• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cicada(Tibicen linnei)steers by force vectoring

    2016-11-14 03:41:51SamaneZeyghamiNidhinBabuHaiboDong

    Samane Zeyghami,Nidhin Babu,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA,22904,United States

    Cicada(Tibicen linnei)steers by force vectoring

    Samane Zeyghami,Nidhin Babu,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA,22904,United States

    H i G H L i G H T s

    ?Several free flights of cicada(Tibicen linnei)are studied(total of 42 wingbeats).

    ?Coordination between the aerodynamic force generation and change in flight path is investigated.

    ?Measurements and calculations show that the aerodynamic force is fixed to the body frame.

    ?Findings reveal that a simple force vectoring technique is used for steering all these flights.

    ?A similar strategy can be applied to the design of Micro Air Vehicles.

    A R T i C L Ei N F O

    Article history:

    Accepted 25 December 2015

    Available online 4 February 2016

    Cicada

    Free flight

    Force vectoring

    Aerial maneuver

    Force control

    To change flight direction,flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass,or relative to the flight path to produce centripetal force that curvesthetrajectory.Inemployingthelatter,thedirectionofaerodynamicforceremainsfixedinthebody frame and rotations of the body redirect the force.While both aforementioned techniques are essential for flight,it is critical to investigate how an animal balances the two to achieve aerial locomotion.Here,we measured wing and body kinematics of cicada(Tibicen linnei)in free flight,including flight periods of both little and substantial body reorientations.It is found that cicadas employ a common force vectoring techniquetoexecutealltheseflights.Weshowthatthedirectionofthehalf-strokeaveragedaerodynamic force relative to the body is independent of the body orientation,varying in a range of merely 20 deg. Despite directional limitation of the aerodynamic force,pitch and roll torque are generated by altering wing angle of attack and its mean position relative to the center of mass.This results in body rotations which redirect the wing force in the global frame and consequently change the flight trajectory.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Thecapacitytochangetheflighttrajectoryisessentialforaerial locomotion and survival of flying animals.To adjust the flight course,flying animals modulate the magnitude and orientation of aerodynamic force by altering their wing kinematics.Highly maneuverable insects such as dragonflies[1,2],damselflies[3]and fruit flies[4]are capable of adjusting the wing stroke plane angle as well as the orientation of the wing in this plane to achieve exceptional control over the aerodynamic force.The ability to change the force direction relative to the body allows these insects to generate aerodynamic torque about the center of mass for body reorientation.While this enhances the maneuverability of a flying animal,it imposes complexity to the wing biomechanics as well as the control system of the flight[5].Alternatively,measurements have shown that during banked turns flying insects and birds change the flight trajectory while maintaining the direction of aerodynamic force relative to their bodies.In these maneuvers,animals rely on whole-body rotations to redirect the force in the global frame.This strategy is referred to as force vectoring[5]and wasobservedinbankedturnsofinsects[6],bats[7]andbirds[5,8]. It was argued that force vectoring allows minimal modulations of the wing motion relative to the body[5].While this is beneficial forsimplifyingthewingbiomechanics,somedegreeofcontrolover theaerodynamic forcedirection relativetothebody isessential for stability and maneuverability[9].

    Understanding the coordination between the aerodynamic force production and the flight reorientation is fundamental to comprehending the aerial locomotion of the insects and birds. Previous measurements and investigations mostly focused on a single flight mode and therefore their conclusions cannot be generalizedtootherflightswithoutfurtherinvestigations.Herewe asked to what extend a flying animal alters the force orientation relativetoitsbodyinordertosteer.Topursuethisgoal,westudied a variety of flights of cicada(Tibicen linnei),including periods of little as well as substantial body reorientations,to examine theextent to which the aerodynamic force is modulated for achieving this range of flights.

    Fig.1.(a)Wing and body coordinate systems of cicada.(b)A selected sequence of images from the reconstructed wing and body motion of different flights.(c)Body kinematics of the cicada in different flights.(d)A sample wing tip trajectory of each flight.The dashed straight line shows the average stroke plane.

