• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    2016-11-17 08:41:23AliAmrElhamKayvanpourFarbodSedaghatHamedaniTizianoPasseriniViorelMihalefAlanLaiDominikNeumannBogdanGeorgescuSebastianBussDerlizMereleshEdgarZitronAndreasPoschMaximilianWurstleTommasoMansiHugoKatus2BenjaminMeder2
    Genomics,Proteomics & Bioinformatics 2016年4期

    Ali AmrElham KayvanpourFarbod Sedaghat-HamedaniTiziano PasseriniViorel MihalefAlan LaiDominik NeumannBogdan GeorgescuSebastian BussDerliz MereleshEdgar ZitronAndreas E.PoschMaximilian Wu¨rstleTommaso MansiHugo A.Katus2Benjamin Meder2*k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    ORIGINAL RESEARCH

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    Ali Amr1,2,a,#,Elham Kayvanpour1,2,b,#,F(xiàn)arbod Sedaghat-Hamedani1,2,c,Tiziano Passerini3,d,Viorel Mihalef3,e,Alan Lai1,f,Dominik Neumann3,g,Bogdan Georgescu3,Sebastian Buss1,Derliz Mereles1,h,Edgar Zitron1,Andreas E.Posch4,i,Maximilian Wu¨rstle4,j,Tommaso Mansi3,Hugo A.Katus1,2,Benjamin Meder1,2,*,k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    Received 29 February 2016;revised 21 April 2016;accepted 26 April 2016 Available online 29 July 2016

    Handled by Andreas Keller

    Dilated cardiomyopathy;

    Tau;

    Myocardial stiffness;

    Computer-based 3D model;Personalized medicine;

    Diastolic function

    The search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive,since heart failure(HF)with preserved ejection fraction(HF-pEF)is a global health problem.We explore here the feasibility using patient-specific cardiac computer modeling to capture diastolic parameters in patients suffering from different degrees of systolic HF.Fifty eight patients with idiopathic dilated cardiomyopathy have undergone thorough clinical evaluation,including cardiac magnetic resonance imaging(MRI),heart catheterization,echocardiography,and cardiac biomarker assessment.A previously-introduced framework forcreating multi-scale patient-specific cardiac models has been applied on all these patients.Novel parameters,such as global stiffness factor and maximum left ventricular active stress,representing cardiac active and passive tissue properties have been computed for all patients.Invasive pressure measurements from heartcatheterization were then used to evaluate ventricular relaxation using the time constant of isovolumic relaxation Tau(τ).Parameters from heart catheterization and the multi-scale model have been evaluated and compared to patient clinical presentation.The model parameter global stiffness factor,representing diastolic passive tissue properties,is correlated significantly across the patient population withτ.This study shows that multi-modalcardiac models can successfully capture diastolic(dys)function,a prerequisite for future clinical trials on HF-pEF.

    Introduction

    The application of computational modeling to different organ systems has been gathering increasing interest from the research community.The possibility of performing in silico experiments on computer models that mimic patient’s organs has revved up the momentum of the evolution of virtual patient-specific models.The surge of interest has been driven by the prospect of being able to control all the variables to open up new possibilities toward better health care in a risk-free and ethically acceptable setting for the patient.The exponential growth of computational imaging capacities has also broadened the possibilities toward such models.From simplistic models based on geometric shapes as early as the 1960s to multi-scale multi-physics models,the transformation in this field has been tremendous[1-6].

    Heart failure(HF)remains the leading cause of death in developed countries[7-9].The increasingly high incidence rates,hospitalization,and health expenditures compel a constant call for new strategies and progress in this field[10]. HF is a syndrome with diverse etiologies,characterized by the decline of cardiac systolic or diastolic function,resulting in insufficient blood supply to organs,organ dysfunction,and finally,failure[11-13].

    A chronological retrospective analysis of HF therapy in patients with dilated cardiomyopathy(DCM)in the last century sheds light on difficulties in treating this disease.Expert guidelines currently outline HF therapy based on patients’clinical presentation,cardiac systolic function,and specific biomarkers,but oversee,to some extent,the pathophysiology and etiology that lead to reduced cardiac function[13].These rigid therapy regimes focus on relieving cardiac symptoms and tackle less the individual progression and the cause leading to this disease.Over the past three decades,drug therapy has undergone rapid progression in lowering the mortality and morbidity rates in HF patients[14].The mortality rates of patients that present with progressed HF symptoms and receive optimal medical therapy remain high[14,15].Even the latest drug advancements present only a stepping stone toward the treatment of HF.The diversity of this disease,in its etiology and clinical presentation,suggests that the key to a better and cost-effective therapy is the individualized and personalized care.Personalized cardiac models have the potential in facilitating the achievement of this goal[16,17].

    The role of left ventricular(LV)systolic dysfunction has attracted broad attention from both clinical and experimental researchers[18-23].On the other hand,LV diastolic dysfunction has been relatively slow in gathering interest due to its complex role in the pathomechanism of HF[24,25].General consensus defines LV diastolic dysfunction as irregular cardiac functional relaxation,distensibility,and LV filling,which causes higher end diastolic left ventricular pressures[26].To completely understand the pathogenesis of diastolic dysfunction,a broad appreciation of cardiac physiology in the diastole and its diverse compensation mechanisms is needed.Dyspnea,as a symptom of HF,is often attributed to diastolic dysfunction after exclusion of other probable causes[27-30].Its diagnosis remains a challenge in clinical settings because of the difficulties present in linearly quantifying the progression of this disease and assessing its significance to the patient[31]. The current non-invasive gold standard for the assessment of diastolic dysfunction remains the echocardiographic evaluation,especially Doppler measurements of transmitral flow and tissue Doppler imaging(TDI)[26].

    The progress in the field of cardiac simulation has been on a rise in the last decade[32].One of the first challenges in cardiac modeling is capturing the anatomical geometry of the heart. Simulating cardiac physical parameters relies heavily on ventricular geometry.Many of the early-proposed cardiac anatomical estimations were either based on geometrical models or post-mortem heart dissections.The first simplifications of the complex LV geometry have been based on spherical models[33].Koushanpour and colleagues published one of the early simulations of LV dynamics based on spheroids in 1960s[34].In this study,they compared the LV time course of tension using Laplace’s surface tension law in cats and turtles.Their findings highlighted the importance of cardiac size and shape in determining LV function.A gradual shift toward anatomical models,based on ex vivo human and animal hearts,could be observed,capturing a more accurate representation of cardiac anatomy[35-37].

