• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    2016-11-17 08:41:17HidekiUosakiTaguchi
    Genomics,Proteomics & Bioinformatics 2016年4期
    關鍵詞:孫靜齊墩果酸

    Hideki Uosaki*,Y-h Taguchi

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    ORIGINAL RESEARCH

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    Hideki Uosaki1,*,a,Y-h Taguchi2,b

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    Received 21 March 2016;revised 7 April 2016;accepted 10 April 2016 Available online 16 July 2016

    Handled by Andreas Keller

    Cardiac maturation;

    Comparative gene expression analysis;

    Microarray meta analysis;Principal component analysis;

    Feature selection

    Understanding how human cardiomyocytes mature is crucialto realizing stem cell-based heart regeneration,modeling adult heart diseases,and facilitating drug discovery.However,it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomyocytes mature during fetal development and childhood,as well as difficulty in avoiding variations among individuals.Using modelanimals such as mice can be a usefulstrategy;nonetheless,itis not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice.Therefore,we performed a comparative gene expression analysis of mice and human samples.First,we examined two distinct mice microarray platforms for shared gene expression profiles,aiming to increase reliability of the analysis.We identified a set of genes displaying progressive changes during maturation based on principal component analysis.Second,we demonstrated that the genes identified had a differential expression pattern between adult and earlier stages(e.g.,fetus)common in mice and humans.Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.

    Introduction

    Pluripotent stem cells(PSCs)hold tremendous potential for regenerative medicine,disease modeling,and drug discovery in a broad spectrum of tissue and cell types,such as cardiomyocytes[1-4].Recent advances in the field have rendered efficient and robust differentiation of cardiomyocytes from most of PSC lines[5-7].Although the maturation of differentiated cardiomyocytes into the adult-like stage is essential to study adult-onset diseases in vitro,fully matured cardiomyocytes have never been obtained[8].Moreover,there are no clear-cut and definitive markers available to evaluate cardiomyocyte maturation[8].Therefore,a detailed understanding of the cardiac maturation process in vivo is a prerequisite for further development of methods to maturate PSC-derived cardiomyocytes in vitro.

    Uosaki et al.examined the detailed process of mice cardiac maturation using meta-microarray analysis[9].This and other studies demonstrated that the maturation of cardiomyocytes isa continuous process occurring during embryonic and postnatal development[9-12].Because of limited human samples obtained during the early life(potentially collected from aborted fetus,babies that died from accidents or other medical reasons,and/or biopsies from transplanted hearts)and technical difficulty in repetitive sample collection from the same individual,it is difficult to dissect the progression in humans from individual variations,e.g.,by measuring gene expression. Therefore,studies of cardiac maturation rely heavily on model animals,e.g.,mice.Here,the key question remain to be addressed is whether and to what extent cardiac maturation progresses are similar in mice and humans.

    Comparative gene expression analysis[13]is a useful strategy to evaluate consistency between species.It enables studying multiple human diseases in mice,which are hard to investigate directly in humans[14].It can even help us to understand gene regulatory mechanisms in mammals using gene expression data from non-mammalian animals[15]. Moreover,it also helps in identifying highly-correlative expression profiles between putative orthologs across species[16].

    In this study,we demonstrated the correlation of gene expression involved in cardiac maturation between mice and humans.We performed a meta-microarray analysis of data generated from mice samples ranging from the embryonic to the adult stages using two microarray platforms(Affymetrix Mouse Genome 430 2.0 Array,referred to as‘mouse 430 2.0”hereafter and Mouse Gene 1.0 ST Array,referred as‘mogene 1.0”hereafter)to collect a reliable set of genes correlating with the progression of cardiac maturation in mice.Subsequently,we evaluated whether highly-correlative expression profiles that were identified in the mice gene set exist in human samples.

    Results

    Performance comparison between frozen robust microarray analysis and microarray suite 5 method

    In our previous paper[9],we employed the frozen robust microarray analysis(fRMA)[17]to analyze the gene expression profiles of more than 200 microarray datasets ranging from early embryonic to adult hearts.fRMA serves as a reliable platform to perform meta-microarray analysis[17]. Nonetheless,fRMA can only be applied to popular microarray platforms,such as mouse 430 2.0 and mogene 1.0,due to its requirement of preprocessed dataset.In addition,there is uncertainty on whether fRMA correctly performs batch effect extraction,although this is one of the primary reasons why fRMA is introduced.On the other hand,microarray suite 5 method(MAS5)is a method used for single-microarray preprocessing[18].We hypothesized that MAS5 can replace fRMA for meta-microarray analysis.

    To evaluate the performance of MAS5 for data preprocessing,we collected 646 microarray datasets(Table S1)and preprocessed them with MAS5 as well as fRMA.To allow comparison,MAS5-processed data was log2 transformed and scaled(mean=0;standard deviation=1).Signal intensities of all 45,101 probesets on mouse 430 2.0 platform were well correlated between MAS5 and fRMA(R=0.90;Pearson correlation)(Figure 1A).Although probes with medium signal intensities(6-12 in fRMA)showed better correlation,more variability was observed for probes with lower or higher signal intensities.To evaluate whether this variability would compromise the overall analysis,we conducted principal component analysis(PCA)for signal intensities of preprocessed data by fRMA(Figure 1B)and MAS5(Figure 1C).The scatter plots of the first and second principal component(PC1 and PC2)values were almost identical.In addition,variable loadings for PC1 were well correlated between data preprocessed by fRMA and MAS5(R=0.89;Pearson correlation)(Figure 1D).These results suggest that MAS5 can replace fRMA for meta-microarray analysis.Therefore,data preprocessed by MAS5 were used for downstream analyses.As pointed out previously[9],PC1 represents the maturation process and PC2 seems to separate batch effects in either preprocessing method.

