郭冰玉,張 宇,回 薔,全亮亮,陶 凱
?
·論著·
防己諾林堿抑制黑色素瘤的增殖轉移
郭冰玉,張 宇,回 薔,全亮亮,陶 凱*
目的 觀察防己諾林堿對黑色素瘤細胞生長轉移的影響。方法 通過MTT實驗,觀察不同濃度防己諾林堿對A375細胞增殖的影響;利用Transwell實驗,檢測不同濃度防己諾林堿對A375細胞轉移功能的影響。通過Western blot和RT-PCR,檢測防己諾林堿對A375生長轉移相關蛋白的影響。結果 防己諾林堿可以抑制黑色素瘤細胞A375的增殖轉移。10、20、40 μM/L防己諾林堿處理A375細胞后,對其增殖的抑制率分別為43.81%±1.53%、48.64%±4.65%、50.69%±4.99%。20、40 μM/L防己諾林堿處理A375細胞作用24 h后,對其轉移的抑制率分別為14.95%±4.31%、33.03%±5.46%。防己諾林堿顯著抑制細胞周期蛋白D1(Cyclin D1)、CDK4、CDK6、基質金屬蛋白酶-2(MMP2)的表達(P<0.05)。結論 防己諾林堿能顯著抑制A375細胞的增殖轉移,可作為治療黑色素瘤的潛在化療藥物進行深入研究。
防己諾林堿;增殖;轉移;A375;黑色素瘤
黑色素瘤是一種惡性程度高、容易發(fā)生早期轉移、死亡率高的惡性皮膚腫瘤[1]。目前其發(fā)病機制尚未完全闡明,臨床上除了早期發(fā)現(xiàn)的手術治療外,尚無有效的治療藥物[2]。近年來,國內外黑色素瘤的發(fā)病率急劇上升,死亡率居高不下,黑色素瘤的死亡率為皮膚腫瘤的80%[3]。雖然早期黑色素瘤可以通過手術獲得痊愈,但是由于其發(fā)病隱蔽,易發(fā)生轉移,且轉移后對大多數(shù)放化療藥物不敏感,所以黑色素瘤患者的5年生存率很難提高[4-6]。
防己諾林堿(Fangchinoline)又名漢防己、白木香,是防己科植物粉防己干燥的根,具有抗炎鎮(zhèn)痛、抗氧化、非特異性阻滯鈣離子通道、抑制組胺釋放、擴張冠狀動脈、減少心肌耗氧量、抑制血小板聚集、降血壓、降血糖等多種生物學功能[7-8]。另有研究證實,在某些細胞中,防己諾林堿可以通過阻滯細胞周期、誘導細胞自噬凋亡來實現(xiàn)對抗腫瘤的效果[8]。但是目前沒有明確的報道指出防己諾林堿對黑色素瘤是否有治療效果[9]。
本研究初步探討了防己諾林堿單體對人黑色素瘤細胞A375增殖與轉移的影響,發(fā)現(xiàn)防己諾林堿可以顯著抑制A375細胞的增殖與轉移功能,降低細胞周期蛋白D1(Cyclin D1)等細胞周期相關蛋白及基質金屬蛋白酶-2(MMP2,這些物質在黑色素瘤中的蛋白表達升高[10-11]),旨在為防己諾林堿在黑色素瘤中的治療提供新的理論依據(jù)。
1.1 材料 人黑色素瘤細胞A375(實驗室凍存),胎牛血清(天津灝洋,天津),DMEM培養(yǎng)基(Invitrogen,上海),0.4%臺盼藍(經(jīng)科,上海),防己諾林堿(Selleck,美國),抗體:Cyclin D1,CDK4、CDK6、MMP2和GAPDH(Santa,美國),SYBR Green (Promega,美國)。
1.2 方法
1.2.1 細胞培養(yǎng) 使用含10%胎牛血清的DMEM培養(yǎng)基培養(yǎng)人黑色素瘤細胞A375。
1.2.2 藥物處理濃度 選取10、20、40 μM/L防己諾林堿;對照組用生理鹽水處理。
1.2.3 MTT實驗 以1×104/孔密度將A375細胞接種于96孔板中,12 h后添加不同濃度的防己諾林堿。藥物處理后分別在0、12、24、36、48 h加入MTT,孵育4 h后加入100 μL DMSO溶解MTT-甲臜結晶,15 min后,測量490 nm吸光值。藥物對細胞增殖的抑制率計算公式:抑制率=1-(劑量組平均OD值/對照組平均OD值)×100%。