    Several cicadas(Tibicen linnei)were captured in Dayton,Ohio. A network of marker points were drawn on the wings which were later used to track the motion of the wings.Natural features of the body such the eyes were used to track the body motion. The recording area is equipped with three orthogonally placed Photron Fastcam SA3 60k high speed cameras synchronized to record at 1000 frames per second.After recording several flights of each individual,the wing and body length((35±2)mm and(30±1)mm for wing and body,respectively)as well as the body mass((1050±100)mg)were measured.All statistical results are presented as(mean±standard deviation(SD)).A manual 3D surface reconstruction technique was applied to the output from the cameras[10].The motion of the wings and the body were tracked at each frame(every millisecond)using all three orthogonal images.The reconstructed 3D surfaces of the wings and the body were then meshed using triangular grids[11].The location of mesh nodes were used to define the wing and the body kinematics.Kinematics of the body can be easily extracted by identifying the location of three points on the body that define a surface(not along a single line).We used the tail,head and the top-thorax points.To obtain rigid wing kinematics,the root mean squared plane of the wing was defined based on the position of the marker points on the wing at each frame.Since the fore and hind wing move together during flight,they were treated as one wing platform.The orientation of the rigid wing relative to the body was thenexpressedbythreeEulerangles;flapping,deviationandpitch. Theflappinganglerepresentstheforward-backwardmotionofthe wing.Deviation is up and downs motion of the wing with respect to its joint and pitch is the wing rotation about its hinge axis to the body(Fig.1a).

    Over 50 free flights of cicada were recorded during summers of 2011 and 2012.Different flight modes including forward flight,vertical takeoff,banked turn and Immelmann turns were captured among these flights.While the majority of these flights involve significant change in flight heading,we never observed a yaw turn as was reported in other insects and birds such as fruit flies[12],dragonflies[1],damselflies[3]and hummingbird[13].The flight heading change was executed via banked turns or Immelmann turns.To advance with our investigation on understanding the aerodynamics and flight mechanics of cicada free flight,we selected four representative flights composing total of 42 full wingbeats.A selected sequence of images of all these flights are shown in Fig.1b with the quantitative measurements of the body displacement and orientation being presented in Fig.1c.Flight 1,consists of two phases of moving on a straight line with a small body pitch angle and an average forward velocity of 1.88 m·s-1followed by a pitch up and deceleration of the forward velocity. Flight 2 is a banked-turn during which the flight heading changed by 150 deg.The body rolled to the left within the first two flapping stokes,reaching a 90 deg bank angle.The bank angle is very extreme compared to what was observed in turn flights of other insectssuchasfruitflies[4]andblowflies[14].Themaximumbody roll velocity approached 4000 deg·s-1in this phase.The turn is followed by a slow roll back and flying forward while maintaining the body orientation.Flight 3 resembles an Immelmann(or rolloff-the-top)turnwhichconsistsofanascendinghalf-loopfollowed by a fast roll.After takeoff and a short phase of forward flight,the cicada pitched up in a vertical loop,with mean radius of 0.9 body length,until it attained an upside down orientation with respect to the ground.The maximum pitch velocity exceeded 3000 deg·s-1and was reached at the early stages of pitching up phase.Subsequently,the cicada rolled to reposition the body in straight flight orientation.In flight 4,the cicada body pitched up from 0 to 90 deg within two wingbeats and continued to ascend while maintaining its orientation(body axis normal to the ground)for the next five wingbeats.The vertical velocity of the center of mass was 0.36 m·s-1during this phase.The initial phase was followed by a fast spinning which altered the body’s bank angle more than 180 deg.Rotations faster than 700 deg·s-1occurred about an axis which lies in the body’s frontal plane with the angle between rotation axis and the body normal being(92±22)deg.Several performance parameters of these flights are summarized in Table 1.

    Table 1 Performance parameters of different cicada flights.BL and WB stand for body length and wing beat,respectively.

    Fig.2.(a)Validation of the quasi-steady model with high fidelity simulations of cicada in forward flight[15].The orientations of FDS(b)and FUS(c)with respect to the normal to the body are colored differently for each flight.The angle between the force vector and the normal to the body is measured clockwise and the length of the arrow represents the magnitude of the normalized force.The clustering of the arrows in downstroke and upstroke shows that the orientation of the aerodynamic force relative to the body is independent of the body orientation.(d)The orientation of the aerodynamic force relative to the body normal vector is limited to the surface of a cone with the axis of the cone coinciding with the body normal and the angle of the cone of 17 and 135 deg for downstroke(green cone)and upstroke(blue cone),respectively.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    Despite the large body reorientation,the motion of the wings relative to the body was stereotypical among all the flights,with small flapping amplitude and fast rotations at the stroke reversal. The wing tip trajectories were oval shaped with the ratio of the minor to major axis lengths being 0.28±0.09(Fig.1d).The wing stroke plane angle is inclined with respect to the body with wings moving forward and downward in downstroke and backward and upward in upstroke.Despite the substantial changes in the body orientation,the variations in the stroke plane angle with respect to the body were small which implies these insects have little control over this angle.The average stroke planes angles with respect to the body remains relatively invariant;(47±12)deg(n=84).Besides slight variations in the wing stroke plane angle,theflappingamplitudeofthewinginthestrokeplaneaswellasthe mean flapping angle(the average location of the wing with respect to the center of mass)was modulated from one stroke to another. Flapping frequency varied slightly among the individuals as well as during the maneuver;(50.5±8.8)Hz(n=42).In addition,cicadas were able to adjust the ratio of the downstroke to upstroke duration between 0.6 and 1.4.Orientation of the wing surface with respect to the stroke plane was adjusted via modulating the wing pitch angle.The pitch angle of the wing is shallow in downstrokes but varies largely;(-7.1± 11.5)deg,whereas it is higher in upstrokes;(31.6±20.1)deg.