    As PCA indicated a gradualmaturation process in the heart[9],we next assessed how gene expression changes during the maturation process.To detect gross changes,we averaged the signal intensities of each probe at each developmental stage for ranking.Figure 1E depicts the distribution of the intensity ranks.As expected,the majority of probesets at the early embryonic and adult stages ranked either first or fifth,whereas more than one third of the probes at the late embryonic stage ranked third,suggesting that the expression of each gene changes gradually and unidirectionally.This finding is important when considering the limited datasets of human heart samples,which are mostly early-gestation fetal and adult samples,for comparative genomics.

    Probe-gene conversion

    To perform comparative gene expression analysis,it is necessary to convert probesets to genes.In mouse 430 2.0,there were more than 45,000 probesets for 20,736 genes.We used mouse 4302.db to annotate probesets to genes.As a result,11,076 genes were annotated to single probesets,whereas the remaining genes were annotated to at least two probesets(Figure 2A).Seita et al.reported that identifying probes with the most dynamic ranges can be a good way to select probes[19].However,such a method might be vulnerable to noise. Therefore,we decided to choose probes based on the interquartile ranges(IQRs)rather than the full dynamic ranges.For instance,myomesin 2(Myom2),encoding an M-protein that is expressed in mature cardiomyocytes[20],was annotated to 4 different probesets(Figure 2B).One probeset(1438372_at)showed a very small dynamic range,whereas the other three probesets displayed similar but distinct patterns,with the widest IQR observed for the 1457435_x_at probeset.Different from Myom2,Slc2a1that encodes glucose transporter 1(Glut1)was annotated to 3 probesets(Figure 2C),which share similar IQRs.In contrast to mouse 430 2.0,more than 95%(19,925 out of 20,915 in total)of genes were annotated to a single probeset in mogene 1.0 when using mogene10st trans criptcluster.db to annotate probesets to genes(Figure 2D).Therefore,for the mogene 1.0 data,we simply averaged the signal intensities from multiple probesets to obtain the expression level of a particular gene.

    Figure1 Comparison of MAS5 and fRMA for mouse 430 2.0 array data preprocessing

    Identification of mice genes associated with cardiac maturation using PCA

    Next,we used PCA to identify genes associated with cardiac maturation in mice.As shown in Figure 1C with probe-level PCA,PCA clearly distinguished the samples from different stages(Figure 3A).Neonatal samples were grouped into two clusters.Notably,one neonatal cluster close to the late embryonic stage and the other cluster close to the adult stage included samples from postnatal day(P)3 and P7,respectively,supporting the notion that PC1 is an explanatory variable for cardiac maturation.Similarly,we also performed PCA for the mogene 1.0 data(Figure 3B).For some unknown reasons,data for some samples from a single institute were widely divergent from the other datasets.Therefore,these samples were excluded from entire analysis(data not shown,marked as‘GSI”in Table S2).Although the number of samples for each stage was small and plots were sparse,the overall patterns for PCA plots were similar between the mouse 430 2.0 array data and mogene 1.0 data.

    To identify genes associated with cardiac maturation,we first plotted PC1 loadings of each gene for mouse 430 2.0 and mogene 1.0 data(Figure 3C).The loadings were well correlated(R=0.78).Next,we added the individual loadings for each gene.As the summed loadings followed a normaldistribution(data not shown),we selected genes with loadings higher than mean+2 standard deviation(SD)and lower than mean-2SD as genes that are significantly associated with cardiac maturation(colored in blue and red,respectively,in Figure 3C).As more than 3600 genes were unique to either array(Figure 3D),we also determined significant genes for each ofthe two arrays(Figure 3E and F).In total,we identified 648 genes,including 293 and 355 genes associated with mature and immature status,respectively(full lists available in Table S3).

    Characterization of the maturation-associated genes

    A linear model was employed to examine whether the genes identified above followed the trajectory of maturation(Figure 1E).First,we averaged the signal intensities of genes across samples of certain stages,which changed gradually with progressing stages for both mouse 430 2.0(Figure 4A)and mogene 1.0(Figure 4B).We next conducted the linear regression analysis for each gene to obtain P values and calculated false discovery rates(FDRs)in order to adjust for multiplecomparisons.Approximately 98%and 89%of the identified genes in the mouse 430 2.0 and mogene 1.0 arrays,respectively,had an FDR<0.10,suggesting linear gene expression alterations for most of the genes identified.

    To further characterize biological properties of the identified genes,we performed KEGG pathway analysis with DAVID[21,22].Pathways with an FDR<0.01 were considered significant(nodes in color,F(xiàn)igure 4C and D,Table S4 and S5).For the genes associated with immature status,ribosome-and cell cycle-related(e.g.,DNA replication and oocyte meiosis)pathways were significantly enriched(mmu03010:ribosome;mmu04110:cell cycle,F(xiàn)igure 4C,Table S4).On the other hand,for the genes associated with mature status,oxidation and mitochondria-related pathways(mmu05012:Parkinson’s disease;mmu00190:oxidative phosphorylation;mmu05010:Alzheimer’s disease;mmu05016: Huntington’s disease;mmu00020:citrate cycle or TCA cycle)and cardiac pathways(mmu04260:cardiac muscle contraction;mmu05414:dilated cardiomyopathy,DCM,and mmu05410: hypertrophic cardiomyopathy(HCM))were significantly enriched(Figure 4D,Table S5).Taken together,these findings indicate that the genes identified are associated with cardiac maturation.

