:10.1039/ C6EE01428C

    (39) Liu,X.R.;Huang,C.Z.;Shen,W.;He,R.X.;Li,M.J.Mol. Model.2016,22,15.doi:10.1007/s00894-015-2885-9

    (40) Grage,M.M.L.;Zaushitsyn,Y.;Yartsev,A.;Chachisvilis, Sundstr?m,M.V.;Pullerits,T.Phys.Rev.B 2003,67,205207. doi:10.1103/PhysRevB.67.205207

    (41) Nayak,P.K.;Periasamy,N.Org.Electron.2009,10,1396. doi:10.1016/j.orgel.2009.06.011

    (42) Schwenn,P.E.;Burn,P.L.;Powell,B.J.Org.Electron.2011, 12,394.doi:10.1016/j.orgel.2010.11.025

    (43) Hill,I.G.;Kahn,A.;Soos,Z.G.;Pascal,R.A.Chem.Phys. Lett.2000,327,181.doi:10.1016/S0009-2614(00)00882-4

    (44) Li,Y.Z.;Pullerits,T.;Zhao,M.Y.;Sun,M.T.J.Phys.Chem.C 2011,115,21865.doi:10.1021/jp2040696

    (45) Lemaur,V.;Steel,M.;Beljonne,D.;Brédas,J.L.;Cornil,J.J.Am.Chem.Soc.2005,127,6077.doi:10.1021/ja042390l

    (46) Rysselberghe,P.V.J.Phys.Chem.1931,36,1152.doi:10.1021/ j150334a007

    (47) Zang,D.Y.;So,F.F.;Forrest,S.R.Appl.Phys.Lett.1991,59, 823.doi:10.1063/1.105274

    (48) Brocks,G.;van den Brink,J.;Morpurgo,A.F.Phys.Rev.Lett. 2004,93,146405.doi:10.1103/PhysRevLett.93.146405

    (49) Mihailetchi,V.;van Duren,J.;Blom,P.;Hummelen,J.;Janssen, R.;Kroon,J.;Rispens,M.;Verhees,W.;Wienk,M.Adv.Funct. Mater.2003,13,43.doi:10.1002/adfm.200390004

    (50) Malagoli,M.;Brédas,J.L.Chem.Phys.Lett.2000,327,13. doi:10.1016/S0009-2614(00)00757-0

    (51) Lemaur,V.;da Silva Filho,D.A.;Coropceanu,V.;Lehmann, M.;Geerts,Y.;Piris,J.;Debije,M.G.;van de Craats,A.M.; Senthilkumar,K.;Siebbeles,L.D.A.;Warman,J.M.;Brédas,J. L.;Cornil,J.J.Am.Chem.Soc.2004,126,3271.doi:10.1021/ ja0390956

    (52) Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem. Rev.2004,104,4971.doi:10.1021/cr040084k

    (56) Tauber,M.J.;Kelley,R.F.;Giaimo,J.M.;Rybtchinski,B.; Wasielewski,M.R.J.Am.Chem.Soc.2006,128,1782. doi:10.1021/ja057031k

    (57) Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Olivier,Y.; Silbey,R.;Brédas,J.L.Chem.Rev.2007,107,926. doi:10.1021/cr050140x

    (60) Yin,S.W.;Li,L.L.;Yang,Y.M.;Reimers,J.R.J.Phys.Chem. C 2012,116,14826.doi:10.1021/jp303724r

    (61) Olivier,Y.;Lemaur,V.;Brédas,J.L.;Cornil,J.J.Phys.Chem.A 2006,110,6356.doi:10.1021/jp0571933

    (62) Liu,H.G.;Kang,S.;Lee,J.Y.J.Phys.Chem.B 2011,115, 5113.doi:10.1021/jp1045595

    (63) Chen,X.K.;Zou,L.Y.;Ren,A.M.;Fan,J.X.Phys.Chem. Chem.Phys.2011,13,19490.doi:10.1039/C1CP22227A