1.2.4 Transwell實驗 以1×105/孔密度將細胞接種于上室中,下室添加600 μL雙無培養(yǎng)基,12 h后添加不同處理因素。藥物作用24 h后,95%乙醇固定,0.4%臺盼藍染色。200倍顯微鏡下觀察。藥物對細胞轉移的抑制率計算公式:抑制率=1-(劑量組平均細胞數(shù)/對照組平均細胞數(shù))×100%。
1.2.5 Western blot實驗 裂解藥物處理24 h后的細胞,取40 μg蛋白進行SDS-PAGE電泳,轉膜封閉后,一抗4 ℃過夜,二抗室溫1 h。
1.2.6 RT-PCR實驗 通過TRIZOL法提取細胞總RNA,反轉錄成cDNA,進行RT-PCR反應。所用引物為Cyclin D1,F(xiàn)(5′-3′):CGAGGAGCTGCTGCAAATGG,R(5′-3′):GAAATCGTGCGGGGTCATTGCG;CDK4,F(xiàn)(5′-3′):CTGGTGACAAGTGGTGGAAC,R(5′-3′):GGTCGGCTTCAGAGTTTCC;CDK6,F(xiàn)(5′-3′):GTCTGATTACCTGCTCCGC,R(5′-3′):CCTCGAAGCGAAGTCCTC;MMP2,F(xiàn)(5′-3′):CGCATCTGGGGCTTTAAAC,R(5′-3′):CAGCACAAACAGGTTGCAG;GAPDH,F(xiàn)(5′-3′):CATCCCTTCTCCCCACACAC,R(5′-3′):AGTCCCAGGGCTTTGATTTG.
2.1 防己諾林堿對A375細胞增殖的影響 如圖1所示,MTT實驗顯示,防己諾林堿處理后,A375細胞的增殖受到抑制。表1、圖2顯示,防己諾林堿對A375細胞增殖的抑制作用隨藥物濃度的增加而增加。
圖1 不同濃度防己諾林堿處理后A375細胞的增殖情況(n=3)
時間(h)10μM/L20μM/L40μM/L01.36±2.360.97±0.68-0.99±4.661233.37±0.83**34.55±2.48**36.84±2.99**2443.81±1.53**48.64±4.65**50.69±4.99**3648.72±0.86**53.91±1.15**58.28±1.81**4849.83±2.57**58.05±0.96**63.69±0.69**
注:與0 h比較,**P<0.01
圖2 防己諾林堿對A375細胞增殖的抑制率(n=3)
2.2 防己諾林堿對A375細胞增殖相關蛋白的影響 如圖3、圖4所示,防己諾林堿對Cyclin D1、CDK4與CDK6均有一定程度的抑制作用,抑制作用隨著藥物濃度的增加而增強。
2.3 防己諾林堿對A375細胞轉移的影響 見圖5、圖6。結果顯示,防己諾林堿可顯著抑制A375細胞的轉移功能,其抑制作用隨著藥物濃度增加而增加。作用24 h后,NaCl及20、40 μM/L防己諾林堿對A375細胞轉移的抑制率(n=3)分別為0、14.95%±4.31%、33.03%±5.46%。
2.4 防己諾林堿對MMP2的影響 如圖7、圖8所示,防己諾林堿可以在蛋白及RNA水平上下調MMP2,其下調作用隨藥物濃度的升高而增強。
圖3 不同濃度防己諾林堿作用下A375細胞蛋白的變化
圖4 不同濃度防己諾林堿處理后A375細胞蛋白RNA水平的影響
圖5 防己諾林堿作用下A375細胞的轉移情況(n=3)
圖6 防己諾林堿作用下A375細胞轉移數(shù)目(n=3)
圖7 防己諾林堿對MMP2的影響
圖8 防己諾林堿對MMP2的影響