    Figure2 Probeset-to-gene symbolconversion

    Comparison with human datasets

    Finally,we assessed the expression patterns of the genes identified in mice in human datasets.We found two distinct datasets of human hearts including fetal and adult hearts(GSE62913 and GSE71148)[22,23].GSE62913 contains RNA-seq data obtained from fetalventricles and atria,as well as adult hearts.We performed PCA with all genes as well as with the maturation-associated genes,respectively.Among the 648 maturation-associated mice genes identified above,we found human counterparts of 520 genes in the GSE62913 dataset(234 and 286 for mature and immature status,respectively).PCA with all genes as well as with maturation associated genes similarly revealed distinctive patterns between fetal samples and adult hearts(Figure 5A and B).The other dataset GSE71148 is an Illumina HumanHT-12 V4.0 expression beadchip dataset for fetal and adult heart samples.We identified 586 maturation-associated genes conserved between humans and mice(262 and 324 for mature and immature status,respectively).Consistent with the PCA on GSE62913,PCA on GSE71148 with all genes or the maturationassociated genes both generated patterns distinctive between fetal and adult samples(Figure 5C and D).

    To assess whether gene expression patterns in mice and humans are correlated and whether the usage of maturation associated genes improves the correlation over the usage of all genes,we compared expression changes in mice and humans using all genes or the maturation-associated genes only(Figure 5E-H).As the human fetal heart samples were from fetus in the first and second trimesters(7-20 weeks),we used early embryonic mice hearts for comparison.We found that expression changes between adult and early embryo/fetus using all genes showed good correlation between mice and humans for mouse 430 2.0 dataset(R=0.49,F(xiàn)igure 5E)and mogene 1.0 dataset(R=0.51,F(xiàn)igure 5G).Nonetheless,the gene expression changes of maturation-related genes alone showed better correlation for both datasets(R=0.73 for mouse 430 2.0,F(xiàn)igure 5F and R=0.78 for mogene 1.0,F(xiàn)igure 5H).Overall,286 out of 324 immature status-associated genes and 237 out of 262 mature status-associated genes showed higher expression in fetal and adult hearts,respectively.Interestingly,most of the genes that showed inconsistency with the findings in mice did not show significant differences between fetal and adult heart samples in humans(only 8 genes showing more than 1.5-fold changes,Table S6).It is of note that MYH7 was among the immature-associated genes identified in the mice,and was highly expressed in human adult hearts as is widely known.

    Figure3 Selection of genes associated with cardiac maturation

    Taken together,gene expression pattern of cardiac maturation between early embryonic/fetal and adult stages is mostly consistent across species,and the maturation-related genes identified in mice can be mostly recapitulated in humans.

    Discussion

    In this study,we identified cardiac maturation-associated genes in mice based on PCA of data from two distinct mice microarrays.We demonstrated that the expression of the genes identified change progressively during maturation and that the expression patterns are well conserved between mice and humans.Although mice and human adult cardiomyocytes are different in terms of cell size,length of action potential,and beating rate,etc.,they share some common features e.g.,morphology,abundant mitochondria,and sarcomere structure[8].Our findings indicate that mice and humans follow a similar maturation process.MYH6 and MYH7,the genes encoding alpha and beta myosin heavy chains,are differentially expressed in mice and humans.Myh6 encodes a predominant form of myosin heavy chain in adult mice heart and Myh7 isexpressed in embryonic mice heart,whereas opposite expression pattern of these two genes is found in humans[24,25]. In accordance herewith,our comparative gene expression analysis successfully identified that MYH7 is a gene associated with immature stage in mice,but highly upregulated in human adult hearts.

    Cells derived from either mice model or mice/human PSCs are often used for maturation studies.However,PSC-derived cardiomyocytes barely mature[9].More importantly,there are no established readouts to define maturation status of cardiomyocytes.Structural and functional readouts,which include cellsize,morphology,t-tubule formation,calcium handling,action potential,and mitochondrial function,are often used[26-28].It is known how morphology and structure change during maturation in mice or rat but it is unknown for human.Physiological features were only studied for adult cardiomyocytes but not for embryonic and neonatal cardiomyocytes.Therefore,these readouts cannot be used to measure maturation status quantitatively at this point.The gene list we provided(Table S3)could serve as a resource for developing defined,objective,and reliable readouts,as expression of these genes change monotonically during maturation in both mice and humans.

    As we used PCA-based gene selection and made a comparison only between the adult and early embryonic/fetal stages,some of the highly differentially-expressed genes shown in Figure 5E and G were not selected based on PCA.Thus,we took an alternative approach for gene selection to evaluate whether the genes that are highly differentially expressed between adult and early embryo/fetus are sufficient to recapitulate the heart maturation pattern.Briefly,we summed the human and mice differential signal intensities of each gene.As the summed differential signal intensities followed a normal distribution,we selected genes for which expression levels fell out of the range of mean±2SD(Figure S1A and S1B).Although only one third of the alternatively selected genes overlapped with the genes selected using the PCA-based method(Figure S1C and S1D),the PCA patterns generated with the alternatively selected genes were similar to those generated with all genes(Figure S1E-H).As we demonstrated in Figure 1E as well as Figure 4A and B,the maturation process in the heart is unidirectional,and most genes related to maturation changed progressively.Therefore,the genes highly differentially expressed between the adult and early embryoic/fetal stages successfully represented the maturation process,which would be more appropriate for finding specifically-expressed genes.PCA granted unidirectional change and would be more appropriate for studying the process of maturation.

    Finally,in this study,we also tackled a bioinformatics issue—the limitations of fRMA.Although fRMA was designed to avoid batch effects by using frozen data sets generated from a large quantity of datasets,fRMAdid not outperform MAS5,which is a single array-based normalization method.Our results demonstrate that the performance of fRMA is correlated well with that of MAS5,suggesting that MAS5 can be used in place for fRMA.

    Figure4 Characterization of the genes associated with cardiac maturation

    Figure5 Comparison of mice datasets with human datasets

    Conclusions

    In this study,we performed a comparative gene expression analysis of mice and human cardiac maturation.As a result,we identified more than 500 genes that share distinct expression patterns during cardiac maturation between mice and humans.These genes could be further explored for their potential as genetic markers to investigate cardiomyocyte maturation in future.