    To probe the dynamics of these flight,we calculated the aerodynamic force generated by the wings,using a quasi-steady model[16,17].The accuracy of the method was examined by comparing our prediction with the aerodynamic lift calculated fromhighfidelityCFDsimulationsofacicadainforwardflight[15],shown in Fig.2a.Aerodynamic force was generated in both downstroke and upstroke.When flying forward(i.e.flight 1),the downstroke force carries out the entire weight supporting role whileupstrokeforceprovidesthepropulsion.Yet,theseroleswere found to be interchangeable when body reorients during the aerial maneuvers.For instance in both turning flights reported in this work,thedownstrokeforceprovidedthecentrifugalforcerequired for bending the flight path while the weight supporting role was mostlycarriedoutbyupstrokeforceduetotherotationofthewing strokeplanemovingwiththebody(Fig.3a).Tofurthervalidateour theory,weestimatedtheaveragecentripetalaccelerationinflights 2-4 using the average travel velocity and the radius of turn.The calculated values were below 9.2 m·s-2(<g)for all these flights,guaranteeing that the lift force is able to provide this acceleration.

    To quantify the variation of the aerodynamic force direction during flight,we calculated the angle between the averagedaerodynamic force in downstroke,F(xiàn)DS,and upstroke,F(xiàn)US,and the normal vector to the body for all 42 wingbeats.All forces were normalized by the body weight.The results are plotted in Fig.2b andc.Visualinspectionofthisfigureillustratesthattheorientation of the aerodynamic force in both downstroke and upstroke is restricted relative to the body,regardless of the body orientation. In particular,F(xiàn)DSmaintains a uniform orientation with respect to the body’s normal vector,with the angle between the two vectors being(17±7)deg.The angle between FUSand the body normal is(135±10)deg.These results show that cicada can only change the direction of the aerodynamic force vector in a restricted range in its body frame.In fact,the orientation of the aerodynamic force relative to the body normal is restricted to the surface of a cone with its axis coinciding with the body normal(Fig.2d).While a similar phenomenon was observed in banked turn of smaller insectssuchasfruitflies[4,6,18],houseflies[19]andblowflies[20],our results for the first time show that a wide range of flight modes can be achieved by force vectoring.This technique eliminates the need for altering the orientation of the force relative to the body and thus simplifies the design of the wing joint biomechanics.

    Fig.3.(a)The orientation of the average aerodynamic force(FDSand FUS),body normal vector(n)and the cicada body are shown within a consecutive downstroke and upstroke of flight 3.The flight path is shown with dashed lines and inside the curvature of the flight path is shaded.It is evident that due to the body orientation in the global frame,the downstroke force is relatively normal to the flight path,providing the centripetal force for curving the trajectory.On the other hand,the upstroke force has a large upward component that resists gravitational force.(b)Pitch-torque-producing wing tip trajectories of flight 4 are colored by the stroke averaged pitch torque generated by the wing.The cicada shifts the wing’s average position(shown by a closed circle with the same color as the tip trajectory)relative to the center of mass(black and white circle)to generate pitch torque.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    To change the movement trajectory,the orientation of the force relative to the flight path has to change.To investigate the mechanism by which cicadas redirect the force in the global frame,we examined the relative orientation of the rotation axis(for rotations faster than 700 deg·s-1)and the half-stroke-averaged force.Body rotations that occur about the force vector preserve the orientation of the force in the global frame and do not result in flight trajectory changes.On the contrary,rotations about an axis that deviates from aerodynamic force,redirects the force and thus alters the flight trajectory.Our results show that body rotations occur about an axis which predominantly redirects the aerodynamic force;the angles between the rotation axis and FDSand FUSwere(75±12)deg and(56±21)deg,respectively.