    Progress in other fields of science,especially in physics and mathematics,and advancements in computer technology opened up new possibilities toward improving existing computer simulations.The application of the finite element method in diverse sectors of engineering represented one of the major turning points in cardiac computational modeling and simulation.The conception and refinement of this method enabled the analysis of complex structural and mathematical problems[38,39].Janz et al.introduced one of the early cardiac mechanical models using the finite element method[40].The cardiac model,in which the anatomical geometry is estimated from the hearts of Sprague-Dawley albino male rats,seemed to predict the gross free wall deformation with the assumption of an elastically linear and heterogeneous tissue[40].Vinson et al. later described a human cardiac model using‘‘36 brick type finite elements”representing the left ventricle[40].As pointed out by the authors,one of the limiting factors at that time was‘the capacity of the computer and computing time available”[41].Today,current smart phones have more processing power than the computers used at that time.

    The radical advances in cardiac imaging modalities and the implementation of non-invasive imaging sequences into the diagnostic algorithms marked the shift toward image-based models and allowed faster transition toward patient-specific cardiac models[42].Most computational models to date selectively integrate elements(such as myocardial structure,structural pathologies,biomechanics,or electrophysiology)in various details and complexity,to suit the objective of the model[43].

    We have proposed previously a patient-specific cardiac model that captures the biomechanical,hemodynamic,and electrophysiological cardiac functions in patients with DCM[2].In this paper,we explore the feasibility of using such models to capture cardiac diastolic function in a similar patient population.

    Results and discussion

    Clinical characteristics of the patient population

    A summary of the clinical parameters investigated in this study is presented in Table 1.The patients in our cohort are 54 years old on average.The majority of the recruited patients showed signs of HF with assessment of the New York Heart Association(NYHA)functionalclass II and III.The mean left ventricular ejection fraction(LV-EF)was 37%,with 5%of the recruited patients having an ejection fraction above 55%. HF drug therapy was initiated for all patients.The descriptive analysis of the invasive pressure measurements is presented in Table 2.As can be seen,the mean left ventricular end diastolic pressure(LV-EDP;mean 22 mmHg),the pulmonary capillary wedge pressure(PCWP;mean 20 mmHg),and the systolic pulmonary artery pressure(SAP;mean 40 mmHg)were all elevated as expected from the largely-symptomatic patient cohort.The calculated time constant Tau(τ)across the study population ranged 28-89 ms as shown in Figure 1A.Taking together the elevated pressure measured from the right circulation,approximately 40%of the patients proved to have a lengthened τ(duration>48 ms[44]),a sign of abnormal left ventricular relaxation.

    Simulation of cardiac parameters

    The feasibility of using the presented cardiac model to capture cardiac systolic function in a clinical setting,in its strengths and limitations,has been previously reported[2].In the present study,we aimed to examine how systolic and diastolic biomechanical parameters derived from the model,after completion of the fitting and personalization process,correspond to invasive and non-invasive clinical parameters of diastolic function. An example of a generated cardiac model of a patient in this study,after concluding the workflow algorithm,is shown in Figure 2.The systolic parameters,including computed LV-EF(cLV-EF;mean 35%),simulated stroke volume(sSV;mean 86 ml),maximum strength of active contraction(s0;mean 120 kPa),and global stiffness factor(HO factor;mean 1.1),are computed from the cardiac models for each patient as shown in Table 3.The distribution of global stiffness(HO factor)and LV maximum active stress(s0)across the study population is shown in Figure 1B and C,respectively.

    Assessment of the diastolic function

    Table1 Clinical characteristics of the recruited patients

    From early animal experiments investigating the maximal rate of pressure fall(max negative dP/dt)[45]to currentechocardiographic TDI parameters in humans[46],the search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive[44].The diastolic function of the heart is largely dependent on the passive myocardial properties,such as myocardial stiffness,which represents the effective elasticity of cardiac extra and intracellular composition.Preload,myocardial contractility,and regional dyssynchrony modulate myocardial relaxation[25].The accurate characterization and assessment of diastolic dysfunction requires the simultaneous measurement of pressure and volume changes in the left ventricle during the diastole,which increases the complexity and difficulty of its precise clinical evaluation in living patients.Tau(τ),the time constant of isovolumic relaxation,is acknowledged as the time period needed for the ventricular pressure to fall to approximately 37%(or 1/e)of the pressure at the start of the isovolumic relaxation phase[47].We used τ in this study,as a measure for the cardiac diastolic function,because τ remains a widely-accepted,less load-dependent surrogate for left ventricular relaxation and pressure decline[47,48].

    Table2 Summary of invasive pressure measurements and calculations

    Figure1 Distribution of the examined variables

    To assess the ability of the personalized cardiac model in capturing left ventricular relaxation,we correlated the model parameter of left ventricular global stiffness withτ.As presented in Table 4 and Figure 3A,there is a significant correlation(P=4.1E-4)between the global stiffness factor andτ,whereas no significant correlation was found between left ventricular maximum active stress andτ.N-terminal pro-brain natriuretic peptide(NT-proBNP)is accepted as a prognostic biomarker in both systolic and diastolic HF[13,49,50].We extended the analysis by subdividing the study population into patients with normal and elevated NT-proBNP plasma concentration(cut-off value of 125 ng/l).Interestingly,the correlation between global stiffness factor and τ was not only preserved but enhanced in the subpopulation with elevated NT-proBNP(125 ng/l)as shown in Table 4 and Figure 3B. The correlation between these two parameters was also preserved(R=0.58,P<0.05),with a higher cut-off level of 325 ng/l for NT-proBNP.At the same time,the correlation between LV maximum active stress,which represents the active and systolic component of myocardial contraction in the model,and τ remained non-significant.This observation underlines the potential benefit of combining molecular biomarkers with computational models.

    Doppler echocardiography remains the current reference method for non-invasive assessment of diastolic LV function. Kasner et al.performed a clinical study evaluating the correlation between conventional or TDI echocardiographic diastolic indexes and pressure volume measurements from heart catheterization.E′(early diastolic peak of the annular TDI measurements),E/E′(ratio of transmitral flow and annular velocity),E′/A′(ratio of early and late annular velocity)showed very modest correlations with τ of-0.33,0.34,and -0.24,respectively[51].Although the presented correlation between global stiffness factor andτappears modest,it remains at least on the same level as those between τ and the echocardiographic parameters mentioned above.