    Methods

    mRNA expression

    All mRNA expression profiles analyzed in this study were downloaded from the Gene Expression Omnibus(GEO,http://www.ncbi.nlm.nih.gov/geo/).Mouse 430 2.0 gene expression profile was selected from profiles analyzed in our previous study[9].Detailed information about mouse 430 2.0 and mogene 1.0 arrays is listed in Tables S1 and S2,respectively.Profiles analyzed in Figures 1,3 and 4 were generated from five developmental stages with sample numbers(N)provided for mouse 430 2.0 and mogene 1.0,respectively.These include early embryonic(embryonic day(E)8-11,N=16 and 12),mid embryonic(E12-15,N=39 and 4),late embryonic(E16-18,N=26 and 2),neonate(postnatal day(P)1-10, N=16 and 2),and adult(>4-week old,N=115 and 134)stages.Only wild-type and non-treated samples were included in the current study.Human gene expression profiles were taken from GSE62913 and GSE71148.GSE62193 contains RNA-seq data for human PSC-derived cells,as well as fetal and adult hearts,whereas GSE71148 comes from an Illumina array transcriptome study for 20 samples from fetal and adult hearts,including Ref-pool(GSM1828516).

    Preprocessing

    Multiple preprocessing methods were employed in this study.‘MAS5-scale”indicates scaling was performed after MAS5 preprocessing,while‘MAS5-log2-scale”indicates that a log2 transformation was performed before scaling but after MAS5 preprocessing.

    fRMA

    fRMA was conducted using the Bioconductor/R fRMA package.Annotation packages mouse4302frmavecs and mogene.1.0.st.v1frmavecs were used for mouse 430 2.0 and mogene 1.0 arrays,respectively.

    MAS5

    MAS5 normalization was conducted for mouse 430 2.0 and mogene 1.0 data by using the MAS5 function in the Bioconductor/R affy and xps packages,respectively.

    Scaling and log2 transformation

    Scaling,which extract means and normalize standard deviation to one,was performed with the scale function in R.Additionally,log2 transformation was also performed using R.

    To convert probesets to genes,we identified probesets with the highest IQRs of signal intensity for mouse 430 2.0.To determine the IQR,we analyzed 429 arrays for brain,212 arrays for heart,142 arrays for kidney,and 137 arrays for liver.All arrays were preprocessed with fRMA and the IQR was determined for each probeset.The probe-gene match list was used to convert MAS5-preprocessed data.The conversion table is available as Table S7.As only less than 5%of genes were annotated to multiple probesets in mogene 1.0(Figure 2D),we simply averaged the signal intensities of multiple probesets for a particular gene.

    Human datasets

    Read countdata of GSE62193 were scaled to normalize the individual samples(mean=1 and standard deviation=0),while normalized and log2-transformed data for GSE71148 was directly obtained from GEOand used for subsequentanalysis.

    PCA

    PCA was conducted using the prcomp function in Rto demonstrate overall differences of samples.

    Identification of maturation-associated genes

    Maturation-associated genes were identified using two different approaches.For genes common to the mouse 430 2.0 and mogene 1.0 arrays,PC1 loadings of each array were summed.Genes with summed PC1 loadings more than a mean+2SD or less than a mean-2SD were selected as maturation-associated genes.On the other hand,for genes unique to either of arrays,genes with PC1 loadings more than a mean+2SD or less than a mean-2SD of the corresponding array were selected.

    Developmental stage wide coarse-grained gene expression analysis

    孫靜等[13]用半楓荷抗炎有效部位的全提取物(A組分)、齊墩果酸提取物純化品(B組分)和除去齊墩果酸的提取物(C組分)處理以HBV-DNA轉染的人肝細胞株HepG2,結果發(fā)現(xiàn)A、B組分對乙肝病毒的HBeAg與HBsAg抗原均具有很好的抑制作用,而C組分對抗原無抑制作用,因此判斷對病毒抗原具有抑制活性的成分為齊墩果酸。

    In this analysis,we employed MAS5 preprocessed profiles generated from the mouse 430 2.0 array.Average of expression of the i-thgene at each developmental stage,xis,was defined as xis≡where s is one of five aforementioned developmental stages and Nsis the number of samples that belong to the stage,xijis expression of the i-th gene in j-th samples.Averaged values were subsequently ranked across stages.

    Linear regression analysis of developmental-stage coarse-grained gene expression

    Regression analysis was done using the following equation: xis=ais+bi,where aiand biare the regression coefficients,and s takes values 1-5 corresponding to the developmental stages in the order of early,mid,late,neonatal,and adult,respectively.The linear regression analysis was carried out using lm function in R[29].P values were adjusted to meet FDR criterion using the fdrtool function in the fdrtool[30]package.Regressions with q values(adjusted P values)<0.1 were regarded to be significant.

    KEGG pathway enrichment analysis

    Enrichment analysis for KEGG pathways was performed by uploading gene symbols to DAVID.Numbers of genes overlapping between KEGG pathways were used as weights to generate KEGG path way net works shownin Figure 4C and D with the igraph[31]package in R[29].

    Mapping of mice genes to human genes

    Identical official gene symbols found in mice and human data were considered as a pair and used for comparison in Figure 5.

    Authors’contributions

    HU and YHT planed the research project;HU performed all analyses.Both HU and YHT were involved in manuscript writing,read and approved the final manuscript.

    Competing interests

    The authors have declared that there are no competing interests.

    Acknowledgments

    HU was supported by Maryland Stem Cell Research Fund,USA(Grant No.2015-MSCRFF-1765).YHT was supported by the grants from the Ministry of Education,Science(grant No.KAKENHI 26120528)and Chuo University joint research grant.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.004.