    Despite the directional limitation of the aerodynamic force in the body frame,cicadas can generate rotations about the body roll and pitch axes.Roll torque was produced by asymmetrically varying the angle of attack of the bilateral wings.The magnitude of the roll torque was strongly correlated with the wing angle of attack(R2=0.6,n=84).Pitch torque was exerted by shifting the mean position of the wing to offset the force relative to the center of mass(Fig.3b),similar to the technique employed by fruit flies[21].Themagnitudeofthepitchtorquewasdirectlycorrelated with the average wing deviation angle(R2=0.63).Since,the downstroke force is normal to the cicada body,no significant yaw torque can be generated during this half of the flapping cycle. However,in upstroke,asymmetric bilateral wing kinematics can result in yaw torque generation.Our measurements show that the magnitude of the yaw velocity is smaller than that of pitch or roll velocity and oscillates within wingbeats,increasing in upstroke and decreasing in downstroke.

    We conclude that all the free flights studied here are governed by a unified force control strategy,despite the fact that they share little in common with regard to the body orientation and motion.Therestrictedvariationsintheorientationoftheaerodynamic forcerelativetothebodynecessitatesthebodytoreorientforredirecting the force and changing the flight path.Directional limitation of the aerodynamic force in the body frame also simplifies the mechanicsofthewinghinge,asitreducestheneedforimplementing complex alternations in the wing motion.The importance of these results is twofold;they clarify the aerodynamics and mechanics of cicada free flight,and they prove that force vectoring can be successfully implemented for designing large payload and yet maneuverable flapping wing micro air vehicles(MAVs).

    Acknowledgments

    This research is funded by the National Natural Science Foundation of China(1313217)and Air Force Office of Scientific Research(FA9550-12-1-007)monitored by Dr.Douglas Smith.

    [1]D.E.Alexander,Wind tunnel studies of turns by flying dragonflies,J.Exp.Biol. 122(1986)81-98.

    [2]C.Koehler,T.Wischgou,H.Dong,et al.,Vortex visualization in ultra low reynolds number insect flight,IEEE Trans.Vis.Comput.Graphics 17(2011)2071-2079.

    [3]S.Zeyghami,H.Dong,Coupling of the wings and the body dynamics enhances damselfly maneuverability,2015 arXiv:1502.06835,arXiv preprint.

    [4]S.N.Fry,R.Sayaman,M.H.Dickinson,The aerodynamics of free-flight maneuvers in drosophila,Science 300(2003)495-498.

    [5]I.G.Ros,L.C.Bassman,M.A.Badger,et al.,Pigeons steer like helicopters and generate down-and upstroke lift during low speed turns,Proc.Natl.Acad.Sci. 108(2011)19990-19995.

    [6]F.T.Muijres,M.J.Elzinga,J.M.Melis,et al.,F(xiàn)lies evade looming targets by executing rapid visually directed banked turns,Science 344(2014)172-177.

    [7]J.Iriarte-Díaz,S.M.Swartz,Kinematics of slow turn maneuvering in the fruit bat cynopterus brachyotis,J.Exp.Biol.211(2008)3478-3489.

    [8]T.Hedrick,A.Biewener,Low speed maneuvering flight of the rose-breasted cockatoo(Eolophus roseicapillus).I.Kinematic and neuromuscular control of turning,J.Exp.Biol.210(2007)1897-1911.

    [9]K.Y.Ma,P.Chirarattananon,S.B.Fuller,et al.,Controlled flight of a biologically inspired,insect-scale robot,Science 340(2013)603-607.

    [10]C.Koehler,Z.X.Liang,Z.Gaston,et al.,3D reconstruction and analysis of wing deformation in free-flying dragonflies,J.Exp.Biol.215(2012)3018-3027.

    [11]G.Liu,Y.Ren,J.Z.Zhu,et al.,Thrust producing mechanisms in ray-inspired underwater vehicle propulsion,Theor.Appl.Mech.Lett.5(2015)54-57.

    [12]A.J.Bergou,L.Ristroph,J.Guckenheimer,et al.,F(xiàn)ruit flies modulate passive wing pitching to generate in-flight turns,Phys.Rev.Lett.104(2010)148101.

    [13]T.L.Hedrick,B.Cheng,X.Deng,Wingbeat time and the scaling of passive rotational damping in flapping flight,Science 324(2009)252-255.

    [14]C.Schilstra,J.H.Hateren,Blowfly flight and optic flow.I.Thorax kinematics and flight dynamics,J.Exp.Biol.202(1999)1481-1490.

    [15]H.Wan,H.Dong,K.Gai,Computational investigation of cicada aerodynamics in forward flight,J.R.Soc.Interface 12(2015)20141116.

    [16]G.J.Berman,Z.J.Wang,Energy-minimizing kinematics in hovering insect flight,J.Fluid Mech.582(2007)153-168.

