• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?

    2021-09-28 02:18:36QiWeiLi李奇威JingSun孫靜FuXingLi李福星ChangChunChai柴常春JunDing丁君andJinYongFang方進(jìn)勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:孫靜常春福星

    Qi-Wei Li(李奇威),Jing Sun(孫靜),Fu-Xing Li(李福星),Chang-Chun Chai(柴常春),Jun Ding(丁君),and Jin-Yong Fang(方進(jìn)勇)

    1School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China

    2China Academy of Space Technology(Xi’an),Xi’an 710100,China

    3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords:high power microwave,pseudomorphic high electron mobility transistor,damage mechanism,C band,low noise amplifier(LNA)

    1.Introduction

    With the rapid development of microwave technology,microwave devices are widely used in microwave communication,navigation,telemetry,remote control,satellite communication,and military electronic countermeasures.At the same time,the rapid development of microwave power supply technology makes electromagnetic pulse interference more and more dangerous to microwave semiconductor devices.[1]A large number of simulations and experiments have been carried out to study the electromagnetic immunity of high-power microwave(HPM)at the system or component level.[2–7]

    As a typical electromagnetic pulse,narrow-band microwave pulses with a peak power up to several GW and a pulse width of about 100 ns have been reported.[8,9]Such the HPM can be coupled from the front or back doors to disrupt or damage power systems.When irradiated by a strong electromagnetic pulse,the front door coupling through the antenna port will have a large amplitude,especially if the operating frequency band is within the radiation frequency band of the electromagnetic pulse.Therefore,the HPM is considered to be a serious threat to IT infrastructure and communication equipment,especially for radio frequency(RF)front-end components.

    In the previous study,Zhang et al.studied the burnt-out characteristics of low noise amplifier(LNA)based on gallium arsenide(GaAs)pseudomorphic high electron mobility transistor(pHEMT)injected with 1.4-GHz microwave pulse.[10]Liu et al.studied the combustion destruction characteristics of Ku band microwave pulses for GaAs pHEMT.[11,12]Yu et al.[13]and Xi et al.[14]studied the nonlinear and permanent degradation of GaAs-based LNA under electromagnetic pulse(EMP).Zhou et al.studied the mechanism of GaN HEMT failure induced by HPM.[15]The C band has good anti-rain attenuation and is often used in satellite communications.However,there are few reports on the HPM effect of C band LNA.

    This paper aims to study the damage characteristics of HPM induced pHEMT in the C band from the physical perspective through simulation analysis and the experimental results.The rest of this paper is organized as follows.In Section 2,the simulation model used here is described from three aspects:the device structure,the numerical model,and the signal model.In Section 3,with the help of the device simulator Sentaurus-TCAD,the electric field intensity,the current density,and the temperature characteristics of the device are analyzed to explain the HPM damage mechanism of the device.And we conclude HPM pulse-width-dependent damage rule.In Section 4,the simulation results are compared with the experimental results,and it is determined that the gate region of the pHEMT device is the vulnerable position under the irradiation of C-band HPM.Finally,the conclusions are presented in Section 5.

    2.Simulation model

    2.1.Device structure

    Aδ-doping AlGaAs/InGaAs pHEMT is studied in this paper.Figure 1 shows its basic structure as simulated in TCAD.[16]The device cross-section consists of a 0.8-μmthick GaAs substrate,a 10-nm-deep InGaAs channel,a 34.5-nm-thick AlGaAs spacer layer,a 30-nm-thick GaAs cap layer,and a 50-nm-thick Si3N4passivation layer.There also exists aδ-doping layer,which provides the carriers for the InGaAs channel layer,in the AlGaAs spacer layer.Here,the gate length is 0.15μm and the gate width is 200μm.Furthermore,the gate Schottky barrier height is 0.9 eV and the gate recess is 15-nm deep.The source–gate separation Lgsis 0.575μm including a 40-nm-thick oxide insulation layer for reducing the gate leaking current.Its metal material of electrode is gold.[17]And it is between the source and the drain and its form is symmetric.The area surrounded by the red dotted line in Fig.1 is the vulnerable area inside pHEMT,so the model grid of this area is finely divided,and the research results are given below.