    [1]Inoue H,Nagata N,Kurokawa H,Yamanaka S.IPS cells:a game changer for future medicine.EMBO J 2014;33:409-17.

    [2]Matsa E,Burridge PW,Wu JC.Human stem cells for modeling heart disease and for drug discovery.Sci Transl Med 2014;6:239ps6.

    [3]Onder TT,Daley GQ.New lessons learned from disease modeling with induced pluripotent stem cells.Curr Opin Genet Dev 2012;22:500-8.

    [4]Cho GS,F(xiàn)ernandez L,Kwon C.Regenerative medicine for the heart:perspectives on stem-cell therapy.Antioxid Redox Signal 2014;21:2018-31.

    [5]Laflamme MA,Chen KY,Naumova AV,Muskheli V,F(xiàn)ugate JA,Dupras SK,et al.Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.Nat Biotechnol 2007;25:1015-24.

    [6]Uosaki H,F(xiàn)ukushima H,Takeuchi A,Matsuoka S,Nakatsuji N,Yamanaka S,et al.Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.PLoS One 2011;6: e23657.

    [7]Burridge PW,Matsa E,Shukla P,Lin ZC,Churko JM,Ebert AD,et al.Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855-60.

    [8]Yang X,Pabon L,Murry CE.Engineering adolescence:maturation of human pluripotent stem cell-derived cardiomyocytes.Circ Res 2014;114:511-23.

    [9]Uosaki H,Cahan P,Lee DI,Wang S,Miyamoto M,F(xiàn)ernandez L,et al.Transcriptional landscape of cardiomyocyte maturation. Cell Rep 2015;13:1705-16.

    [10]Di Maio A,Karko K,Snopko RM,Mej?′a-Alvarez R,F(xiàn)ranzini-Armstrong C.T-tubule formation in cardiacmyocytes:two possible mechanisms?J Muscle Res Cell Motil 2007;28:231-41.

    [11]Ziman AP,Go′mez-Viquez NL,Bloch RJ,Lederer WJ.Excitation-contraction coupling changes during postnatal cardiac development.J Mol Cell Cardiol 2010;48:379-86.

    [12]Vreeker A,van Stuijvenberg L,Hund TJ,Mohler PJ,Nikkels PG,van Veen TA.Assembly of the cardiac intercalated disk during pre-and postnatal development of the human heart.PLoS One 2014;9:e94722.

    [13]Kozian DH,Kirschbaum BJ.Comparative gene-expression analysis.Trends Biotechnol 1999;17:73-8.

    [14]Tseveleki V,Rubio R,Vamvakas SS,White J,Taoufik E,Petit E,et al.Comparative gene expression analysis in mouse models for multiple sclerosis,Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes.Genomics 2010;96:82-91.

    [15]Kobayashi I,Ono H,Moritomo T,Kano K,Nakanishi T,Suda T.Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells. Blood 2010;115:e1-9.

    [16]Mangelsen E,Kilian J,Berendzen KW,Kolukisaoglu UH,Harter K,Jansson C,et al.Phylogenetic and comparative gene expression analysis of barley(Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions between monocots and dicots.BMC Genomics 2008;9:194.

    [17]McCall MN,Bolstad BM,Irizarry RA.Frozen robust multiarray analysis(fRMA).Biostatistics 2010;11:242-53.

    [18]Rajagopalan D.A comparison of statistical methods for analysis of high density oligonucleotide array data.Bioinformatics 2003;19:1469-76.

    [19]Seita J,Sahoo D,Rossi DJ,Bhattacharya D,Serwold T,Inlay MA,et al.Gene expression commons:an open platform for absolute gene expression profiling.PLoS One 2012;7:e40321.

    [20]Schoenauer R,Lange S,Hirschy A,Ehler E,Perriard JC,Agarkova I.Myomesin 3,a novel structural component of the M-band in striated muscle.J Mol Biol 2008;376:338-51.

    [21]Huang DW,Sherman BT,Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.

    [22]Huang DW,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVIDbioinformatics resources.Nat Protoc 2009;4:44-57.

    [23]van den Berg CW,Okawa S,Chuva de Sousa Lopes SM,van Iperen L,Passier R,Braam SR.Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 2015;142:3231-8.

    [24]Lompre′AM,Nadal-Ginard B,Mahdavi V.Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated.J Biol Chem 1984;259:6437-46.

    [25]Everett AW.Isomyosin expression in human heart in early preand post-natal life.J Mol Cell Cardiol 1986;18:607-15.

    [26]Kuppusamy KT,Jones DC,Sperber H,Madan A,F(xiàn)ischer KA,Rodriguez ML,et al.Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes.Proc Natl Acad Sci U S A 2015;112:E2785-94.

    [27]Feaster TK,Cadar AG,Wang L,Williams CH,Chun YW,Hempel JE,et al.Matrigel mattress:a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes.Circ Res 2015;117:995-1000.

    [28]Lee DS,Chen JH,Lundy DJ,Liu CH,Hwang SM,Pabon L,et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes.Cell Rep 2015;12:1960-7.

    [29]R Core Team.R:a language and environment for statistical computing.R Foundation for Statistical Computing:Vienna,Austria.2015.

    [30]Klaus B,Strimmer K.fdrtool:estimation of(local)false discovery rates and higher criticism.2015.R package version 1.2.15.

    [31]Csardi G,Nepusz T.The igraph software package for complex network research.InterJournal 2006;Complex Systems:1695.

    *Corresponding author.