    [17]M.Ghommem,D.Garcia,V.M.Calo,Enclosure enhancement of flight performance,Theor.Appl.Mech.Lett.4(2014)062003.

    [18]K.G.G?tz,C.Wehrhahn,Optomotor control of the force of flight in drosophila and musca,Biol.Cybernet.51(1984)129-134.

    [19]H.Wagner,F(xiàn)light performance and visual control of flight of the free-flying housefly(MuscadomesticaL.)I.Organizationoftheflightmotor,Philos.Trans. R.Soc.B 312(1986)527-551.

    [20]C.Schilstra,J.Hateren,Blowfly flight and optic flow.I.Thorax kinematics and flight dynamics,J.Exp.Biol.202(1999)1481-1490.

    [21]J.Zanker,On the mechanism of speed and altitude control in drosophila melanogaster,Physiol.Entomol.13(1988)351-361.

    17 November 2015

    .

    E-mail address:haibo.dong@virginia.edu(H.Dong).

    http://dx.doi.org/10.1016/j.taml.2015.12.006

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Biomechanics and Interdiscipline

    又粗又爽又猛毛片免费看| 91在线观看av| 欧美午夜高清在线| 国产免费av片在线观看野外av| 黄片小视频在线播放| 亚洲18禁久久av| 亚洲18禁久久av| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 99精品久久久久人妻精品| 亚洲国产欧洲综合997久久,| 99久久99久久久精品蜜桃| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看 | 麻豆av在线久日| 久久久久久久午夜电影| 男女视频在线观看网站免费| 久9热在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久中文| 少妇熟女aⅴ在线视频| 身体一侧抽搐| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 亚洲专区国产一区二区| 又紧又爽又黄一区二区| 免费av不卡在线播放| 可以在线观看毛片的网站| www日本在线高清视频| 免费观看精品视频网站| 一边摸一边抽搐一进一小说| 欧美在线黄色| 国产毛片a区久久久久| 色视频www国产| 高清毛片免费观看视频网站| 精品国产乱码久久久久久男人| 黄色 视频免费看| 国产单亲对白刺激| 少妇裸体淫交视频免费看高清| 国产av在哪里看| 国产在线精品亚洲第一网站| 国产精品久久久久久人妻精品电影| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 亚洲人与动物交配视频| 精品久久久久久久久久久久久| 不卡av一区二区三区| 欧美又色又爽又黄视频| 88av欧美| 母亲3免费完整高清在线观看| av女优亚洲男人天堂 | 午夜免费成人在线视频| av天堂在线播放| 黄色 视频免费看| 少妇人妻一区二区三区视频| 一a级毛片在线观看| 午夜影院日韩av| 18禁国产床啪视频网站| 男人舔女人下体高潮全视频| 亚洲专区中文字幕在线| 国产极品精品免费视频能看的| 婷婷丁香在线五月| 日韩av在线大香蕉| 91麻豆精品激情在线观看国产| 国产极品精品免费视频能看的| 精品人妻1区二区| 国产91精品成人一区二区三区| 天天添夜夜摸| 一夜夜www| 一进一出抽搐动态| 国产综合懂色| 毛片女人毛片| 国产私拍福利视频在线观看| 国产视频一区二区在线看| 国产av一区在线观看免费| www.www免费av| 日韩三级视频一区二区三区| 精品一区二区三区视频在线观看免费| 精品久久久久久久久久免费视频| 免费看光身美女| 亚洲自拍偷在线| 麻豆国产97在线/欧美| www.www免费av| 老司机午夜福利在线观看视频| 伦理电影免费视频| 怎么达到女性高潮| av福利片在线观看| 国产精品一区二区精品视频观看| 麻豆久久精品国产亚洲av| 此物有八面人人有两片| 国产99白浆流出| 亚洲自拍偷在线| 人人妻人人看人人澡| 一进一出抽搐动态| 最近最新中文字幕大全免费视频| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合一区二区三区| 亚洲乱码一区二区免费版| 老熟妇乱子伦视频在线观看| 欧美乱码精品一区二区三区| 999久久久精品免费观看国产| 欧美在线黄色| 国产精品自产拍在线观看55亚洲| 