    (64) Li,H.X.;Zheng,R.H.;Shi,Q.J.Phys.Chem.C 2012,116, 11886.doi:10.1021/jp301536z

    (65) Weber,P.;Reimers,J.R.J.Phys.Chem.A 1999,103,9830. doi:10.1021/jp991404k

    (66) Cai,Z.L.;Reimers,J.R.J.Phys.Chem.A 2000,104,8389. doi:10.1021/jp000962s

    (67)Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.2008,20,3205.doi:10.1021/cm8002172

    Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System

    ZHAO Cai-Bin1,*GE Hong-Guang1,*ZHANG Qiang1JIN Ling-Xia1WANG Wen-Liang2YIN Shi-Wei2
    (1Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications,School of Chemical and Environmental Science, Shaanxi University of Technology,Hanzhong 723000,Shaanxi Province,P.R.China;2Key Laboratory for Macromolecular Science of Shaanxi Province,School of Chemistry and Chemical Engineering, Shaanxi Normal University,Xi'an 710062,P.R.China)

    Exploring and fabricating organic solar cell devices with the high power conversion efficiency(PCE) has kept a major challenge and hot topic in organic electronics research.In this study,we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM.The results revealed that the BBPQ-PC61BM(BBPQ: 7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2′,3′:5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one;PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester)system theoretically possesses a large open-circuit voltage(1.22 V), high fill factor(0.90),and high PCE of 9%-10%.The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy(0.607 eV),with relatively small reorganization energies(0.345 and0.355 eV)for its exciton-dissociation and charge-recombination processes.Based on a simplified molecular complex,the exciton dissociation rate constant,kdis,was estimated to be as large as 1.775×1013s-1at the BBPQPC61BM interface.In contrast,the charge-recombination rate constant,krec,was very small under the same conditions(<1.0 s-1),which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface.Overall,our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.

    May 13,2016;Revised:July 4,2016;Published online:July 5,2016.

    s.ZHAO Cai-Bin,Email:zhaocb@snut.edu.cn;Tel:+86-916-2641660.GE Hong-Guang,Emai:gehg@snut.edu.cn;

    BBPQ;PC61BM;Theoretical investigation;Photovoltaic property;Density functional theory

    O641

    10.3866/PKU.WHXB201607051

    Tel:+86-916-2641660.

    The project was supported by the National Natural Science Foundation of China(21373132,21502109),Doctor Research Start Foundation of

    Shaanxi University of Technology,China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10),and Education Department of Shaanxi Provincial

    Government Research Projects,China(16JK1142).

    國家自然科學基金(21373132,21502109),陜西理工學院博士科研啟動基金(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10)和陜西省教育廳專項科研計劃(16JK1142)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (15) Yanai,T.Chem.Phys.Lett.2004,393,51.10.1016/j. cplett.2004.06.011