    E-mail:huosaki1@jhmi.edu(Uosaki H).

    aORCID:0000-0002-8964-8609.

    bORCID:0000-0003-0867-8986.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.004

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    孫靜齊墩果酸
    孫靜:堅守初心 勇?lián)鷷r代使命
    華人時刊(2022年13期)2022-10-27 08:55:24
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?
    齊墩果酸固體分散體的制備
    中成藥(2018年10期)2018-10-26 03:40:56
    齊墩果酸對自然衰老大鼠睪丸DNA損傷保護作用及機制研究
    齊墩果酸衍生物的合成及其對胰脂肪酶的抑制作用
    熊果酸對肺癌細胞株A549及SPCA1細胞周期的抑制作用
    水線草熊果酸和齊墩果酸含量測定
    等你回來
    婷婷色综合大香蕉| 三级经典国产精品| 一区二区三区乱码不卡18| 亚洲av电影在线观看一区二区三区| 久久久久精品久久久久真实原创| 欧美精品人与动牲交sv欧美| 大陆偷拍与自拍| 高清视频免费观看一区二区| 国产色爽女视频免费观看| 国产无遮挡羞羞视频在线观看| 久久99热这里只频精品6学生| 日本wwww免费看| 国产伦精品一区二区三区视频9| 永久网站在线| 黄色欧美视频在线观看| 蜜桃亚洲精品一区二区三区| 男人爽女人下面视频在线观看| 久久韩国三级中文字幕| 一级二级三级毛片免费看| 亚洲精品色激情综合| 高清日韩中文字幕在线| 亚洲av国产av综合av卡| 亚洲精品aⅴ在线观看| 老司机影院毛片| 免费看光身美女| 国产一区亚洲一区在线观看| 又大又黄又爽视频免费| 亚洲美女黄色视频免费看| 寂寞人妻少妇视频99o| 九九在线视频观看精品| 日韩国内少妇激情av| 亚洲av中文字字幕乱码综合| 国产色婷婷99| 观看免费一级毛片| 国产在线一区二区三区精| 晚上一个人看的免费电影| 在线 av 中文字幕| 久久99热这里只频精品6学生| 久久人人爽av亚洲精品天堂 | 国产成人免费无遮挡视频| 最近中文字幕高清免费大全6| 偷拍熟女少妇极品色| 大片电影免费在线观看免费| 亚洲国产精品专区欧美| 国产一区二区在线观看日韩| 亚洲av国产av综合av卡| 人妻夜夜爽99麻豆av| 亚洲精品aⅴ在线观看| 美女脱内裤让男人舔精品视频| 亚洲成人av在线免费| 老司机影院毛片| 女性生殖器流出的白浆| 看免费成人av毛片| 国产精品不卡视频一区二区| 成人午夜精彩视频在线观看| 亚洲av成人精品一区久久| av在线app专区| 久热久热在线精品观看| 国产视频内射| 国产精品一区www在线观看| 在线免费观看不下载黄p国产| 最近的中文字幕免费完整| 秋霞在线观看毛片| 水蜜桃什么品种好| 插阴视频在线观看视频| 亚洲婷婷狠狠爱综合网| 18禁在线无遮挡免费观看视频| 啦啦啦中文免费视频观看日本| 18禁在线播放成人免费| 国产免费视频播放在线视频| 一本久久精品| 97热精品久久久久久| 国产成人免费无遮挡视频| 日韩免费高清中文字幕av| 国产精品熟女久久久久浪| 夜夜骑夜夜射夜夜干| 丝袜脚勾引网站| 国产精品伦人一区二区| 蜜桃亚洲精品一区二区三区| 女的被弄到高潮叫床怎么办| 午夜精品国产一区二区电影| 亚洲av在线观看美女高潮| 久热这里只有精品99| 在线播放无遮挡| 女人久久www免费人成看片| 精品国产一区二区三区久久久樱花 | 久久国内精品自在自线图片| 国产精品嫩草影院av在线观看| 色婷婷久久久亚洲欧美| 国产成人aa在线观看| 亚洲精品中文字幕在线视频 | 多毛熟女@视频| 超碰av人人做人人爽久久| 久久韩国三级中文字幕| 国产免费一区二区三区四区乱码| 校园人妻丝袜中文字幕| 亚洲成人手机| 久久久久精品性色| 香蕉精品网在线| 纯流量卡能插随身wifi吗| 纯流量卡能插随身wifi吗| 嘟嘟电影网在线观看| 日日啪夜夜爽| 欧美老熟妇乱子伦牲交| 色网站视频免费| 国产黄片美女视频| 欧美激情极品国产一区二区三区 | 国产v大片淫在线免费观看| 人妻系列 视频| 高清毛片免费看| 狠狠精品人妻久久久久久综合| 精品亚洲成国产av| av视频免费观看在线观看| 国产精品人妻久久久久久| 国产在线免费精品| 大陆偷拍与自拍| 久久99精品国语久久久| 亚洲美女视频黄频| 丰满人妻一区二区三区视频av| 国产精品欧美亚洲77777| 永久免费av网站大全| 国产毛片在线视频| 99精国产麻豆久久婷婷| 国产极品天堂在线| 国产真实伦视频高清在线观看| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 亚洲av.av天堂| 2018国产大陆天天弄谢| 在线观看国产h片| 能在线免费看毛片的网站| 亚洲人与动物交配视频| 特大巨黑吊av在线直播| 极品少妇高潮喷水抽搐| 人妻 亚洲 视频| 亚洲成色77777| 日韩av在线免费看完整版不卡| 五月伊人婷婷丁香| 最新中文字幕久久久久| 一级片'在线观看视频| 久久99热这里只频精品6学生| 日韩欧美精品免费久久| 我要看黄色一级片免费的| 啦啦啦啦在线视频资源| 国产日韩欧美在线精品| 一级爰片在线观看| 人妻一区二区av| 国产男女超爽视频在线观看| 国产免费一级a男人的天堂| 观看av在线不卡| 中文精品一卡2卡3卡4更新| 最黄视频免费看| 舔av片在线| 91精品国产国语对白视频| 欧美精品亚洲一区二区| 久久久久久久国产电影| 99久久精品一区二区三区| av福利片在线观看| 亚洲精品,欧美精品| 国产成人91sexporn| 在线观看国产h片| 日韩亚洲欧美综合| 久久精品夜色国产| 亚洲不卡免费看| 亚洲精品一二三| 在线天堂最新版资源| 黄片无遮挡物在线观看| 国产一区亚洲一区在线观看| 一二三四中文在线观看免费高清| 99久久综合免费| 日韩 亚洲 欧美在线| av在线app专区| 免费大片黄手机在线观看| 永久免费av网站大全| 草草在线视频免费看| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 蜜桃亚洲精品一区二区三区| 欧美变态另类bdsm刘玥| 免费观看av网站的网址| 精品久久久久久久久亚洲| a级毛片免费高清观看在线播放| 欧美成人一区二区免费高清观看| 性色avwww在线观看| 亚洲aⅴ乱码一区二区在线播放| 婷婷色综合www| 一区二区三区乱码不卡18| 欧美 日韩 精品 国产| 18+在线观看网站| 我的老师免费观看完整版| 国产成人91sexporn| 久久99热这里只频精品6学生| 狂野欧美白嫩少妇大欣赏| 国产91av在线免费观看| 免费人成在线观看视频色| 99视频精品全部免费 在线| 日韩精品有码人妻一区| 色哟哟·www| 女性被躁到高潮视频| 欧美成人午夜免费资源| 午夜免费男女啪啪视频观看| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 美女内射精品一级片tv| 美女视频免费永久观看网站| 蜜桃在线观看..