久久久色成人| 91av网站免费观看| 国产欧美日韩精品亚洲av| av天堂在线播放| 啦啦啦韩国在线观看视频| 老司机午夜福利在线观看视频| 亚洲成av人片在线播放无| 久久国产精品人妻蜜桃| www日本在线高清视频| 人人妻人人澡欧美一区二区| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清专用| 成年女人毛片免费观看观看9| 国产精品亚洲av一区麻豆| 一级毛片女人18水好多| 欧美日韩国产亚洲二区| 国产精品99久久久久久久久| 久久香蕉精品热| 国产探花在线观看一区二区| 精品一区二区三区四区五区乱码| 国产精品 国内视频| 一个人免费在线观看的高清视频| 久久精品aⅴ一区二区三区四区| 极品教师在线免费播放| 精品熟女少妇八av免费久了| 日本一本二区三区精品| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 草草在线视频免费看| 99国产精品一区二区蜜桃av| 亚洲精品国产精品久久久不卡| 国产主播在线观看一区二区| 亚洲午夜精品一区,二区,三区| 亚洲av片天天在线观看| 午夜成年电影在线免费观看| 国产欧美日韩一区二区精品| cao死你这个sao货| 老汉色av国产亚洲站长工具| 丰满人妻一区二区三区视频av | 国产精品av视频在线免费观看| 狠狠狠狠99中文字幕| 国产成人欧美在线观看| av黄色大香蕉| 欧美日韩瑟瑟在线播放| 精品国产亚洲在线| 少妇人妻一区二区三区视频| 欧美黄色片欧美黄色片| 亚洲无线在线观看| 国产精品爽爽va在线观看网站| 草草在线视频免费看| av中文乱码字幕在线| 久久国产精品影院| 亚洲 欧美一区二区三区| 特级一级黄色大片| 人人妻人人澡欧美一区二区| 国产亚洲欧美在线一区二区| 久久久色成人| 淫妇啪啪啪对白视频| 国产精品久久久久久久电影 | 少妇丰满av| 两个人视频免费观看高清| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品sss在线观看| 免费av不卡在线播放| 又黄又粗又硬又大视频| 国产精品久久电影中文字幕| 日本一二三区视频观看| 偷拍熟女少妇极品色| 日韩三级视频一区二区三区| 亚洲av免费在线观看| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 国产私拍福利视频在线观看| 亚洲av电影在线进入| 一本久久中文字幕| 成人三级做爰电影| 国产av麻豆久久久久久久| 国产99白浆流出| 在线观看一区二区三区| 美女黄网站色视频| 欧美性猛交╳xxx乱大交人| 亚洲av美国av| 久久婷婷人人爽人人干人人爱| 99国产极品粉嫩在线观看| 又紧又爽又黄一区二区| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 两性夫妻黄色片| 亚洲在线自拍视频| av在线蜜桃| 九色成人免费人妻av| 老鸭窝网址在线观看| 中出人妻视频一区二区| 欧美3d第一页| 热99re8久久精品国产| 美女cb高潮喷水在线观看 | 国产av麻豆久久久久久久| 99热这里只有是精品50| 午夜成年电影在线免费观看| 成熟少妇高潮喷水视频| 在线看三级毛片| 精品日产1卡2卡| 成年版毛片免费区| 国产欧美日韩一区二区三| 99久久无色码亚洲精品果冻| 国产单亲对白刺激| 国产1区2区3区精品| 三级国产精品欧美在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 日本a在线网址| 青草久久国产| 操出白浆在线播放| 男插女下体视频免费在线播放| 男插女下体视频免费在线播放| 免费人成视频x8x8入口观看| 欧美性猛交黑人性爽| 亚洲无线在线观看| 两人在一起打扑克的视频| 日韩国内少妇激情av| av欧美777| 在线观看午夜福利视频| 免费在线观看亚洲国产| 黑人欧美特级aaaaaa片| xxx96com| 亚洲在线自拍视频| 久久国产精品人妻蜜桃| 国产1区2区3区精品| 美女被艹到高潮喷水动态| 久久国产精品人妻蜜桃| 欧美中文综合在线视频| 亚洲第一电影网av| 天堂影院成人在线观看| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 国产人伦9x9x在线观看| 91九色精品人成在线观看| 动漫黄色视频在线观看| 欧美日本亚洲视频在线播放| 变态另类丝袜制服| 欧美成人性av电影在线观看| 青草久久国产| 国模一区二区三区四区视频 | 国产 一区 欧美 日韩| 熟女少妇亚洲综合色aaa.| 桃色一区二区三区在线观看| 性欧美人与动物交配| 日韩欧美国产在线观看| 真实男女啪啪啪动态图| 最近最新中文字幕大全电影3| 国产亚洲av高清不卡| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 日韩国内少妇激情av| 757午夜福利合集在线观看| 在线观看66精品国产| 一二三四在线观看免费中文在| av天堂中文字幕网| www日本在线高清视频| 亚洲人成网站在线播放欧美日韩| av在线蜜桃| 免费看光身美女| 国产伦精品一区二区三区视频9 | 丁香欧美五月| 精品国产乱码久久久久久男人| 麻豆国产av国片精品| 男女那种视频在线观看| 日韩欧美国产在线观看| 久久久精品大字幕| 午夜日韩欧美国产| 一级毛片精品| 国产探花在线观看一区二区| 国产黄片美女视频| 午夜福利在线观看免费完整高清在 | 亚洲av成人精品一区久久| 看免费av毛片| 91九色精品人成在线观看| 欧美日本视频| 亚洲自偷自拍图片 自拍| 午夜福利高清视频| 黄色视频,在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| av在线蜜桃| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费| 欧美中文综合在线视频| 精品不卡国产一区二区三区| 久久中文看片网| 久久亚洲真实| 欧美色欧美亚洲另类二区| 18禁黄网站禁片午夜丰满| 亚洲av电影不卡..