    (22) Lu,T.;Chen,F.W.J.Comput.Chem.2012,33,580. 10.1002/jcc.22885

    (53) Marcus,R.A.J.Chem.Phys.1965,43,679.10.1063/ 1.1696792

    (54) Lorentz,H.A.Ann.Phys.1880,9,641.10.1002/ 18802450406

    (55) Lorenz,L.Ann.Phys.1880,11,70.10.1002/18802470905

    (58) Marcus,R.A.Rev.Mod.Phys.1993,65,599. RevModPhys.65.599

    (59) Hush,N.S.J.Chem.Phys.1958,28,962.10.1063/ 1.1744305

    猜你喜歡
    激子理工學院電荷
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    電荷知識知多少
    江蘇理工學院
    電荷守恒在化學解題中的應用
    常熟理工學院
    理工學院簡介
    CdSeS合金結構量子點的多激子俄歇復合過程*
    物理學報(2019年10期)2019-06-04 05:31:52
    找到你了,激子素
    科學之謎(2018年3期)2018-04-09 06:37:46
    任意門
    長程電子關聯(lián)對聚合物中激子極化率的影響
    久久久精品欧美日韩精品| 中文亚洲av片在线观看爽| 亚洲人成网站高清观看| 免费黄网站久久成人精品| 国产麻豆成人av免费视频| 国产精品熟女久久久久浪| 男插女下体视频免费在线播放| 日本爱情动作片www.在线观看| 久久久久久大精品| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区| 欧美日韩精品成人综合77777| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久久久按摩| 大话2 男鬼变身卡| 国产av码专区亚洲av| 国产黄片美女视频| 国产午夜精品论理片| 尾随美女入室| 日韩在线高清观看一区二区三区| 欧美一级a爱片免费观看看| 丝袜喷水一区| 亚洲人成网站高清观看| 久久精品国产鲁丝片午夜精品| 三级国产精品片| 麻豆乱淫一区二区| 精品人妻熟女av久视频| 久久久国产成人免费| 精品人妻熟女av久视频| 韩国高清视频一区二区三区| 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 麻豆成人午夜福利视频| 麻豆成人午夜福利视频| 中文乱码字字幕精品一区二区三区 | 一边摸一边抽搐一进一小说| 久久午夜福利片| 大香蕉97超碰在线| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 毛片女人毛片| 国产淫片久久久久久久久| 99热6这里只有精品| 99久国产av精品国产电影| 在线免费十八禁| 国产麻豆成人av免费视频| 久久精品久久久久久久性| 能在线免费观看的黄片| 日韩一区二区三区影片| 免费黄色在线免费观看| 在线免费观看不下载黄p国产| 成年免费大片在线观看| 18禁动态无遮挡网站| 国产综合懂色| 真实男女啪啪啪动态图| 亚洲在线观看片| 老女人水多毛片| 黄色欧美视频在线观看| 亚洲精华国产精华液的使用体验| 欧美+日韩+精品| 国内精品一区二区在线观看| 女人久久www免费人成看片 | 久久久精品94久久精品| 嫩草影院精品99| 国国产精品蜜臀av免费| 精品午夜福利在线看| 我的老师免费观看完整版| 国产老妇女一区| 人人妻人人看人人澡| 国产精品99久久久久久久久| 岛国毛片在线播放| 亚洲成人av在线免费| av.在线天堂| 神马国产精品三级电影在线观看| 亚洲精品自拍成人| 精品人妻视频免费看| 国产伦精品一区二区三区视频9| 欧美bdsm另类| 国产精品人妻久久久影院| 爱豆传媒免费全集在线观看| 97在线视频观看| 欧美性感艳星| 午夜老司机福利剧场| 国内精品宾馆在线| 日韩一区二区三区影片| 国产久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| av黄色大香蕉| 午夜久久久久精精品| 十八禁国产超污无遮挡网站| 两个人视频免费观看高清| 成人无遮挡网站| 午夜免费激情av| 午夜老司机福利剧场| 久久精品国产99精品国产亚洲性色| 又爽又黄a免费视频| 看片在线看免费视频| 在线播放无遮挡| 中文资源天堂在线| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 夜夜看夜夜爽夜夜摸| 午夜福利在线在线| 亚洲真实伦在线观看| 免费av毛片视频| 男女国产视频网站| 国产成人a∨麻豆精品| 国产在视频线精品| 中文乱码字字幕精品一区二区三区 | 七月丁香在线播放| 有码 亚洲区| 久久韩国三级中文字幕| 免费观看的影片在线观看| 久久人人爽人人片av| 亚洲久久久久久中文字幕| 黄色欧美视频在线观看| 日韩欧美在线乱码| 在线观看66精品国产| 国产av码专区亚洲av| 