| .国产精品久久| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 国产乱人偷精品视频| 免费看光身美女| 欧美日韩在线观看h| 黑人猛操日本美女一级片| 一本一本综合久久| av在线app专区| 性高湖久久久久久久久免费观看| 亚洲av中文av极速乱| 免费av中文字幕在线| av不卡在线播放| 观看免费一级毛片| 国产精品99久久久久久久久| 亚洲精品久久久久久婷婷小说| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| 国产爽快片一区二区三区| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 国产69精品久久久久777片| 少妇猛男粗大的猛烈进出视频| 国产黄频视频在线观看| 国产精品国产av在线观看| 久久久久国产网址| 日韩av在线免费看完整版不卡| 亚洲自偷自拍三级| 大香蕉97超碰在线| 少妇精品久久久久久久| 成人亚洲精品一区在线观看 | 91久久精品国产一区二区三区| 国产老妇伦熟女老妇高清| 99热这里只有是精品50| 精品熟女少妇av免费看| 视频区图区小说| 六月丁香七月| 亚洲人成网站在线播| 日韩,欧美,国产一区二区三区| 国产精品无大码| 欧美一区二区亚洲| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区三区四区免费观看| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 中文字幕免费在线视频6| 99re6热这里在线精品视频| 亚洲精品视频女| 夫妻午夜视频| 亚洲国产精品成人久久小说| 久久婷婷青草| 午夜福利高清视频| xxx大片免费视频| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 一级毛片黄色毛片免费观看视频| 国产精品一及| 18禁在线无遮挡免费观看视频| 亚洲美女搞黄在线观看| 女人久久www免费人成看片| 日韩精品有码人妻一区| 好男人视频免费观看在线| 特大巨黑吊av在线直播| 99re6热这里在线精品视频| 精华霜和精华液先用哪个| 免费观看性生交大片5| 美女视频免费永久观看网站| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 国产av国产精品国产| 婷婷色av中文字幕| 国产在线免费精品| 免费播放大片免费观看视频在线观看| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| av视频免费观看在线观看| 日日啪夜夜撸| 久久影院123| 亚洲精品中文字幕在线视频 | 特大巨黑吊av在线直播| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 久久99热这里只频精品6学生| 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 免费观看的影片在线观看| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| 多毛熟女@视频| 99热6这里只有精品| 欧美+日韩+精品| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 少妇高潮的动态图| 国产精品av视频在线免费观看| videossex国产| 一个人免费看片子| 1000部很黄的大片| 免费av中文字幕在线| 免费看av在线观看网站| 女人久久www免费人成看片| 亚洲综合色惰| 我要看黄色一级片免费的| 成年女人在线观看亚洲视频| freevideosex欧美| 天堂8中文在线网| 嘟嘟电影网在线观看| 亚洲成色77777| 一级片'在线观看视频| 久久精品国产亚洲网站| 亚洲在久久综合| 欧美bdsm另类| 一级毛片我不卡| 精品一品国产午夜福利视频| 亚洲真实伦在线观看| 高清不卡的av网站| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 久久人人爽人人爽人人片va| 免费看av在线观看网站| 亚洲中文av在线| 97超视频在线观看视频| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 亚洲欧美精品专区久久| 亚洲欧美日韩卡通动漫| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 亚洲内射少妇av| 一级av片app| 国产探花极品一区二区| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 精品亚洲成a人片在线观看 | 午夜老司机福利剧场| 亚洲人成网站高清观看| 男女啪啪激烈高潮av片| 啦啦啦中文免费视频观看日本| 在线免费观看不下载黄p国产| 熟女av电影| 少妇人妻 视频| 久久久色成人| 中国美白少妇内射xxxbb| 日韩中字成人| 婷婷色综合www| 国产精品国产av在线观看| 黄片无遮挡物在线观看| 大片免费播放器 马上看| 国产日韩欧美在线精品| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 又爽又黄a免费视频| 亚洲精品视频女| av国产精品久久久久影院| 中文字幕人妻熟人妻熟丝袜美| av福利片在线观看| 久久久国产一区二区| 国产成人免费无遮挡视频| videos熟女内射| 男女边摸边吃奶| 日本爱情动作片www.在线观看| 中文在线观看免费www的网站| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 久久青草综合色| 日本欧美视频一区| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 深夜a级毛片| 99久久精品国产国产毛片| 在线播放无遮挡| 99热网站在线观看| 久久久久国产精品人妻一区二区| 久久久久久久久久久免费av| 大码成人一级视频| 亚洲精品中文字幕在线视频 | 精品一品国产午夜福利视频| 日韩伦理黄色片| 精品一区二区三区视频在线| 国产精品.