    Figure2 Map of the computed myocardium contraction strength in a patient-specific cardiac model

    Table3 Summary of the simulated parameters from the personalized model

    Table4 Statistical analysis of the correlations between the simulated systolic and diastolic parameters with Tau in patients

    Conclusions

    The clinical applicability of using in silico 3D computational cardiac models is promising,which strengthens the predilection toward its utilization in search of novel perspectives in risk stratification,therapy,and prognosis in other fields of cardiology[17].The incentive toward the search for a better strategy to diagnose and evaluate diastolic dysfunction stems from the heterogeneity of results in clinical studies investigating HF with preserved EF(HF-PEF),with respect to mortality,quality of life,and cardiovascular risk[52].The commonly-accepted consensus,which has prevailed over the years,remains that HF-PEF is associated with increased mortality and hospitalization[52-54].As a diagnosis of exclusion for patients presenting with dyspnea and other HF symptoms,HF-PEF presents a challenge to physicians especially in an ambulatory setting.The differences in patient characteristics and demographics between patients with HF-PEF and those carrying HF with reduced EF(HF-REF)have raised further questions about the disease pathomechanism,severity,and clinical significance.In this study,we show that this personalized cardiac model can capture patient-specific diastolic parameters,which could hold the key toward solving difficult challenges in patients with HF-PEF.

    More and more accurate and detailed models of cardiac function in both humans and animals have been abundantly reported,including biomechanical models that specifically investigate cardiac diastolic function[55-59].However,fewmodels integrate data from conventional standard clinical procedures to create a patient-specific electro-mechanical heart model.This study presents the feasibility of applying and integrating various experimentally-validated biophysical models to create a patient-specific multi-modal simulation of cardiac function in the diseased heart.

    Our goal is the constant progression of the implementation of virtual cardiac models in a clinical setting to provide the patients with the optimal individualized medical care.Further advancement of computational modeling at different levels is anticipated in the near future.One of the first steps forward is validating the predictive prognostic power of such virtual models in a clinical setting.Secondly,capturing patientspecific cardiac fiber architecture remains one of the challenges and a limiting factor of advanced in vivo virtual models nowadays.The importance of fiber orientation in simulating cardiac electrophysiology and biomechanics has been abundantly described in previous studies[60]and diffusion tension MRI(DT-MRI)serves as a common approach to capture cardiac fiber orientation[61].Due to technical difficulties present,like scan duration,myocardial respiratory displacement,and short transversal relaxation time,high resolution DT-MRI imaging was mainly utilized on explanted animal and human hearts. Algorithms for rule-based assignment of fiber orientation currently provide alternative to in vivo virtual models[62].However,recent advances in cardiac DT-MRI render this approach feasible in the near future[63],opening up the possibility toward generating fully patient-specific myocardial fiber orientation and architecture.On another level,integrating not only parameters of cardiac electrophysiology but also histopathological myocardial structure and tissue specific passive physical parameters,like tensile strength,compaction and density of fibers,and fibrosis grade,from myocardial biopsies could be promising toward the complete in silico simulation of the individual heart.

    Figure3 Correlation between the global stiffness factor andτ

    Materials and methods

    Patient population

    Patients with HF symptoms were enrolled in this study after having given their written informed consent.Only patients receiving heart catheterization due to clinical necessity were included.To reflect broad representation of potential HF phenotypes,cases with slightly to severely reduced systolic function were included.Clinical evaluation,diagnostics,and follow-up were performed in adherence to hospital guidelines.

    The enrolled patients underwent comprehensive clinical assessment constituting a detailed clinical history,physical examination,12 lead electrocardiogram,echocardiography,6 Minute Walk Test,spiroergometry,and comprehensive laboratory tests including NT-proBNP.For the clinical diagnostic process,patients underwent also procedures to ensure exclusion of secondary causes of DCM(left heart catheterization,cardiac MRI,extensive blood panel,and clinical history). Acute myocarditis,significant coronary artery disease(CAD),history of chemotherapy with cardio-toxic agents or chest radiation,valvular heart diseases,and probable secondary causes for DCM were exclusion criteria.A total number of n=58 patients were investigated in this study.

    Hemodynamic data acquisition

    Hemodynamic assessment was performed using left and right heart catheterization.All pressure curves were checked for calibration errors.The customary femoral access was used in all patients receiving simultaneous left and right circulation evaluation.Pressure measurements of the left ventricle and aorta were performed over repeated cardiac cycles prior to application of the contrast agent.Hemodynamic pressure analysiswas performed using the computer-assisted software Metek(Roetgen,Germany).The intraventricular rate of change in pressure((-)(+)dP/dt)was calculated during the procedure. Maximum values for(-)(+)dP/dt were identified and output for each cardiac cycle.The calculation of τ(time constant of isovolumic relaxation)was based on the approach described by Weiss and colleagues[64],which assumes an exponential decline in left ventricular pressure during the isovolumic time period.P(t)=P(t=0)x e-t/τandτ=-P/(dP/dt).

    MR data acquisition

    To further evaluate the clinical phenotype,all patients underwent cardiac MRI analyses(1.5T cMRI,32Ch RF platform,Philips Achieva).Standard multi-slice 2D steady-state free precession sequences(SSFP),late gadolinium enhancement(LGE)multi-slice inversion recovery sequence,and feature tracking imaging were included in the procedure protocols. Comprehensive 2D echocardiographic assessment of systolic and diastolic function according to current guidelines and hospital standards was also performed in all patients.

    Personalized cardiac model in patients with dilated cardiomyopathy

    The computational work flow and process of simulating the personalized multi-scale multi-physics model based on the acquired clinical data has been thoroughly described previously[2].We briefly recallhere the model assumptions related more specifically to the description of cardiac biomechanics. We adopt the Hill-Maxwell framework to represent the interplay between active contraction and passive response of the myocardium[65](Figure 4).