    Fig.1.Basic structure ofδ-doping AlGaAs/InGaAs pHEMT.

    2.2.Numerical model

    To study the physical effect and mechanism of HEMT’s HPM effect,we start from the basic physical equation and use Sentaurus TCAD to construct the physical equivalent model of pHEMT,including the Poisson equation and continuity equation.It is important to consider the electro-thermal effect in the simulation of the burning process of the device injected by the HPM.So the thermodynamic model is adopted to solve the internal physical quantity of the device,and the current density equation of Jnand hole Jpare revised as

    whereμn(μp)is the electron(hole)mobilityφn(φp)is the electron(hole)quasi-Fermi potential,and Pn(Pp)is the absolute thermoelectric power electron(hole).Meanwhile,with the thermodynamic model,the lattice temperature is computed from

    where cLis the lattice heat capacity,κis the thermal conductivity,k is the Boltzmann constant,ECand EVare the top of conduction band and the bottom of valance band,respectively,and Rn(Rp)is the electron(hole)recombination rate.

    Besides,the avalanche model accounting for impact ionization,the analytic-TEP model for thermal electric power,and the high-field-saturation model for electron mobility are also used in this model.[18]The description and physical equation for each of these models are available in Ref.[17].

    2.3.Signal model

    At present,in the study of the damage effect on the semiconductor device with the HPM event,lots of researchers take the sine wave as the HPM signal model.[19]So the C band HPM is assumed to be a sinusoidal wave without attenuation in this paper,and the mathematical expression is as follows:

    where U is the amplitude,f is the frequency,andφis the initial phase.Figure 2 shows the simulation circuit schematic diagram in this study.At first,the drain and the source are applied to with 12 V and grounded,respectively.And by adjusting the resistance R,the HEMT drain potential remains at 2 V when the gate potential is 0 V.Then the sinusoidal wave with a frequency f of 6.6 GHz and an initial phaseφof zero is injected into the gate terminal of pHEMT to simulate the process that the HPM energy couples into the input port of the pHEMT LNA through the front-door path.When the lattice temperature reaches the melting point of gallium arsenide 1511 K,the device is judged to be in failure and the simulation calculation is stopped.

    Fig.2.Schematic diagram of simulation circuit.

    3.Simulation results and discussion

    3.1.HPM damage effect

    In the simulation circuit described above,the HPMs with a fixed frequency of 6.6 GHz at different power levels are injected respectively into the gate port of pHEMT to explore the microwave damage characteristics of the C-band of pHEMT.Figure 3 shows the variations of the maximum temperature inside the device with time.Both the temperature change curves show periodic“rising-fall-rising”oscillations.When the HPM power equals 38.55 dBm,the highest temperature inside the device shows an overall upward trend at the beginning,and then the trend of the highest temperature inside the device stops rising and drops slightly,and finally,the trend of the highest temperature inside the device gradually stabilizes.It is inferred that in the last stage of the above-mentioned temperature change,the pHEMT device exchanges heat with the outside and the inside,and thus reaching a thermal equilibrium.Nevertheless,as the power level is elevated to 40.77 dBm,the highest temperature inside the device sharply rises and quickly reaches 1511 K(the GaAs melting point).So it can be inferred that device burn-out may occur.

    Fig.3.Variations of maximum temperature within pHEMT with time.

    Here,the situation that HPM with power of 40.77 dBm is injected into pHEMT is taken for example.Figure 4 shows the temperature distribution inside the HEMT at the time of the device burning down.In Fig.4,the change from dark blue to deep red represents the internal temperature of the device varying from 295.6 K to 1531 K.It can be seen that the hightemperature region represented by deep red is concentrated on the side of the source pole below the grid of the device,and this high-temperature region is called the hotspot inside the device.The formation mechanism of the hotspot is described below.

    Fig.4.Distribution of temperature(in unit K)at pHEMT burning time.

    3.2.HPM damage mechanism analysis

    According to Fig.3(b),the maximum temperature inside the device increases and decreases periodically,and the cycle frequency is consistent with the HPM frequency.In the following the changes of internal physical quantities of the pHEMT device during the single-cycle HPM are analyzed.Figures 5–8 show the data sampled at 0.87 ns and 0.95 ns from the simulation and the temperature distribution,electric field distribution,current distribution,and impact ionization,respectively.The values 0.87 ns and 0.95 ns are the minimum and maximum temperature peaks of the internal maximum temperature of the pHEMT device in an HPM cycle,respectively.Also,the value 0.87 ns is in the negative half cycle of the HPM and the value 0.95 ns is in the positive half cycle of the HPM signal.