作為皮膚腫瘤的一種,黑色素瘤的發(fā)病率增長迅速[12-13]。黑色素瘤具有過度增殖、易轉移等特點,早期可以出現(xiàn)淋巴結、肝、腦等多處轉移。其治療棘手,預后差,已引起人們的廣泛關注[14]。黑色素瘤組織中經(jīng)常發(fā)現(xiàn)血管生成因子、MMP等蛋白的高表達[15]。黑色素瘤細胞的增殖與侵襲的信號轉導通路經(jīng)常會發(fā)生異常激活,因此,篩選出低毒、高效的靶向抑制劑成為研究黑色素瘤治療的發(fā)展趨勢。
研究表明,很多中藥不僅可以直接殺傷腫瘤細胞,也可以降低放化療產(chǎn)生的毒副作用[16],同時,已經(jīng)有很多輔助化療中藥對人體的不良反應較小且不易發(fā)生耐藥反應[17]。最近研究表明,防己諾林堿是一種有效的抗腫瘤中藥成分,可以與其他化療藥物聯(lián)合使用治療腫瘤,具有降低化療藥物毒副作用的效果[17-19]。有報道,防己諾林堿可以通過抑制多種信號通路,實現(xiàn)抑制腫瘤細胞生長與侵襲轉移的功能,但是未見防己諾林堿在黑色素瘤治療中的研究報道[17]。
腫瘤的特點是細胞大量快速增殖[20-21]。這是由于腫瘤細胞中存在大量誘導細胞增殖的因子,即致癌基因。其中,Cyclin D1的前致癌基因在多種腫瘤中過量表達,直接導致基因擴增或者移位的現(xiàn)象明顯。在肺癌、胃癌、乳腺癌、黑色素瘤等約80%的人類腫瘤中,也存在CDK4、CDK6的高表達現(xiàn)象,直接促使細胞增殖加快[22-23]。CDK4、CDK6可以與Cyclin D1結合,調節(jié)細胞G1向S期的轉換。Cyclin D1、CDK4及CDK6的異常表達,可以加速G1期向S期轉換的進程,導致腫瘤細胞的過度增殖[24]。因此,多種針對Cyclin D1、CDK4及CDK6的靶向腫瘤藥物已開始應用,其具有毒副作用小、藥物敏感性高、不易發(fā)生耐受等優(yōu)勢[25]。腫瘤的轉移包括以下步驟:早期原發(fā)灶形成,相關血管生成,細胞脫落,細胞進入脈管形成癌栓,轉移灶生成[26-27]。MMP2在多種腫瘤中高表達,又稱明膠酶A,屬于Zn2+離子依賴性內肽酶,結構一般包括信號肽、前肽結構域、催化結構域和C末端血紅素結合蛋白樣結構域(PEX)。其過度表達與侵襲轉移密切相關,針對后者的抗腫瘤治療是目前的研究熱點[28]。MMP2能夠降解基底膜的主要成分-Ⅳ型膠原,可以水解細胞外基質來促進腫瘤細胞的侵襲轉移。也有研究表明,MMP2可以釋放生長因子,促進腫瘤細胞增殖。同時,MMP2通過降解血管基底膜蛋白,誘導血管生成。研究表明,抑制MMP2的活性可以有效抑制血管內皮細胞和腫瘤細胞的侵襲轉移,進而抑制腫瘤轉移和腫瘤的新生血管生成[27]。
本研究結果表明,防己諾林堿可以顯著抑制A375細胞的增殖與侵襲轉移。MTT實驗表明,40 μM/L防己諾林堿作用A375細胞24 h時對細胞增殖的抑制率達50%。有報道,同等濃度的防己諾林堿對正常細胞的增殖抑制作用不明顯[29]。進一步研究表明,防己諾林堿可以在蛋白、RNA水平上顯著抑制A375細胞中Cyclin D1、CDK4和CDK6的表達。同時,防己諾林堿可以通過抑制MMP2的蛋白、RNA水平來實現(xiàn)對A375細胞侵襲轉移的抑制功能。
綜上所述,防己諾林堿可以在蛋白、RNA水平上調控人黑色素瘤A375細胞的增殖與轉移,具有安全性高、毒副作用小的特點,可以作為臨床治療黑色素瘤的潛在藥物,值得進一步研究。
[1] Adams S,Lin J,Brown D,et al.Ultraviolet radiation exposure and the incidence of oral,pharyngeal and cervical cancer and melanoma:an analysis of the SEER data[J].Anticancer Res,2016,36:233-237.