    The myocyte contraction is modeled following the approach presented by Sermesant and colleagues,for which the contraction is related to the action potential through a bi-exponential law[66].We parameterize this law by the maximum strength of active contraction(s0),the rate of contraction(the speed at which the tissue contracts during depolarization),and the rate of relaxation(the speed at which the tissue relaxes during repolarization).The passive response of the myocardium to mechanical stress is described by the non-linear,hyper-elastic and orthotropic tissue model proposed by Holzapfel and colleagues[67].We consider a global scaling factor(HO factor)for the reference model parameters provided by Holzapfel and colleagues,offering a lumped representation of the tissue stiffness[67].The electromechanical model provides computed cardiac dynamics,from which we extract simulated ejection fraction as the clinical parameter of interest.More details on the personalized cardiac model can be found in the references cited in this section.

    Statistical analysis

    Figure4 Schematic representation of the classical Hill’s muscle model

    The statistical analysis was performed using the conventional‘R”software(Version 3.2.2).The parameters τ,global stiffness factor,and LV active force are continuous and show an approximate normal distribution.Therefore,a linear correlation analysis using Pearson’s correlation coefficient through the‘cor”and the‘cor.test”function was applied.The parametric P value,with a significance level of 0.05,was computed for all performed correlations.To account for a possible nonlinear relationship between τ and global stiffness factor,a logarithmic analysis of both parameters is also presented(Table S1).A possible monotonic correlation was analyzed using the Spearman rank correlation method.The results obtained were similar but non-superior to those based on the linear correlation analysis and were not presented in the current study to avoid repetition.Histograms were calculated using the‘hist”function with standard parameters.In order to visualize the output,scatter plots were generated for the significant correlations.Smoothing of scatter plots was carried out by the‘smoothScatter”function.

    Authors’contributions

    BM,AA,EK,F(xiàn)S,and TM designed the study;AA,F(xiàn)S,HK,EK,BM,DM,EZ,and SB carried out patient data acquisition;TM,TP,VM,DN,BG,AEP and MW performed the computational analysis,and AL,AA,BM,F(xiàn)S,and EK carried out statistical analysis.AA,EK,BM,TM,TP,DM,and HK were involved in manuscript drafting and revision.All authors read and approved the final manuscript.

    Competing interests

    This work was in part conducted within an industry supported project(Siemens Healthcare,Siemens Research Project).TP,VM,DN,BG,AEP,MW,and TM are employees of Siemens Healthcare.There are no further conflicts of interest.The features mentioned herein are based on research,and are not commercially available.Its future availability cannot be guaranteed due to regulatory reasons.

    Acknowledgments

    This work was partially supported by grants from the German Ministry of Education and Research(BMBF),DZHK(‘Deutsches Zentrum fu¨r Herz-Kreislauf-Forschung”-German Centre for Cardiovascular Research),the European Union(FP7 BestAgeing)and Siemens Healthcare(Siemens Healthcare/University Heidelberg Joint Research Project: Care4DCM).

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.006.

    [1]Ghista DN,Sandler H.An analytic elastic-viscoelastic model for the shape and the forces in the left ventricle.J Biomech 1969;2:35-47.

    [2]Kayvanpour E,Mansi T,Sedaghat-Hamedani F,Amr A,Neumann D,Georgescu B,et al.Towards personalized cardiology:Multi-scale modeling of the failing heart.PLoS One 2015;10: e0134869.

    [3]Tobon-Gomez C,Duchateau N,Sebastian R,Marchesseau S,Camara O,Donal E,et al.Understanding the mechanisms amenable to CRT response:from pre-operative multimodal image data to patient-specific computational models.Med Biol Eng Comput 2013;51:1235-50.

    [4]Niederer SA,Smith NP.An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog Biophys Mol Biol 2008;96:90-111.

    [5]Sermesant M,Chabiniok R,Chinchapatnam P,MansiT,Billet F,Moireau P,et al.Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT:a preliminary clinical validation.Med Image Anal 2012;16:201-15.

    [6]Relan J,Chinchapatnam P,Sermesant M,Rhode K,Ginks M,Delingette H,et al.Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia.Interface Focus 2011;1:396-407.

    [7]Murray CJ,Lopez AD.Mortality by cause for eight regions ofthe world:global burden of disease study.Lancet 1997;349:1269-76.

    [8]Lopez A,Mathers C,Ezzati M,Jamison D,Murray C.Global and regional burden of disease and risk factors 2001:systematic analysis of population health data.Lancet 2006;367:1747-57.

    [9]Santulli G.Epidemiology of cardiovascular disease in the 21st century:updated numbers and updated facts.JCvD 2013;1:1-2.

    [10]Murray C,Lopez A.Alternative projections of mortality and disability by cause 1990-2020:global burden of disease study. Lancet 1997;349:1498-504.

    [11]Lloyd-Jones D,Adams RJ,Brown TM,Carnethon M,Dai S,De Simone G,et al.Heart disease and stroke statistics—2010 update: a report from the American Heart Association.Circulation 2010;121:e46-e215.

    [12]Kayvanpour E,Katus HA,Meder B.Determined to fail—the role of genetic mechanisms in heart failure.Curr Heart Fail Rep 2015;12:333-8.

    [13]McMurray JJ,Adamopoulos S,Anker SD,Auricchio A,Bohm M,Dickstein K,et al.ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012.Eur J Heart Fail 2013;15:361-2.

    [14]Sacks CA,Jarcho JA,Curfman GD.Paradigm shifts in heartfailure therapy—a timeline.N Engl J Med 2014;371:989-91.

    [15]Ketchum ES,Levy WC.Establishing prognosis in heart failure:a multimarker approach.Prog Cardiovasc Dis 2011;54:86-96.

    [16]Blaus A,Madabushi R,Pacanowski M,Rose M,Schuck RN,Stockbridge N,et al.Personalized cardiovascular medicine today: a Food and Drug Administration/Center for Drug Evaluation and Research perspective.Circulation 2015;132:1425-32.

    [17]Trayanova NA,O’Hara T,Bayer JD,Boyle PM,McDowell KS,Constantino J,et al.Computational cardiology:how computer simulations could be used to develop new therapies and advance existing ones.Europace 2012;14:v82-9.

    [18]Gomes JA,Mehta D,Ip J,Winters SL,Camunas J,Ergin A,et al. Predictors of long-term survival in patients with malignant ventricular arrhythmias.Am J Cardiol 1997;79:1054-60.

    [19]Likoff MJ,Chandler SL,Kay HR.Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy.Am J Cardiol 1987;59:634-8.