久久精品91蜜桃| 国产精品福利在线免费观看| 亚洲精品成人久久久久久| 久久亚洲精品不卡| 丰满人妻一区二区三区视频av| 亚洲国产欧美人成| 欧美一区二区亚洲| 美女cb高潮喷水在线观看| 久久久色成人| 久久草成人影院| 色尼玛亚洲综合影院| 一级爰片在线观看| 特级一级黄色大片| 欧美不卡视频在线免费观看| 国产精品久久久久久久电影| 2022亚洲国产成人精品| 日韩欧美精品v在线| 亚洲一级一片aⅴ在线观看| 欧美极品一区二区三区四区| 欧美成人精品欧美一级黄| 99久久人妻综合| 精品国内亚洲2022精品成人| 国产精品电影一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 久久鲁丝午夜福利片| 国产老妇女一区| 国产极品天堂在线| 久久这里只有精品中国| 婷婷六月久久综合丁香| 久久久精品94久久精品| 亚洲欧美日韩卡通动漫| 国产在视频线精品| 久久草成人影院| 十八禁国产超污无遮挡网站| 欧美+日韩+精品| 亚洲中文字幕日韩| 少妇丰满av| 中国国产av一级| 国产黄片视频在线免费观看| 国产淫片久久久久久久久| 极品教师在线视频| 国产精品久久电影中文字幕| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 精品一区二区三区人妻视频| 久久99热这里只有精品18| 国产高清国产精品国产三级 | 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 亚洲成人久久爱视频| 国产大屁股一区二区在线视频| 欧美日本视频| 我的老师免费观看完整版| 久久精品夜夜夜夜夜久久蜜豆| 国产成人精品婷婷| 国语对白做爰xxxⅹ性视频网站| 欧美成人精品欧美一级黄| videos熟女内射| 99久久九九国产精品国产免费| 久久久久久九九精品二区国产| 99久久精品热视频| 麻豆国产97在线/欧美| 欧美zozozo另类| 久久午夜福利片| 又爽又黄无遮挡网站| 国产精品麻豆人妻色哟哟久久 | 成人午夜精彩视频在线观看| 在线观看66精品国产| 国产精品久久久久久久电影| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 国产精品久久久久久精品电影小说 | 春色校园在线视频观看| 欧美成人精品欧美一级黄| 秋霞在线观看毛片| 日韩欧美国产在线观看| 欧美人与善性xxx| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 欧美性感艳星| 1024手机看黄色片| 九九爱精品视频在线观看| 国产午夜精品论理片| 欧美日韩一区二区视频在线观看视频在线 | 久久久午夜欧美精品| 国产成人免费观看mmmm| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 成年版毛片免费区| 日韩欧美精品v在线| 国产精品一区二区三区四区久久| 成年女人永久免费观看视频| 午夜精品在线福利| 国产精品久久久久久久久免| 中国美白少妇内射xxxbb| 在线a可以看的网站| 久久热精品热| 亚州av有码| 亚洲国产精品成人综合色| 免费看av在线观看网站| 精品久久久噜噜| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕| 欧美一区二区国产精品久久精品| 亚洲va在线va天堂va国产| 亚洲国产成人一精品久久久| 国产激情偷乱视频一区二区| 国产精品一区二区在线观看99 | 成人欧美大片| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 69av精品久久久久久| 亚洲欧美中文字幕日韩二区| 99久久成人亚洲精品观看| 亚洲性久久影院| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 我要搜黄色片| 三级毛片av免费| 99久久精品一区二区三区| 国语自产精品视频在线第100页| 日本午夜av视频| 精品一区二区三区视频在线| 欧美成人精品欧美一级黄| 天天一区二区日本电影三级| 成人毛片a级毛片在线播放| 国产精品人妻久久久影院| 少妇裸体淫交视频免费看高清| 午夜激情福利司机影院| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 女人十人毛片免费观看3o分钟| 成人二区视频| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕 | 日本免费一区二区三区高清不卡| 亚洲av福利一区| 国内精品宾馆在线| 亚洲在线观看片| 小说图片视频综合网站| 国产真实伦视频高清在线观看| 欧美性猛交╳xxx乱大交人| 韩国av在线不卡| 中文资源天堂在线| 久久热精品热| 少妇的逼好多水| 麻豆成人午夜福利视频| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看| 婷婷色综合大香蕉| 日本爱情动作片www.