[2] Ghosh S,Sikdar S,Mukherjee A,et al.Evaluation of chemopreventive potentials of ethanolic extract of Ruta graveolens against A375 skin melanoma cells in vitro and induced skin cancer in mice in vivo[J].J Integr Med,2015,13:34-44.
[3] Atherton MJ,Morris JS,McDermott MR,et al.Cancer immunology and canine malignant melanoma:A comparative review[J].Vet Immunol Immunop,2016,169:15-26.
[4] Migocka-Patrzalek M,Makowiecka A,Nowak D,et al.Beta- and gamma-Actins in the nucleus of human melanoma A375 cells[J].Histochem Cell Biol,2015,144:417-428.
[5] Yin HQ,Bi FL,Gan F.Rapid synthesis of cyclic RGD conjugated gold nanoclusters for targeting and fluorescence imaging of melanoma A375 cells[J].Bioconjugate Chem,2015,26:243-249.
[6] Zhang YP,Li YQ,Lv YT,et al.Effect of curcumin on the proliferation,apoptosis,migration,and invasion of human melanoma A375 cells[J].Genet Mol Res,2015,14:1056-1067.
[7] Li D,Lu Y,Sun P,et al.Inhibition on proteasome beta1 subunit might contribute to the anti-cancer effects of fangchinoline in human prostate cancer cells[J].PLoS One,2015,10:e0141681.
[8] Sun YF,Wink M.Tetrandrine and fangchinoline,bisbenzylisoquinoline alkaloids from stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells[J].Phytomedicine,2014,21(8-9):1110-1119.
[9] Wang CD,Huang JG,Gao X,et al.Fangchinoline induced G1/S arrest by modulating expression of p27,PCNA,and cyclin D in human prostate carcinoma cancer PC3 cells and tumor xenograft[J].Biosci Biotech Bioch,2010,74:488-493.
[10]Thomsen FB,Folkvaljon Y,Garmo H,et al.Risk of malignant melanoma in men with prostate cancer:nationwide,population-based cohort study[J].Int J Cancer,2016,138(9):2154-2160.
[11]Francisco AL,Furlan MV,Peresi PM,et al.Head and neck mucosal melanoma:clinicopathological analysis of 51 cases treated in a single cancer centre and review of the literature[J].Int J Oral Max Surg,2016,45:135-140.
[12]Park S,Ahn ES,Kim Y.Neuroblastoma SH-SY5Y cell-derived exosomes stimulate dendrite-like outgrowths and modify the differentiation of A375 melanoma cells[J].Cell Biol Int,2015,39:379-387.
[13]Wu J,Song T,Liu S,et al.Icariside II inhibits cell proliferation and induces cell cycle arrest through the ROS-p38-p53 signaling pathway in A375 human melanoma cells[J].Mol Med Rep,2015,11:410-416.