    [20]Cohn JN,Johnson GR,Shabetai R,Loeb H,Tristani F,Rector T,et al.Ejection fraction,peak exercise oxygen consumption,cardiothoracic ratio,ventricular arrhythmias,and plasma norepinephrine as determinants of prognosis in heart failure.The VHeFT VA Cooperative Studies Group.Circulation 1993;87:I5-16.

    [21]Juillie`re Y,Barbier G,F(xiàn)eldmann L,Grentzinger A,Danchin N,Cherrier F.Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy.Eur Heart J 1997;18:276.

    [22]Hallstrom A,Pratt C,Greene H,Huther M,Gottlieb S,DeMaria A,et al.Relations between heart failure,ejection fraction,arrhythmia suppression and mortality:analysis of the Cardiac Arrhythmia Suppression Trial.J Am Coll Cardiol 1995;25:1250.

    [23]Bart BA,Shaw LK,McCants Jr CB,F(xiàn)ortin DF,Lee KL,Califf RM,et al.Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy.J Am Coll Cardiol 1997;30:1002-8.

    [24]Gaasch WH,Zile MR.Left ventricular diastolic dysfunction and diastolic heart failure.Annu Rev Med 2004;55:373-94.

    [25]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part II:causal mechanisms and treatment.Circulation 2002;105:1503-8.

    [26]Yancy CW,Jessup M,Bozkurt B,Butler J,Casey Jr DE,Drazner MH,et al.2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol 2013;62:e147-239.

    [27]Zile MR,Nappi J.Diastolic heart failure.Curr Treat Options Cardiovasc Med 2000;2:439-50.

    [28]Packer M.Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure.Circulation 1990;81:III78-86.

    [29]Vasan RS,Levy D.Defining diastolic heart failure:a call for standardized diagnostic criteria.Circulation 2000;101:2118-21.

    [30]Yturralde RF,Gaasch WH.Diagnostic criteria for diastolic heart failure.Prog Cardiovasc Dis 2005;47:314-9.

    [31]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part I:diagnosis,prognosis,and measurements of diastolic function.Circulation 2002;105:1387-93.

    [32]Noble D.Modeling the heart—from genes to cells to the whole organ.Science 2002;295:1678-82.

    [33]Burch GE,Ray CT,Cronvich JA.The George Fahr Lecture: certain mechanical peculiarities of the human cardiac pump in normal and diseased states.Circulation 1952;5:504-13.

    [34]Koushanpour E,Collings WD.Validation and dynamic applications of an ellipsoid model of the left ventricle.J Appl Physiol 1966;21:1655-61.

    [35]Vetter FJ,McCulloch AD.Three-dimensional analysis of regional cardiac function:a model of rabbit ventricular anatomy.Prog Biophys Mol Biol 1998;69:157-83.

    [36]Horan LG,Hand RC,Johnson JC,Sridharan MR,Rankin TB,F(xiàn)lowers NC.A theoretical examination of ventricular repolarization and the secondary T wave.Circ Res 1978;42:750-7.

    [37]Aoki M,Okamoto Y,Musha T,Harumi K.Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials:normal heart and bundle branch block.IEEE Trans Biomed Eng 1987;34:454-62.

    [38]Zienkiewicz O,Kelly D,Bettess P.The coupling of the finite element method and boundary solution procedures.Int J Numer Meth Eng 1977;11:355-75.

    [39]Bathe KJ.Finite element method.Wiley encyclopedia of computer science and engineering.Cambridge Massachusetts:Massachusetts Institute of Technology;2007.p.1-12.

    [40]Janz RF,Grimm AF.Finite-element model for the mechanical behavior of the left ventricle.Prediction of deformation in the potassium-arrested rat heart.Circ Res 1972;30:244-52.

    [41]Vinson CA,Gibson DG,Yettram AL.Analysis of left ventricular behaviour in diastole by means of finite element method.Br Heart J 1979;41:60-7.

    [42]Frangi AF,Niessen WJ,Viergever MA.Three-dimensional modeling for functional analysis of cardiac images:a review. IEEE Trans Med Imaging 2001;20:2-25.

    [43]Lopez-Perez A,Sebastian R,F(xiàn)errero JM.Three-dimensional cardiac computational modelling:methods,features and applications.Biomed Eng Online 2015;14:35.

    [44]Paulus WJ,Tschope C,Sanderson JE,Rusconi C,F(xiàn)lachskampf FA,Rademakers FE,et al.How to diagnose diastolic heart failure:a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.Eur Heart J 2007;28:2539-50.

    [45]Cohn PF,Liedtke AJ,Serur J,Sonnenblick EH,Urschel CW. Maximal rate of pressure fall(peak negative dP-dt)during ventricular relaxation.Cardiovasc Res 1972;6:263-7.

    [46]Oh JK,Park SJ,Nagueh SF.Established and novel clinical applications of diastolic function assessment by echocardiography.Circ Cardiovasc Imaging 2011;4:444-55.

    [47]Leite-Moreira AF.Current perspectives in diastolic dysfunction and diastolic heart failure.Heart 2006;92:712-8.

    [48]Nagueh SF,Appleton CP,Gillebert TC,Marino PN,Oh JK,Smiseth OA,et al.Recommendations for the evaluation of left ventricular diastolic function by echocardiography.J Am Soc Echocardiogr 2009;22:107-33.

    [49]Tschope C,Kasner M,Westermann D,Gaub R,Poller WC,Schultheiss HP.The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction:correlation with echocardiographic and invasive measurements.Eur Heart J 2005;26:2277-84.

    [50]Hartmann F,Packer M,Coats AJ,F(xiàn)owler MB,Krum H,Mohacsi P,et al.NT-proBNP in severe chronic heart failure: rationale,design and preliminary results of the COPERNICUS NT-proBNP substudy.Eur J Heart Fail 2004;6:343-50.

    [51]Kasner M,Westermann D,Steendijk P,Gaub R,Wilkenshoff U,Weitmann K,et al.Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction:a comparative Doppler-conductance catheterization study.Circulation 2007;116: 637-47.

    [52]Berry C,Doughty R,Granger C,Kober L,Massie B,McAlister F,et al.The survivalof patients with heart failure with preserved or reduced left ventricular ejection fraction:an individual patient data meta-analysis.Eur Heart J 2012;33:1750-7.

    [53]Yusuf S,Pfeffer MA,Swedberg K,Granger CB,Held P,McMurray JJ,et al.Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction:the CHARM-Preserved Trial.Lancet 2003;362:777-81.