    Figures 5(a)and 5(b)illustrate the distribution of temperature at 0.87 ns and 0.95 ns respectively.Obviously,the hotspot inside the device is always on the side of the source pole below the gate.And centered on the hotspot,the surrounding temperature decreases gradually.It means that the hotspot occurs where the heat is generated inside the device.However,the hotspot temperature at 0.95 ns is significantly higher than that at 0.87 ns.Therefore,the heat generated by the hotspot also varies in a single HPM cycle.

    Combining the heating curve of the pHEMT injected into HPM and the internal temperature distribution of the device,it can be obtained that the internal temperature of the device has an upward trend when the pHEMT gate is injected with HPM.And high temperature area is diffused because the heat generation is greater than the thermal diffusion in the pHEMT device.As a result,there appears a thermal accumulation effect in the device.Moreover,a large amount of heat is continuously generated and accumulated at the hotspot,which will eventually even cause a so high temperature inside the device that it exceeds the melting point of the material,and thus causing the device to burn.However,when the injected HPM power is less than a certain threshold,the internal temperature of the device will not rise any more after reaching a certain value,but will eventually stabilize.This is because the thermal diffusivity of the material increases with the temperature rising.Finally thermal output and thermal diffusion inside the device are balanced.

    Fig.5.Distribution of temperature(in unit K)at(a)0.87 ns and(b)0.95 ns.

    As can be seen from Fig.6,the electric field intensity is very high below the gate of the device,especially on both sides of the gate.This is due to the structure of the device,where the curvature is small,it is easy to form a large electric field intensity.At 0.87 ns,the maximum electric field intensity under the grid is close to that of the drain,while at 0.95 ns,the maximum electric field intensity under the grid is close to the electric field intensity of the source,because there is bias voltage at the drain.

    In Fig.7(a),at 0.87 ns,that is,in the negative half cycle,the current density is not large due to the reverse bias voltage of the Schottky junction.It can be seen from Fig.7(b)that at 0.95 ns,which is in the positive half cycle of the HPM,a current path appears under the gate and connects the gate to the InGaAs channel,and the current path is closer to the source side than to the drain.This is because the drain voltage is biased at 2 V,the gate/source voltage is greater than the gate/drain voltage.[20]The research shows that the heatproducing transistor can be expressed as Q=J·E by J current density and electric field intensity E.

    Fig.6.Distribution of electric field intensity(in units of V/cm)at(a)0.87 ns,and(b)0.95 ns.

    Fig.7.Distribution of current density(in units of A/cm2)at(a)0.87 ns,and(b)0.95 ns.

    Therefore,a lot of heat is thought to be generated in the positive half cycle.The area of high electric field intensity and high current density in the positive period device is located below the gate near the source,consistent with the location of the hotspot of the device.This indicates that the energy of HPM coupling into the device is converted into heat,causing the device to burn down.

    Figures 8(a)and 8(b)show the distribution of impact ionization at 0.87 ns and 0.95 ns of the device,respectively.The areas with impact ionization rate(in units A/cm2)less than 1×1027inside the device are shown in dark blue,and areas with impact ionization rate ranging from 1×1027to 1.2387×1032are shown in the areas from dark blue to deep red.In Fig.8(b),during the positive half cycle,the deep red area with a high ionization rate is concentrated in the lower part of the gate,and the position with the maximum ionization rate at the lower part of the gate is on the side of the source pole,which is consistent with the position of the large current channel in the lower part of the gate.However,during the negative half cycle,there is no high impact ionization region similar to the scenario during the positive half cycle in Fig.8(a).This indicates that in the positive half cycle,the grid Schottky junction is positively skewed,and the extremely strong grid field leads to an avalanche multiplier effect.In other words,the large forward bias voltage causes the gate to break down,forming a large current channel from the gate to the channel.In the negative half period,the gate/source and gate/drain voltages mostly fall on the reverse bias Schottky junction during the negative period,thereby failing to produce large collision ionization rate.