[14]Correa D,Somoza RA,Lin P,et al.Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche[J].Int J Cancer,2016,138(9):417-427.
[15]Drabe N,Jenewein J,Weidt S,et al.When cancer cannot be cured:A qualitative study on relationship changes in couples facing advanced melanoma[J].Palliat Support Care,2016:1-12.
[16]Wang CD,Yuan CF,Bu YQ,et al.Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/ cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells[J].Asian Pac J Cancer Prev,2014,15:769-773.
[17]Xing Z,Zhang Y,Zhang X,et al.Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation[J].Phytother Res,2013,27:1790-1794.
[18]Wang N,Pan W,Zhu M,et al.Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells[J].Br J Pharmacol,2011,164:731-742.
[19]Wang Y,Chen J,Wang L,et al.Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells[J].Exp Ther Med,2013,5:1105-1112.
[20]Kim MK,Park GH,Eo HJ,et al.Tanshinone I induces cyclin D1 proteasomal degradation in an ERK1/2 dependent way in human colorectal cancer cells[J].Fitoterapia,2015,101:162-168.
[21]Liang Z,Li S,Xu X,et al.MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyclin D1[J].Mol Cells,2015,38:130-137.
[22]Sun X,Tang SC,Xu C,et al.DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1[J].J Cell Mol Med,2015,19:1357-1365.
[23]Yang Y,Wu J,Cai J,et al.PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells[J].Int J Cancer,2015,136:E39-E50.
[24]Mayer EL.Targeting breast cancer with CDK inhibitors[J].Curr Oncol Rep,2015,17:443.
[25]Mitri Z,Karakas C,Wei C,et al.A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer[J].Invest New Drug,2015,33:890-894.
[26]Liu RR,Li MD,Li T,et al.Matrix metalloproteinase 2 (MMP2) protein expression and laryngeal cancer prognosis:a meta analysis[J].Int J Clin Exp Med,2015,8:2261-2266.
[27]Kalhori V,Tornquist K.MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells[J].Mol Cell Endocrinol,2015,404:113-122.
[28]Adabi Z,Mohsen Ziaei SA,Imani M,et al.Genetic Polymorphism of MMP2 Gene and Susceptibility to Prostate Cancer[J].Arch Med Res,2015,46:546-550.
[29]Luo X,Peng JM,Su LD,et al.Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression[J].Exp Ther Med,2016,11:613-618.
Fangchinoline inhibits the growth and migration of melanoma
GUO Bing-yu,ZHANG Yu,HUI Qiang,QUAN Liang-liang,TAO Kai*(Plastic Surgery,General Hospital of Shenyang Military Command,Shenyang 110840,China)
Objective To observe the effect of fangchinoline on growth and metastasis of melanoma cells.Methods MTT assay was used to observe the effect of different concentrations of fangchinoline on the proliferation of A375 cells.Transwell assay was used to observe the transfer function of A375 cells.Western blot and RT-PCR were used to detect the related proteins.Results Fangchinoline can inhibit the proliferation and migration of A375 cells.After being treated by 10,20 and 40 μM/L of fangchinoline,the inhibition rates of proliferation of A375 cells were 43.81%±1.53%,48.64%±4.65% and 50.69%±4.99%.After being treated by 20 and 40 μM/L of fangchinoline for 24 h,the inhibition rates of migration of A375 cells were 14.95%±4.31% and 33.03%±5.46%.Fangchinoline could significantly inhibit the expression of Cyclin D1,CDK4,CDK6 and MMP2.Conclusion As a potential chemotherapeutic agent for treatment of melanoma,fangchinoline can significantly inhibit the proliferation and migration of A375 cells.
Fangchinoline;Proliferation;Migration;A375;Melanoma
2016-02-05
沈陽軍區(qū)總醫(yī)院整形外科,沈陽 110840
*通信作者
10.14053/j.cnki.ppcr.201610002