    [54]Massie BM,Carson PE,McMurray JJ,Komajda M,McKelvie R,Zile MR,et al.Irbesartan in patients with heart failure and preserved ejection fraction.N Engl J Med 2008;359:2456-67.

    [55]Bishop MJ,Plank G,Burton RA,Schneider JE,Gavaghan DJ,Grau V,et al.Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.Am J Physiol Heart Circ Physiol 2010;298:H699-718.

    [56]Dokos S,Smaill BH,Young AA,LeGrice IJ.Shear properties of passive ventricular myocardium.Am J Physiol Heart Circ Physiol 2002;283:H2650-9.

    [57]Vetter FJ,McCulloch AD.Three-dimensional stress and strain in passive rabbit left ventricle:a model study.Ann Biomed Eng 2000;28:781-92.

    [58]Wang HM,Gao H,Luo XY,Berry C,Griffith BE,Ogden RW,et al.Structure-based finite strain modelling of the human left ventricle in diastole.Int J Numer Method Biomed Eng 2013;29:83-103.

    [59]Niederer S,Rhode K,Razavi R,Smith N.The importance of model parameters and boundary conditions in whole organ models of cardiac contraction.Lect Notes Comput Sco 2009:348-56.

    [60]Clayton RH,Bernus O,Cherry EM,Dierckx H,F(xiàn)enton FH,Mirabella L,et al.Models of cardiac tissue electrophysiology: progress,challenges and open questions.Prog Biophys Mol Biol 2011;104:22-48.

    [61]Helm P,Beg MF,Miller MI,Winslow RL.Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.Ann N Y Acad Sci 2005;1047:296-307.

    [62]Bayer JD,Blake RC,Plank G,Trayanova NA.A novel rulebased algorithm for assigning myocardial fiber orientation to computational heart models.Ann Biomed Eng 2012;40:2243-54.

    [63]Mekkaoui C,Reese TG,Jackowski MP,Bhat H,Sosnovik DE. Diffusion MRI in the heart.NMR Biomed 2015.http://dx.doi. org/10.1002/nbm.3426.

    [64]Weiss JL,F(xiàn)rederiksen JW,Weisfeldt ML.Hemodynamic determinants of the time-course of fall in canine left ventricular pressure.J Clin Invest 1976;58:751-60.

    [65]Fung YC.Biomechanics:mechanical properties of living tissues.New York:Springer-Verlag;1993.

    [66]Sermesant M,Delingette H,Ayache N.An electromechanical model of the heart for image analysis and simulation.IEEE Trans Med Imaging 2006;25:612-25.

    [67]Holzapfel GA,Ogden RW.Constitutive modelling of passive myocardium:a structurally based framework for material characterization.Philos Trans A Math Phys Eng Sci 2009;367:3445-75.

    *Corresponding author.

    E-mail:Benjamin.Meder@meduni-heidelbergde(Meder B).

    aORCID:0000-0002-2615-4089.

    bORCID:0000-0001-7285-2825.

    cORCID:0000-0002-3266-0527.

    dORCID:0000-0002-2130-0112.

    eORCID:0000-0002-1743-4505.

    fORCID:0000-0003-0916-9227.

    gORCID:0000-0003-2494-5124.

    hORCID:0000-0001-9601-7103.

    iORCID:0000-0003-3893-3562.

    jORCID:0000-0003-4494-9608.

    kORCID:0000-0003-0741-2633.