    Fig.8.Distribution of impact ionization(in units of cm?3·s?1)at(a)0.87 ns,and(b)0.95 ns.

    3.3.HPM pulse-width-dependent damage effect

    To study the HPM damage pulse width effect of pHEMT,in this paper used is the simulation model established above to inject sinusoidal signals with different voltage amplitudes and a frequency of 6.6 GHz into the input end of the pHEMT.And the simulation circuit setting is consistent with that described in Section 2.The HPM pulse width is calculated by the duration of the injected signal before the equipment burns out.Damage power threshold P is the average power absorbed by the equipment during HPM injection,and damage energy threshold E is the total energy absorbed by the equipment during HPM injection.The simulation results are shown in Fig.9.

    Fig.9.HPM damage power threshold and energy threshold versus pulse widthτ.

    The results show that with the increase of pulse width,the HPM power threshold decreases and the HPM energy threshold increases.Besides,there is a significant nonlinearity for each of the curves.By curve fitting,the empirical formula to describe the correlation can be obtained as follows:

    The above relationship is in line with the empirical formula of PN junction damage under monopulse signal presented by Wunsch and Tasca et al.[21,22]

    Figure 10 respectively show the temperature distribution of device with gate power injected at 40.49 dBm,41.71 dBm,and 42.40 dBm at the time of burnout in the above simulation,respectively.Comparing the high-temperature regions represented by the bright colors in Fig.10,it can be seen that the greater the injection power,the smaller the distribution area of the high-temperature region at the time of device burnout.This is because when more power is injected into the device,the device burns out in a shorter time and the heat does not have time to dissipate and is concentrated in a smaller area.It can be considered that the power injected by electromagnetic pulse will not change the mechanism of device burning,but only affect the burning time and the size of the high temperature zone.

    Fig.10.Distribution of temperature(in unit K)when the injected power is(a)40.49 dBm,(b)41.71 dBm,and(c)42.40 dBm.

    4.Comparison with experimental results

    The experiment is performed by directly injecting a continuous HPM at 6.6 GHz into an LNA.When the injection power exceeds 40 dBm,it is difficult to observe a stable output waveform at the output port of LNA.Therefore,the output gain of LNA is reduced by 20 dBm,which serves as a criterion to judge the damage of LNA.The experimental sample is a three-stage LNA.And the crucial transistors of the first two stages are typical GaAs pHEMT devices,whose gate length and width are consistent with those in the simulation model.By opening the package of the damaged sample,it is found that the LNA damage area is located at the first transistor gate of the LNA as shown in Fig.11.

    The scanning electron microscope(SEM)observation results of the first-level damage of the LNA are shown in Fig.12.In Fig.12(a),there are several abnormal locations in the pHEMT device,and the square area surrounded by the red line represents a typical damage area.Figure 12(b)is the magnified view of the square area enclosed by the red line in Fig.12(a).In Fig.12(b),the vertical metal strip in the middle is the gate metal of pHEMT,the left side is the source region,and the right side is the drain region.The gate metal strip is broken.Besides,the channel in the region near the gate is also damaged,and the deviation of the gate to the source side is more serious.[6,10–12]As shown in Fig.12(c),there are small balls and pits formed after the material has melted at the fracture of the gate metal strip.The damage zone of position 1 and position 2 and the normal area are analyzed by EDS,and the results are as shown in Fig.13.

    Fig.11.First-stage LNA transistors by optical microscope.

    Fig.12.Internal characteristics of damaged samples characterized by SEM.

    Fig.13.Energy spectrum analysis of damage at(a)position 1,(b)position 2,and(c)in normal area.

    As can be seen from Fig.13,the percentage composition of gold(Au)at position 1(41.45%)and the percentage composition of gold(Au)at position 2(24.68%)are significantly higher than that in the normal area(7.95%).This indicates that the gate metal Au has melted and diffused in all directions.Also,the fractions of nitrogen(5.96%)and silicon(2.78%)at place 1 are both smaller than those of nitrogen(8.61%)and silicon(4.61%)in the normal area.This indicates that the passivation layer between the gate and the source also melts and splashes out.In contrast,the nitrogen component ratio(8.00%)and silicon component ratio(9.00%)in place 2 do not decrease compared with the normal place.It is judged that the passivation layer between the gate and the drain does not burn down or burns not severely.The anatomical analysis results of the above damaged samples are consistent with the simulation results,indicating that the pHEMT will burnt out in the circuit when the HPM power is larger than a certain threshold.Furthermore,the gate of the pHEMT device,especially the gate biased to the side of the source,is the weak link under the action of HPM.