在线观看| 成人二区视频| 人妻制服诱惑在线中文字幕| 国产午夜精品久久久久久一区二区三区| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 亚洲av成人精品一区久久| 全区人妻精品视频| 丰满人妻一区二区三区视频av| 久久午夜福利片| 午夜福利成人在线免费观看| 岛国毛片在线播放| 黄片wwwwww| 天天躁日日操中文字幕| 久久精品国产亚洲av天美| 九草在线视频观看| 欧美bdsm另类| 一夜夜www| 亚洲国产精品国产精品| 亚洲成人av在线免费| 黑人高潮一二区| 一级毛片我不卡| 精品国内亚洲2022精品成人| 日日啪夜夜撸| 偷拍熟女少妇极品色| 亚洲av不卡在线观看| 亚洲成色77777| 欧美bdsm另类| 欧美xxxx黑人xx丫x性爽| 国产在线一区二区三区精 | 一区二区三区高清视频在线| 97超视频在线观看视频| 成人av在线播放网站| 午夜视频国产福利| 亚洲精品久久久久久婷婷小说 | 国产在视频线精品| 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 看免费成人av毛片| 少妇丰满av| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 人妻少妇偷人精品九色| 看片在线看免费视频| 国产三级中文精品| 日本爱情动作片www.在线观看| 欧美极品一区二区三区四区| 少妇高潮的动态图| 亚洲18禁久久av| 久久久久网色| 午夜视频国产福利| 亚洲真实伦在线观看| 亚洲精品国产成人久久av| 中文字幕制服av| 熟女电影av网| 久久精品影院6| 国产69精品久久久久777片| 伦精品一区二区三区| 亚洲综合色惰| 免费观看的影片在线观看| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 激情 狠狠 欧美| 中文字幕亚洲精品专区| 亚洲国产高清在线一区二区三| 天堂√8在线中文| 建设人人有责人人尽责人人享有的 | 一区二区三区免费毛片| 黄色欧美视频在线观看| 欧美精品一区二区大全| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 成人亚洲欧美一区二区av| 亚洲精品色激情综合| a级毛色黄片| 老司机影院毛片| 亚洲内射少妇av| 免费看日本二区| 国产av码专区亚洲av| 国产成人精品婷婷| 三级毛片av免费| 女人久久www免费人成看片 | 亚洲精品乱码久久久v下载方式| 搞女人的毛片| 99久久精品热视频| 麻豆成人午夜福利视频| 91精品一卡2卡3卡4卡| 精品人妻视频免费看| 午夜福利在线观看吧| 国产精品野战在线观看| 日本免费一区二区三区高清不卡| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 有码 亚洲区| 极品教师在线视频| 在线观看66精品国产| 亚洲精品国产成人久久av| 老司机福利观看| 在线天堂最新版资源| 精品久久久久久久久av| 少妇人妻精品综合一区二区| 国产精品国产高清国产av| 中文精品一卡2卡3卡4更新| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 美女国产视频在线观看| 国产麻豆成人av免费视频| 亚洲欧美日韩东京热| 免费播放大片免费观看视频在线观看 | 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 我的老师免费观看完整版| 校园人妻丝袜中文字幕| 亚洲图色成人| 国产女主播在线喷水免费视频网站 | 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 国产精品乱码一区二三区的特点| 美女黄网站色视频| 99热全是精品| 亚洲中文字幕一区二区三区有码在线看| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 久久99精品国语久久久| 亚洲精品国产av成人精品| 麻豆成人av视频| 久久99热这里只有精品18| 国产乱来视频区| 国产老妇女一区| 国产精品日韩av在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 午夜老司机福利剧场| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 91精品伊人久久大香线蕉| 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 中文乱码字字幕精品一区二区三区 | 午夜爱爱视频在线播放| 欧美日韩综合久久久久久| 中文字幕熟女人妻在线| 欧美97在线视频| 少妇人妻一区二区三区视频| 欧美xxxx性猛交bbbb| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 一级毛片aaaaaa免费看小| 亚洲美女视频黄频| 国产美女午夜福利| 国语自产精品视频在线第100页| 中国国产av一级| 国产久久久一区二区三区| 男人舔奶头视频| 禁无遮挡网站| 国产黄片美女视频| or卡值多少钱| 夜夜爽夜夜爽视频| 男人舔女人下体高潮全视频| a级毛色黄片| 国产精品久久久久久久电影| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 