    #Equal contribution.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.006

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    日日爽夜夜爽网站| 亚洲一区中文字幕在线| 99久久国产精品久久久| 欧美日韩福利视频一区二区| 成人亚洲精品av一区二区 | 午夜免费鲁丝| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 欧美大码av| 女人被狂操c到高潮| 黑人猛操日本美女一级片| 9色porny在线观看| 最新美女视频免费是黄的| 精品久久久久久成人av| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区91| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区免费欧美| 99久久国产精品久久久| 国产亚洲欧美精品永久| 欧美中文日本在线观看视频| 国产人伦9x9x在线观看| 久久人妻av系列| 国产成人精品久久二区二区免费| 亚洲一区中文字幕在线| 搡老熟女国产l中国老女人| 一级a爱视频在线免费观看| 日本三级黄在线观看| 亚洲avbb在线观看| 在线av久久热| 久久伊人香网站| 久久午夜综合久久蜜桃| 国产精品秋霞免费鲁丝片| 精品久久久久久电影网| 国产亚洲欧美精品永久| 精品久久久久久电影网| 级片在线观看| 窝窝影院91人妻| 一级毛片精品| 日日夜夜操网爽| 精品高清国产在线一区| 丁香六月欧美| 一本大道久久a久久精品| 亚洲人成网站在线播放欧美日韩| 日韩免费高清中文字幕av| 日韩欧美在线二视频| 88av欧美| www.999成人在线观看| 淫秽高清视频在线观看| 久久精品人人爽人人爽视色| 99在线人妻在线中文字幕| 美女高潮到喷水免费观看| 免费观看人在逋| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 性少妇av在线| 国产精品 欧美亚洲| 9色porny在线观看| 超碰成人久久| 亚洲欧美激情在线| 午夜免费成人在线视频| 免费av毛片视频| 欧美午夜高清在线| 亚洲狠狠婷婷综合久久图片| 在线观看午夜福利视频| 99在线视频只有这里精品首页| 高清黄色对白视频在线免费看| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| www.熟女人妻精品国产| 在线国产一区二区在线| 欧美乱码精品一区二区三区| 久久国产精品影院| 男人舔女人的私密视频| 巨乳人妻的诱惑在线观看| 国产精品久久久人人做人人爽| 婷婷六月久久综合丁香| 黄色女人牲交| 叶爱在线成人免费视频播放| 麻豆av在线久日| 美女国产高潮福利片在线看| 国产精品野战在线观看 | 午夜福利欧美成人| 在线观看一区二区三区激情| 精品一品国产午夜福利视频| 国产一区二区三区综合在线观看| 嫩草影院精品99| 欧美精品一区二区免费开放| 人妻久久中文字幕网| 国产成人精品久久二区二区免费| 欧美日韩国产mv在线观看视频| 亚洲av成人一区二区三| 欧美精品亚洲一区二区| 亚洲成人久久性| 亚洲精品一区av在线观看| 国产精品av久久久久免费| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 国产在线观看jvid| 麻豆av在线久日| xxx96com| 午夜视频精品福利| 免费观看人在逋| 亚洲精品国产一区二区精华液| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 日韩精品青青久久久久久| 黑丝袜美女国产一区| 操美女的视频在线观看| 国产乱人伦免费视频| 亚洲视频免费观看视频| 国产精品偷伦视频观看了| 脱女人内裤的视频| 大型黄色视频在线免费观看| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 精品欧美一区二区三区在线| 日本三级黄在线观看| 亚洲av成人一区二区三| www.自偷自拍.com| 国产精品二区激情视频| 午夜福利在线免费观看网站| 交换朋友夫妻互换小说| 在线观看免费午夜福利视频| 窝窝影院91人妻| www日本在线高清视频| 国产又爽黄色视频| 美女高潮到喷水免费观看| 亚洲五月婷婷丁香| 成熟少妇高潮喷水视频| 少妇 在线观看| 天堂动漫精品| 久久草成人影院| 亚洲欧美精品综合一区二区三区| 欧美黑人精品巨大| 日本一区二区免费在线视频| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 麻豆国产av国片精品| 精品高清国产在线一区| 日韩 欧美 亚洲 中文字幕| 欧美成人性av电影在线观看| 黄片播放在线免费| 丁香欧美五月| 如日韩欧美国产精品一区二区三区| 老司机午夜福利在线观看视频| 在线观看日韩欧美| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 99精品久久久久人妻精品| 欧美日韩国产mv在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| 午夜福利影视在线免费观看| 久久精品国产亚洲av香蕉五月| 免费看十八禁软件| 咕卡用的链子| 国产免费av片在线观看野外av| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 欧美大码av| 久久人人97超碰香蕉20202| 久久人妻熟女aⅴ| 免费av中文字幕在线| 12—13女人毛片做爰片一| 中文字幕另类日韩欧美亚洲嫩草| 正在播放国产对白刺激| 精品人妻1区二区| 久久久久久久精品吃奶| 午夜日韩欧美国产| 亚洲成人国产一区在线观看| 久久精品国产99精品国产亚洲性色 | 国产99久久九九免费精品| 最好的美女福利视频网| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 午夜免费激情av| 久久久久久久久中文| 男女下面进入的视频免费午夜 | 午夜免费观看网址| 中文字幕色久视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 黄色怎么调成土黄色| 亚洲自拍偷在线| 午夜免费激情av| 久久精品国产综合久久久| 男女做爰动态图高潮gif福利片 | 久久久国产一区二区| 亚洲一区二区三区色噜噜 | 国产在线精品亚洲第一网站| 国产又色又爽无遮挡免费看| aaaaa片日本免费| 老司机在亚洲福利影院| 久久人妻福利社区极品人妻图片| 91大片在线观看| 日本五十路高清| 一级片免费观看大全| 91精品国产国语对白视频| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 国产黄a三级三级三级人| 国产亚洲欧美精品永久| 免费看a级黄色片| 午夜免费激情av| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区| 日本三级黄在线观看| www.自偷自拍.com| tocl精华| 9热在线视频观看99| 成人免费观看视频高清| 最新美女视频免费是黄的| 色在线成人网| 99热国产这里只有精品6| 日韩精品中文字幕看吧| 国产一区二区激情短视频| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 亚洲五月天丁香| 亚洲国产欧美网| 在线永久观看黄色视频| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看.| 亚洲人成77777在线视频| 伦理电影免费视频| 国产精品香港三级国产av潘金莲| 人人妻人人澡人人看| 色老头精品视频在线观看| 色综合站精品国产| 多毛熟女@视频| 99久久人妻综合| 18美女黄网站色大片免费观看| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 99精品久久久久人妻精品| 老司机在亚洲福利影院| 18禁美女被吸乳视频| 窝窝影院91人妻| 国产蜜桃级精品一区二区三区| 视频区图区小说| 变态另类成人亚洲欧美熟女 | 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 1024视频免费在线观看| 欧美国产精品va在线观看不卡| 午夜福利,免费看| 女人被狂操c到高潮| 国产成人欧美| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 大香蕉久久成人网| 岛国在线观看网站| 久久人妻熟女aⅴ| 免费一级毛片在线播放高清视频 | 丝袜美腿诱惑在线| 午夜免费鲁丝| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 国产深夜福利视频在线观看| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 中文字幕人妻丝袜制服| 亚洲av成人一区二区三| 色综合站精品国产| 夜夜躁狠狠躁天天躁| 两个人免费观看高清视频| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 精品国产乱码久久久久久男人| 国产人伦9x9x在线观看| 久热这里只有精品99| 亚洲免费av在线视频| 国产高清视频在线播放一区| 成人手机av| av免费在线观看网站| 99国产综合亚洲精品| 国产激情欧美一区二区| 亚洲av成人av| 欧美久久黑人一区二区| 精品人妻在线不人妻| e午夜精品久久久久久久| 午夜视频精品福利| 久久久国产成人免费| 国产精品免费视频内射| 亚洲精华国产精华精| 亚洲自偷自拍图片 自拍| 国产亚洲欧美在线一区二区| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩视频一区二区在线观看| 