    5.Conclusions

    The C band HPM damage effects of the pHEMT devices are studied through simulation and experiment in this paper.It can be concluded that the Schottky junction undergoes an avalanche breakdown under the action of a large forward bias voltage,which results in forming a large current.And a large amount of Joule heat generated by the strong electric field and the large current density near the gate forms a hotspot.When the injected HPM power is higher than a certain threshold,the hotspot temperature oscillating rises with time.And pHEMT will eventually damage because of the thermal accumulation at the hotspot.According to the above theory and experimental results,we investigated,the key parameters causing damage to the device under typical pulse conditions,including the damage location,damage power,etc.This work has a certain reference value in evaluating the pHEMT’s microwave damage.

    猜你喜歡
    孫靜常春福星
    常春作品
    孫靜:堅(jiān)守初心 勇?lián)鷷r(shí)代使命
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    家里的寶
    兩個(gè)少年兩匹馬
    兩個(gè)女人一臺(tái)戲
    以豎直上拋運(yùn)動(dòng)為例淺談學(xué)生分組合作的習(xí)題課模式
    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*
    壽 酒
    西江月(2014年4期)2014-03-13 03:40:20
    等你回來(lái)
    91字幕亚洲| cao死你这个sao货| 日本wwww免费看| 中国国产av一级| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 巨乳人妻的诱惑在线观看| 国产一区二区三区综合在线观看| 中国美女看黄片| 成人三级做爰电影| 在线 av 中文字幕| 日韩电影二区| 欧美在线一区亚洲| 一边亲一边摸免费视频| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| 成在线人永久免费视频| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| 亚洲欧美精品综合一区二区三区| 国产真人三级小视频在线观看| 色网站视频免费| 99精品久久久久人妻精品| 国产视频首页在线观看| 国产视频一区二区在线看| 成年动漫av网址| 免费女性裸体啪啪无遮挡网站| 日韩制服骚丝袜av| 亚洲欧美一区二区三区久久| 国产亚洲精品第一综合不卡| 成人亚洲欧美一区二区av| 观看av在线不卡| 亚洲欧美日韩高清在线视频 | 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频 | 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 视频区欧美日本亚洲| 观看av在线不卡| 欧美日韩视频高清一区二区三区二| 丝袜脚勾引网站| 亚洲成人免费av在线播放| 国产成人精品在线电影| 桃花免费在线播放| 久久精品亚洲熟妇少妇任你| 男女无遮挡免费网站观看| 精品国产乱码久久久久久男人| 亚洲国产av影院在线观看| 午夜免费鲁丝| 亚洲精品国产区一区二| 五月开心婷婷网| 婷婷色综合大香蕉| 好男人视频免费观看在线| 91字幕亚洲| 性高湖久久久久久久久免费观看| 精品一区二区三区四区五区乱码 | av线在线观看网站| 成在线人永久免费视频| 国产97色在线日韩免费| av不卡在线播放| 亚洲成人免费av在线播放| 少妇裸体淫交视频免费看高清 | av网站在线播放免费| 欧美性长视频在线观看| 久久精品aⅴ一区二区三区四区| 大型av网站在线播放| 日韩中文字幕视频在线看片| 欧美日韩av久久| 美女中出高潮动态图| 国产福利在线免费观看视频| 777米奇影视久久| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 一区二区三区激情视频| 午夜福利免费观看在线| 久久久精品国产亚洲av高清涩受| 王馨瑶露胸无遮挡在线观看| 午夜福利视频在线观看免费| 老鸭窝网址在线观看| 免费av中文字幕在线| 亚洲精品第二区| 黄片小视频在线播放| 91国产中文字幕| 高潮久久久久久久久久久不卡| 亚洲精品国产区一区二| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 日韩大码丰满熟妇| 黄色毛片三级朝国网站| 日本欧美视频一区| 日韩大码丰满熟妇| 亚洲成人手机| 男女无遮挡免费网站观看| 久久久亚洲精品成人影院| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 亚洲,欧美精品.