在线观看| 淫妇啪啪啪对白视频| 欧美高清成人免费视频www| 久久久久久九九精品二区国产| 精品人妻1区二区| 1024香蕉在线观看| 我要搜黄色片| 最新美女视频免费是黄的| 国产三级中文精品| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| 精品久久久久久,| 99热只有精品国产| 久久中文字幕一级| 午夜免费激情av| 国产97色在线日韩免费| 国产真实乱freesex| av片东京热男人的天堂| 国产精品永久免费网站| 国产精品久久久久久亚洲av鲁大| 亚洲国产看品久久| 禁无遮挡网站| 亚洲欧美日韩东京热| 91麻豆精品激情在线观看国产| 免费在线观看亚洲国产| 亚洲熟女毛片儿| 免费看美女性在线毛片视频| svipshipincom国产片| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| xxx96com| 国产午夜福利久久久久久| 久久久久亚洲av毛片大全| 岛国视频午夜一区免费看| 69av精品久久久久久| 免费在线观看成人毛片| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 亚洲,欧美精品.| 欧美色欧美亚洲另类二区| 黄色 视频免费看| 黄色视频,在线免费观看| 久久久久九九精品影院| 99热这里只有精品一区 | 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站| 国产成人啪精品午夜网站| 日韩人妻高清精品专区| 两个人视频免费观看高清| 色视频www国产| 又黄又爽又免费观看的视频| 在线免费观看的www视频| 欧美色视频一区免费| 亚洲av成人一区二区三| 日韩人妻高清精品专区| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9| 国语自产精品视频在线第100页| 日韩 欧美 亚洲 中文字幕| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一区久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 亚洲精品在线观看二区| 噜噜噜噜噜久久久久久91| 久久久久性生活片| 特级一级黄色大片| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 国内精品久久久久精免费| 国产三级中文精品| 我要搜黄色片| 色尼玛亚洲综合影院| 久久精品人妻少妇| 两个人视频免费观看高清| 天堂网av新在线| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 淫妇啪啪啪对白视频| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| 狂野欧美激情性xxxx| 一区二区三区高清视频在线| 夜夜爽天天搞| 亚洲精品乱码久久久v下载方式 | 婷婷精品国产亚洲av| 久久久国产精品麻豆| 久久久久精品国产欧美久久久| 亚洲专区中文字幕在线| 久久中文字幕人妻熟女| 91老司机精品| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 男女那种视频在线观看| 好男人电影高清在线观看| 亚洲欧美日韩卡通动漫| 99热精品在线国产| 国产不卡一卡二| 好男人在线观看高清免费视频| 亚洲专区字幕在线| 久久精品影院6| 欧美色欧美亚洲另类二区| 黄色成人免费大全| 亚洲精品色激情综合| 婷婷丁香在线五月| 久久久久国产精品人妻aⅴ院| 日本精品一区二区三区蜜桃| 免费在线观看成人毛片| 日韩中文字幕欧美一区二区| 久久中文字幕一级| 亚洲国产日韩欧美精品在线观看 | 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 色播亚洲综合网| 国产av麻豆久久久久久久| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片| 精品国内亚洲2022精品成人| 香蕉av资源在线| 国产69精品久久久久777片 | 精品久久久久久久毛片微露脸| 国产激情久久老熟女| 波多野结衣高清无吗| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片 | a级毛片a级免费在线| 国产精品一区二区免费欧美| ponron亚洲| 午夜免费激情av| 亚洲中文日韩欧美视频| 在线免费观看的www视频| 99热这里只有精品一区 | 色综合站精品国产| 很黄的视频免费| 国产高潮美女av| 