丁香六月欧美| 国产一区二区激情短视频| 人人澡人人妻人| 少妇被粗大的猛进出69影院| 亚洲avbb在线观看| 一区福利在线观看| 国产成人啪精品午夜网站| 国产精品久久久av美女十八| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 久9热在线精品视频| 久久香蕉精品热| 国产精品 国内视频| 国产精品乱码一区二三区的特点 | aaaaa片日本免费| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 欧美日韩国产mv在线观看视频| 男女做爰动态图高潮gif福利片 | 成人国语在线视频| 黄片播放在线免费| 18禁观看日本| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 久久精品91蜜桃| 性色av乱码一区二区三区2| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 午夜免费鲁丝| 日本 av在线| 日韩av在线大香蕉| 首页视频小说图片口味搜索| 99久久99久久久精品蜜桃| ponron亚洲| 国产一区二区三区综合在线观看| 一级,二级,三级黄色视频| 中出人妻视频一区二区| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 日本a在线网址| 亚洲色图综合在线观看| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 亚洲在线自拍视频| 欧美在线黄色| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9| 女性被躁到高潮视频| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 亚洲第一av免费看| 很黄的视频免费| 日韩中文字幕欧美一区二区| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 日韩精品青青久久久久久| 在线看a的网站| 精品国内亚洲2022精品成人| 他把我摸到了高潮在线观看| 日本vs欧美在线观看视频| 欧美不卡视频在线免费观看 | 亚洲一区二区三区色噜噜 | 69精品国产乱码久久久| 午夜福利影视在线免费观看| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 精品电影一区二区在线| 亚洲五月天丁香| 韩国av一区二区三区四区| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频| 在线观看免费视频网站a站| 日本wwww免费看| 亚洲精品成人av观看孕妇| 叶爱在线成人免费视频播放| 人人澡人人妻人| 国产xxxxx性猛交| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 精品国产乱码久久久久久男人| xxx96com| 一区福利在线观看| 可以免费在线观看a视频的电影网站| 国产av在哪里看| 亚洲一区高清亚洲精品| 精品一品国产午夜福利视频| 成人影院久久| 国产欧美日韩精品亚洲av| 亚洲精品av麻豆狂野| 久久久国产精品麻豆| 久久精品国产综合久久久| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 手机成人av网站| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 在线观看日韩欧美| 国产野战对白在线观看| 欧美日韩亚洲国产一区二区在线观看| 一区福利在线观看| 亚洲情色 制服丝袜| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| 午夜亚洲福利在线播放| 亚洲精品一卡2卡三卡4卡5卡| 一个人观看的视频www高清免费观看 | 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 色播在线永久视频| 久久人妻熟女aⅴ| 激情在线观看视频在线高清| 日韩高清综合在线| 少妇粗大呻吟视频| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 久久国产精品人妻蜜桃| 国产精品九九99| 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 久久精品亚洲av国产电影网| 97碰自拍视频| 成人三级做爰电影| 久久天堂一区二区三区四区| 窝窝影院91人妻| 黄色视频,在线免费观看| 亚洲专区字幕在线| 免费看十八禁软件| 日韩免费av在线播放| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 九色亚洲精品在线播放| 国产精华一区二区三区| 日韩欧美国产一区二区入口| 成人亚洲精品av一区二区 | 国产激情欧美一区二区| 国产有黄有色有爽视频| 777久久人妻少妇嫩草av网站| 亚洲一区二区三区欧美精品| 麻豆久久精品国产亚洲av | 日韩 欧美 亚洲 中文字幕| 久久久久精品国产欧美久久久| 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 香蕉丝袜av| 国产精品98久久久久久宅男小说| 99riav亚洲国产免费| 99久久久亚洲精品蜜臀av| e午夜精品久久久久久久| 啦啦啦免费观看视频1| 级片在线观看| videosex国产| 岛国在线观看网站| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区蜜桃| 久久久国产成人精品二区 | 人人澡人人妻人| videosex国产| a级毛片黄视频| a在线观看视频网站| 亚洲国产欧美日韩在线播放| 欧美中文日本在线观看视频| 亚洲精品一二三| 日日爽夜夜爽网站| 狠狠狠狠99中文字幕| 午夜两性在线视频| 极品人妻少妇av视频| 亚洲片人在线观看| 亚洲色图综合在线观看| 一夜夜www| 亚洲成人免费电影在线观看| 国产精品秋霞免费鲁丝片| 精品一区二区三卡| xxx96com| 丝袜美腿诱惑在线| 久久香蕉精品热| 国产精品秋霞免费鲁丝片| 国产精品香港三级国产av潘金莲| 丰满迷人的少妇在线观看| 国产免费现黄频在线看| 9热在线视频观看99| 一区在线观看完整版| 男女午夜视频在线观看| 天堂影院成人在线观看| 90打野战视频偷拍视频| 国产精品一区二区精品视频观看| 又大又爽又粗| 热re99久久精品国产66热6| x7x7x7水蜜桃| 黄色女人牲交| 色综合婷婷激情| 99国产精品一区二区蜜桃av| 久久婷婷成人综合色麻豆| 成人国语在线视频| 亚洲成人国产一区在线观看| 亚洲欧美一区二区三区久久| 视频在线观看一区二区三区| 国产深夜福利视频在线观看| 国产精品久久电影中文字幕| av有码第一页| 777久久人妻少妇嫩草av网站| 午夜精品在线福利| 日韩成人在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 午夜福利,免费看| 亚洲欧美一区二区三区久久| www.www免费av| 亚洲精品在线观看二区| 男女高潮啪啪啪动态图| 91成年电影在线观看| 国产精品免费视频内射| 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三| 在线观看免费高清a一片| 亚洲黑人精品在线| 国产高清视频在线播放一区| 熟女少妇亚洲综合色aaa.| 99在线人妻在线中文字幕| 看黄色毛片网站| 亚洲人成77777在线视频| 亚洲一区二区三区不卡视频| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 国产片内射在线| 亚洲男人天堂网一区| 久久青草综合色| 亚洲中文av在线| 91九色精品人成在线观看| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 电影成人av| 黄网站色视频无遮挡免费观看| a在线观看视频网站| 麻豆久久精品国产亚洲av | 美国免费a级毛片| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 成人手机av| 午夜精品国产一区二区电影| 精品久久久久久电影网| 天天影视国产精品| 伦理电影免费视频| 国产一区二区激情短视频| 中文字幕精品免费在线观看视频| cao死你这个sao货| 亚洲欧美日韩另类电影网站| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 亚洲专区中文字幕在线| 免费在线观看亚洲国产| 丁香欧美五月| 成人18禁在线播放| 亚洲成av片中文字幕在线观看| 淫妇啪啪啪对白视频| videosex国产| 无限看片的www在线观看| 电影成人av| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 婷婷精品国产亚洲av在线| 成人国语在线视频| 少妇 在线观看| 黄频高清免费视频| 精品午夜福利视频在线观看一区| 亚洲少妇的诱惑av| 99久久综合精品五月天人人| 黄色女人牲交| 窝窝影院91人妻| 日韩欧美免费精品| a级毛片黄视频| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 水蜜桃什么品种好| 两性夫妻黄色片| 婷婷精品国产亚洲av在线| 成人18禁在线播放| 久久久久久大精品| 色老头精品视频在线观看| tocl精华| 亚洲第一av免费看| 亚洲在线自拍视频| 免费女性裸体啪啪无遮挡网站| 天堂影院成人在线观看| 免费高清在线观看日韩| 岛国在线观看网站| 成人黄色视频免费在线看| 国产又爽黄色视频| 欧美最黄视频在线播放免费 | 女警被强在线播放|