| 香蕉国产在线看| 日日爽夜夜爽网站| av天堂在线播放| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 不卡av一区二区三区| 精品一区二区三卡| 只有这里有精品99| 中文字幕高清在线视频| 国产免费又黄又爽又色| 国产一区二区三区av在线| 我的亚洲天堂| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 丝袜脚勾引网站| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网 | 你懂的网址亚洲精品在线观看| 日本av免费视频播放| 夫妻午夜视频| 国产视频一区二区在线看| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 亚洲自偷自拍图片 自拍| 国产真人三级小视频在线观看| 男的添女的下面高潮视频| 久久久久精品国产欧美久久久 | 老汉色∧v一级毛片| 看免费成人av毛片| 人人妻人人澡人人看| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三区在线| 久久人妻福利社区极品人妻图片 | 国产不卡av网站在线观看| 中文欧美无线码| 日本av手机在线免费观看| 中文字幕制服av| 色94色欧美一区二区| 成人国产av品久久久| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 国产成人精品在线电影| 777米奇影视久久| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 一本久久精品| 欧美变态另类bdsm刘玥| 在线观看免费午夜福利视频| 亚洲欧美中文字幕日韩二区| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9 | 久久av网站| 久9热在线精品视频| 一本综合久久免费| 久久久欧美国产精品| 后天国语完整版免费观看| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 亚洲专区国产一区二区| 国产一区二区激情短视频 | 亚洲av片天天在线观看| 久热这里只有精品99| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 免费高清在线观看日韩| 国产高清videossex| 婷婷色av中文字幕| 男女下面插进去视频免费观看| 青春草亚洲视频在线观看| 三上悠亚av全集在线观看| 国产伦人伦偷精品视频| 男女国产视频网站| 国产深夜福利视频在线观看| 久久99精品国语久久久| 中文字幕精品免费在线观看视频| 亚洲男人天堂网一区| 桃花免费在线播放| 狂野欧美激情性bbbbbb| 午夜福利免费观看在线| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| 国产精品三级大全| 午夜两性在线视频| 成人亚洲欧美一区二区av| 免费av中文字幕在线| 晚上一个人看的免费电影| 国产精品久久久人人做人人爽| 亚洲av欧美aⅴ国产| 久久久久久久久免费视频了| 国产精品久久久久久精品古装| 国产精品二区激情视频| 黄色片一级片一级黄色片| 不卡av一区二区三区| 亚洲成人国产一区在线观看 | 欧美97在线视频| 久久性视频一级片| 免费在线观看视频国产中文字幕亚洲 | 人人妻,人人澡人人爽秒播 | 亚洲午夜精品一区,二区,三区| 18禁国产床啪视频网站| 日韩大片免费观看网站| 美女视频免费永久观看网站| 男女下面插进去视频免费观看| 高潮久久久久久久久久久不卡| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 中文乱码字字幕精品一区二区三区| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| 老司机亚洲免费影院| 国产在线视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 中文字幕制服av| 久久99一区二区三区| 黑人欧美特级aaaaaa片| avwww免费| av福利片在线| 亚洲午夜精品一区,二区,三区| 捣出白浆h1v1| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品 国内视频| 真人做人爱边吃奶动态| 久久天堂一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 国产精品免费大片| 精品人妻一区二区三区麻豆| 国产成人影院久久av| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 中文字幕亚洲精品专区| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 久久九九热精品免费| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 亚洲欧美激情在线| 天天操日日干夜夜撸| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 天天操日日干夜夜撸| 热re99久久国产66热| a级片在线免费高清观看视频| 首页视频小说图片口味搜索 | 国产成人91sexporn| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 国产精品二区激情视频| 精品第一国产精品| 国产av一区二区精品久久| 国产成人91sexporn| 老汉色∧v一级毛片| 纵有疾风起免费观看全集完整版| 国产在视频线精品| 天天添夜夜摸| 久久精品久久精品一区二区三区| 国产91精品成人一区二区三区 | 精品国产乱码久久久久久小说| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 黄色 视频免费看| 国产成人精品无人区| av国产久精品久网站免费入址| 亚洲男人天堂网一区| 高清av免费在线| 老熟女久久久| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 黄色a级毛片大全视频| 男人添女人高潮全过程视频| 91麻豆av在线| 精品人妻一区二区三区麻豆| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 午夜免费激情av| 757午夜福利合集在线观看| 91成年电影在线观看| 成人18禁在线播放| 男女下面进入的视频免费午夜 | 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 久久久久久久久免费视频了| 丰满的人妻完整版| 国产精品 欧美亚洲| 亚洲国产精品999在线| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 国产av又大| 中文亚洲av片在线观看爽| 日韩av在线大香蕉| 色老头精品视频在线观看| 制服丝袜大香蕉在线| 99国产精品99久久久久| 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av| 亚洲男人天堂网一区| 国产高清videossex| 精品国产一区二区三区四区第35| 国产区一区二久久| 韩国精品一区二区三区| 免费在线观看黄色视频的| 久久精品91蜜桃| 一夜夜www| 九色国产91popny在线| 此物有八面人人有两片| 久9热在线精品视频| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 麻豆成人av在线观看| 欧美在线一区亚洲| 亚洲一区中文字幕在线| 69av精品久久久久久| 欧美乱码精品一区二区三区| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 色综合欧美亚洲国产小说| 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 亚洲全国av大片| 国产av又大| 日本黄色视频三级网站网址| 国产av又大| 日韩精品中文字幕看吧| 亚洲精品中文字幕一二三四区| 91九色精品人成在线观看| 久久久国产精品麻豆| 精品国内亚洲2022精品成人| 色综合站精品国产| 在线国产一区二区在线| 亚洲无线在线观看| 久久精品国产综合久久久| 免费高清在线观看日韩| 91九色精品人成在线观看| 露出奶头的视频| 成人一区二区视频在线观看| 成人亚洲精品一区在线观看| 黑人操中国人逼视频| 成人亚洲精品一区在线观看| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲| 美国免费a级毛片| 欧美性猛交黑人性爽| 一级毛片精品| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 国产精品自产拍在线观看55亚洲| 一本综合久久免费| 免费观看人在逋| 国产免费男女视频| 久久久久久久精品吃奶| 亚洲最大成人中文| 欧美zozozo另类| 婷婷亚洲欧美| 18美女黄网站色大片免费观看| 亚洲av五月六月丁香网| cao死你这个sao货| 一级黄色大片毛片| 男人操女人黄网站| 久久婷婷成人综合色麻豆| 国产亚洲av嫩草精品影院| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 两性夫妻黄色片| 999精品在线视频| 可以在线观看的亚洲视频| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频| 少妇粗大呻吟视频| av片东京热男人的天堂| 波多野结衣av一区二区av| 免费在线观看亚洲国产| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 欧美中文综合在线视频| 久久婷婷人人爽人人干人人爱| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线| 黄片播放在线免费| 亚洲久久久国产精品| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 中文字幕久久专区| 亚洲av电影在线进入| 亚洲av中文字字幕乱码综合 | 亚洲专区字幕在线| 日韩av在线大香蕉| 日本成人三级电影网站| 最近在线观看免费完整版| 波多野结衣高清无吗| 十分钟在线观看高清视频www| 婷婷精品国产亚洲av在线| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| 国产av一区在线观看免费| 欧美黄色片欧美黄色片| 一级毛片女人18水好多| 丝袜美腿诱惑在线| 一本综合久久免费| 成在线人永久免费视频| 女性被躁到高潮视频| 丝袜人妻中文字幕| 悠悠久久av| 一进一出抽搐动态| 精华霜和精华液先用哪个| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 日韩av在线大香蕉| 精品国产亚洲在线| 在线看三级毛片| 美女免费视频网站| xxx96com| 午夜福利免费观看在线| 亚洲av五月六月丁香网| 青草久久国产| av中文乱码字幕在线| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 精品国产乱子伦一区二区三区| 国产精品九九99| 一级毛片高清免费大全| 国产成人精品无人区| 黑人巨大精品欧美一区二区mp4| 欧美乱妇无乱码| 欧美又色又爽又黄视频| 一卡2卡三卡四卡精品乱码亚洲| 色综合亚洲欧美另类图片| 看免费av毛片| 香蕉丝袜av| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 怎么达到女性高潮| 成在线人永久免费视频| 午夜激情av网站| 久9热在线精品视频| 国产av在哪里看| 欧美一级毛片孕妇| 国产精品二区激情视频| 久久久久久久久中文| 大型av网站在线播放| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 夜夜躁狠狠躁天天躁| 亚洲无线在线观看| 欧美精品亚洲一区二区| 午夜精品在线福利| 亚洲欧美日韩无卡精品| 亚洲欧洲精品一区二区精品久久久| av有码第一页| 欧美日韩瑟瑟在线播放| 1024手机看黄色片| 亚洲成人精品中文字幕电影| 久久热在线av| 亚洲一码二码三码区别大吗| 不卡一级毛片| 国产成人欧美在线观看| 亚洲av美国av| 韩国av一区二区三区四区| 久久亚洲真实| 色哟哟哟哟哟哟| 亚洲成国产人片在线观看| 色综合亚洲欧美另类图片| 成人精品一区二区免费| 色播亚洲综合网| 久久久久久人人人人人| 国内精品久久久久久久电影| 在线永久观看黄色视频| 波多野结衣巨乳人妻| 满18在线观看网站| 亚洲一区二区三区色噜噜| 国产单亲对白刺激| 欧美黄色片欧美黄色片| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影| 国产99白浆流出| 女人被狂操c到高潮| 在线永久观看黄色视频| 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 天天躁夜夜躁狠狠躁躁| 精品日产1卡2卡| 深夜精品福利| 国产成+人综合+亚洲专区| 男人的好看免费观看在线视频 | 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看.| 男人操女人黄网站| 国产真人三级小视频在线观看| 精品久久久久久久久久免费视频| 嫩草影院精品99| 变态另类成人亚洲欧美熟女| 国产精品美女特级片免费视频播放器 | av电影中文网址| 亚洲精品久久国产高清桃花| 久久久久亚洲av毛片大全| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| www日本在线高清视频| 制服诱惑二区| 成人三级黄色视频| 欧美一级a爱片免费观看看 | 久久久久久亚洲精品国产蜜桃av| 宅男免费午夜| 99久久99久久久精品蜜桃| 18禁裸乳无遮挡免费网站照片 | 欧美乱妇无乱码| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区| 国产黄色小视频在线观看| 亚洲精品中文字幕在线视频| 久久草成人影院| 日韩三级视频一区二区三区| 欧美不卡视频在线免费观看 | 亚洲国产日韩欧美精品在线观看 | 韩国精品一区二区三区| svipshipincom国产片| 久久久国产精品麻豆| 女同久久另类99精品国产91| av片东京热男人的天堂| 中文字幕人妻丝袜一区二区| 天天一区二区日本电影三级| 亚洲人成电影免费在线| avwww免费| 亚洲av成人一区二区三| 18禁裸乳无遮挡免费网站照片 | 无人区码免费观看不卡| 久久亚洲精品不卡| 男男h啪啪无遮挡| a在线观看视频网站| 村上凉子中文字幕在线| 脱女人内裤的视频| 国产精品久久久久久人妻精品电影| 亚洲av成人不卡在线观看播放网| 级片在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲国产高清在线一区二区三 | 久久欧美精品欧美久久欧美| 中文字幕最新亚洲高清| 亚洲性夜色夜夜综合| 亚洲精品中文字幕在线视频| 色av中文字幕| 亚洲狠狠婷婷综合久久图片| 一级黄色大片毛片| 欧美中文日本在线观看视频| 久久精品影院6| av免费在线观看网站| 国产日本99.免费观看| 波多野结衣高清作品| 国产精品国产高清国产av| 精品无人区乱码1区二区| 亚洲成人国产一区在线观看| 色婷婷久久久亚洲欧美| 欧美日韩福利视频一区二区| 亚洲激情在线av| 老司机深夜福利视频在线观看| 日韩有码中文字幕| 国产免费av片在线观看野外av| 中文字幕精品免费在线观看视频| 1024手机看黄色片| 国产蜜桃级精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉激情| 丰满的人妻完整版|