久久久| 一级毛片电影观看| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 青春草视频在线免费观看| 最新中文字幕久久久久| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 大片电影免费在线观看免费| 18禁动态无遮挡网站| 国产免费一级a男人的天堂| 最近中文字幕高清免费大全6| 青春草视频在线免费观看| 最黄视频免费看| 在线 av 中文字幕| 黄色配什么色好看| 午夜激情久久久久久久| 成人二区视频| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 男女无遮挡免费网站观看| 一区二区三区精品91| 久久国内精品自在自线图片| 成人高潮视频无遮挡免费网站| 国产一区亚洲一区在线观看| 中文字幕亚洲精品专区| 久久热精品热| 欧美日韩国产mv在线观看视频 | 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 久久午夜福利片| 亚洲精品一二三| 我的女老师完整版在线观看| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| 久热这里只有精品99| 久久久成人免费电影| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 美女福利国产在线 | 国产亚洲5aaaaa淫片| 在现免费观看毛片| 国产在线免费精品| 色哟哟·www| 亚洲美女搞黄在线观看| 在线观看av片永久免费下载| 精品久久久久久久末码| 日韩成人伦理影院| 国产国拍精品亚洲av在线观看| 亚洲av在线观看美女高潮| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 伦理电影大哥的女人| 一级二级三级毛片免费看| 精品一品国产午夜福利视频| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 亚洲成人手机| 在线精品无人区一区二区三 | 老女人水多毛片| 精品久久久久久久久亚洲| 亚洲欧美日韩另类电影网站 | 亚洲一级一片aⅴ在线观看| 欧美日韩亚洲高清精品| 成人毛片a级毛片在线播放| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 人妻系列 视频| 在线看a的网站| 欧美成人一区二区免费高清观看| 尾随美女入室| 精品久久久久久久久av| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的 | 三级经典国产精品| 国产精品女同一区二区软件| 精品视频人人做人人爽| 九九久久精品国产亚洲av麻豆| 免费看日本二区| 亚洲欧美日韩无卡精品| a 毛片基地| 99精国产麻豆久久婷婷| 久久6这里有精品| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 国产在线一区二区三区精| 观看av在线不卡| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 国产 精品1| 欧美xxⅹ黑人| 99久久综合免费| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 精品久久久噜噜| 色婷婷av一区二区三区视频| 极品教师在线视频| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久| 一级爰片在线观看| 最近最新中文字幕免费大全7| 国产久久久一区二区三区| 在线观看一区二区三区| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频 | 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 女人久久www免费人成看片| 女人十人毛片免费观看3o分钟| 亚洲av电影在线观看一区二区三区| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 99热这里只有精品一区| 男女下面进入的视频免费午夜| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 少妇熟女欧美另类| 91久久精品电影网| 老司机影院成人| 永久免费av网站大全| 一区二区三区乱码不卡18| 亚洲成人av在线免费| 毛片一级片免费看久久久久| 亚洲欧美日韩东京热| 视频中文字幕在线观看| 国产毛片在线视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产av新网站| 99久久人妻综合| 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 最黄视频免费看| 久久久久久久大尺度免费视频| 观看av在线不卡| 特大巨黑吊av在线直播| av国产免费在线观看| 一级av片app| 欧美日韩精品成人综合77777| 91精品国产九色| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 日本午夜av视频| 久久久久久久国产电影| 看非洲黑人一级黄片| 欧美极品一区二区三区四区| 在线观看一区二区三区| 涩涩av久久男人的天堂| 日韩伦理黄色片| 老熟女久久久| av免费在线看不卡| 高清在线视频一区二区三区| 美女国产视频在线观看| 亚洲国产毛片av蜜桃av| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 午夜激情久久久久久久| 男女无遮挡免费网站观看| 一级a做视频免费观看| 久热这里只有精品99| 激情 狠狠 欧美| 久久av网站| 一区二区三区四区激情视频| 五月开心婷婷网| 亚洲高清免费不卡视频| 久久久久久久久久久免费av| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 免费观看av网站的网址| 国产精品熟女久久久久浪| 久久久久久九九精品二区国产| 久久精品夜色国产| av播播在线观看一区| 久久久久久久国产电影| 亚洲国产精品专区欧美| 99热这里只有是精品50| 午夜激情久久久久久久| av在线老鸭窝| 2018国产大陆天天弄谢| 一级毛片aaaaaa免费看小| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 视频中文字幕在线观看| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频 | 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频| 国产深夜福利视频在线观看| 亚洲av.av天堂| 美女中出高潮动态图| 丰满乱子伦码专区| 青春草视频在线免费观看| 国产精品国产三级国产av玫瑰| 亚洲国产毛片av蜜桃av| 欧美另类一区| 不卡视频在线观看欧美| 欧美成人a在线观看| 高清午夜精品一区二区三区| 下体分泌物呈黄色| 两个人的视频大全免费| 99热全是精品| 精品国产乱码久久久久久小说| 日本黄色片子视频| 少妇丰满av| 中文字幕免费在线视频6| 免费不卡的大黄色大毛片视频在线观看| 少妇精品久久久久久久| 免费不卡的大黄色大毛片视频在线观看| 国产精品麻豆人妻色哟哟久久|