美女cb高潮喷水在线观看 | 久久香蕉国产精品| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 国产欧美日韩精品一区二区| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 一区二区三区高清视频在线| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 91在线观看av| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 欧美日韩黄片免| 叶爱在线成人免费视频播放| 亚洲第一电影网av| 此物有八面人人有两片| 午夜精品在线福利| 精品国产亚洲在线| 偷拍熟女少妇极品色| 午夜成年电影在线免费观看| www日本黄色视频网| 精品久久蜜臀av无| 村上凉子中文字幕在线| 很黄的视频免费| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 全区人妻精品视频| 国产成人精品无人区| 国产免费男女视频| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 天堂影院成人在线观看| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆| e午夜精品久久久久久久| av天堂在线播放| x7x7x7水蜜桃| 久久精品人妻少妇| 女警被强在线播放| 日本免费一区二区三区高清不卡| 最近在线观看免费完整版| 亚洲中文字幕一区二区三区有码在线看 | 蜜桃久久精品国产亚洲av| 国产真人三级小视频在线观看| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 国产69精品久久久久777片 | 99久国产av精品| 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 国产成人影院久久av| 此物有八面人人有两片| 色尼玛亚洲综合影院| 亚洲国产欧美人成| 亚洲色图av天堂| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 日韩欧美国产在线观看| 国产精品自产拍在线观看55亚洲| 三级男女做爰猛烈吃奶摸视频| 一进一出抽搐动态| 国产高清激情床上av| 窝窝影院91人妻| 岛国在线免费视频观看| 每晚都被弄得嗷嗷叫到高潮| 精品日产1卡2卡| www.999成人在线观看| 特级一级黄色大片| 久久午夜亚洲精品久久| 搡老岳熟女国产| 亚洲在线观看片| 久久中文字幕一级| 精品国产超薄肉色丝袜足j| 国产69精品久久久久777片 | netflix在线观看网站| 一个人观看的视频www高清免费观看 | 18禁国产床啪视频网站| 国产熟女xx| 黄片大片在线免费观看| 国产野战对白在线观看| 久久热在线av| 国产伦人伦偷精品视频| 999精品在线视频| 国产v大片淫在线免费观看| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 国产精品 国内视频| 嫩草影视91久久| 高清在线国产一区| 欧美性猛交╳xxx乱大交人| 熟女电影av网| 国产成人欧美在线观看| 老汉色av国产亚洲站长工具| 欧美激情久久久久久爽电影| 熟女人妻精品中文字幕| 99久久精品热视频| 黑人操中国人逼视频| 日韩高清综合在线| 无遮挡黄片免费观看| 亚洲在线观看片| 日本a在线网址| 成人av一区二区三区在线看| 亚洲avbb在线观看| 九九热线精品视视频播放| 麻豆成人av在线观看| 亚洲成a人片在线一区二区| 日韩欧美三级三区| 国产精品99久久久久久久久| 欧美色视频一区免费| 少妇丰满av| 一级毛片女人18水好多| 国内毛片毛片毛片毛片毛片| 国内精品美女久久久久久| 成人三级做爰电影| 国产精品日韩av在线免费观看| 久久久久国产精品人妻aⅴ院| 日韩有码中文字幕| 他把我摸到了高潮在线观看| 国产亚洲精品一区二区www| 欧美成狂野欧美在线观看| 91av网一区二区| 成人欧美大片| 天天躁日日操中文字幕| 国产av在哪里看| 最近最新中文字幕大全电影3| 黄频高清免费视频| 成人av一区二区三区在线看| 国产精品 欧美亚洲| 99国产综合亚洲精品| 999久久久精品免费观看国产| 国产97色在线日韩免费| АⅤ资源中文在线天堂| 国产黄片美女视频| 99久久精品国产亚洲精品| 精品乱码久久久久久99久播| 免费看光身美女| 国产成人aa在线观看| 99久久精品热视频| 成人永久免费在线观看视频| 1024手机看黄色片| 中文字幕人成人乱码亚洲影| 国产成人精品久久二区二区免费| 亚洲五月婷婷丁香| 少妇丰满av| 韩国av一区二区三区四区| 后天国语完整版免费观看| 国产精品av视频在线免费观看| 搡老熟女国产l中国老女人| 1024手机看黄色片| 久久久成人免费电影| 特级一级黄色大片| 国产美女午夜福利| 国产精品免费一区二区三区在线| 成人高潮视频无遮挡免费网站| 黄色片一级片一级黄色片| 在线免费观看的www视频| 亚洲午夜精品一区,二区,三区| 亚洲欧美激情综合另类| 老汉色av国产亚洲站长工具| 手机成人av网站| 国产97色在线日韩免费| 久久香蕉国产精品| 成人特级黄色片久久久久久久| 校园春色视频在线观看| 国产精品av久久久久免费|