高清日韩中文字幕在线| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 国产成人a∨麻豆精品| 尾随美女入室| 国产成人免费观看mmmm| 国产单亲对白刺激| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 级片在线观看| 热99在线观看视频| 建设人人有责人人尽责人人享有的 | 亚洲av男天堂| 简卡轻食公司| 国产成人精品久久久久久| av卡一久久| 欧美人与善性xxx| 成人特级av手机在线观看| 男女那种视频在线观看| 草草在线视频免费看| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 国产毛片a区久久久久| 九九热线精品视视频播放| 久久精品熟女亚洲av麻豆精品 | 亚洲av日韩在线播放| 成人午夜高清在线视频| 欧美人与善性xxx| 国产亚洲最大av| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 亚洲精品456在线播放app| 国产爱豆传媒在线观看| 日本欧美国产在线视频| h日本视频在线播放| 久久6这里有精品| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| av黄色大香蕉| 少妇人妻一区二区三区视频| 国产精品一二三区在线看| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 人妻制服诱惑在线中文字幕| 免费看美女性在线毛片视频| 免费观看精品视频网站| 亚洲一级一片aⅴ在线观看| av线在线观看网站| 免费观看a级毛片全部| 国产乱来视频区| 中文字幕av成人在线电影| 国产在视频线精品| 在线天堂最新版资源| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 免费人成在线观看视频色| av免费在线看不卡| 国产 一区 欧美 日韩| 在线观看一区二区三区| 亚洲国产成人一精品久久久| 九九热线精品视视频播放| 亚洲丝袜综合中文字幕| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影 | 亚洲国产精品成人综合色| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 亚洲自偷自拍三级| 色尼玛亚洲综合影院| www日本黄色视频网| 国产一级毛片在线| 成人三级黄色视频| 色视频www国产| 国产三级在线视频| 人妻系列 视频| 只有这里有精品99| 51国产日韩欧美| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 全区人妻精品视频| 丰满少妇做爰视频| av.在线天堂| 毛片女人毛片| 亚洲av日韩在线播放| 久久久国产成人免费| 1000部很黄的大片| 成人性生交大片免费视频hd| 成人毛片a级毛片在线播放| 国产精品美女特级片免费视频播放器| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产| 国产精品综合久久久久久久免费| 51国产日韩欧美| 国产精品综合久久久久久久免费| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 日韩欧美 国产精品| 秋霞在线观看毛片| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 中文欧美无线码| 99久国产av精品| 亚洲精品日韩av片在线观看| 又爽又黄无遮挡网站| 26uuu在线亚洲综合色| 国产久久久一区二区三区| 久久久久久伊人网av| 老师上课跳d突然被开到最大视频| 免费不卡的大黄色大毛片视频在线观看 | 美女内射精品一级片tv| 色综合色国产| 国产精品女同一区二区软件| 黄色欧美视频在线观看| 国国产精品蜜臀av免费| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| www日本黄色视频网| 国产久久久一区二区三区| 在线免费观看的www视频| 国产探花在线观看一区二区| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 91精品伊人久久大香线蕉| 中文亚洲av片在线观看爽| 最近手机中文字幕大全| 1000部很黄的大片| 久久久久性生活片| 国产真实伦视频高清在线观看| 免费黄网站久久成人精品| 国产精品,欧美在线| 天堂av国产一区二区熟女人妻| 狂野欧美激情性xxxx在线观看| 内射极品少妇av片p| 美女内射精品一级片tv| 小说图片视频综合网站| 久久久色成人| 午夜日本视频在线| 久久草成人影院| 国产精品久久久久久精品电影| 丝袜喷水一区| 国产精品三级大全| 搞女人的毛片| av卡一久久| 1000部很黄的大片| 麻豆乱淫一区二区| av国产免费在线观看| 又爽又黄a免费视频| 精品午夜福利在线看| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽|