• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    2016-11-14 03:41:41WenbinWngXiohuYngBinHnQinchengZhngXingfeiWngTinjinLu

    Wenbin Wng,Xiohu Yng,b,Bin Hn,c,Qincheng Zhng,d,?,Xingfei Wng,Tinjin Lu,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    Wenbin Wanga,Xiaohu Yanga,b,Bin Hana,c,Qiancheng Zhanga,d,?,Xiangfei Wanga,Tianjian Lua,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    H i G H L i G H T s

    ?Modeled effective thermal conductivity(ETC)of prismatic cellular metal honeycombs(PCMHs)with a wider porosity range(0.7~0.98).

    ?Proposed ligament thermal conduction efficiency(LTCE)to analyze the influence of ligament inclined angle.

    ?Utilized equivalent interaction angle(EIA)to assess the overall heat conduction ability of honeycombs.

    ?Optimized the design for either heat conduction or insulation applications.

    A R T i C L Ei N F O

    Article history:

    14 January 2016

    Accepted 19 January 2016

    Available online 20 February 2016

    Effective thermal conductivity

    Prismatic cellular metal honeycomb

    Ligament heat conduction efficiency

    Analytical design

    Equivalent interaction angle

    A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs(PCMHs)having different cell shapes is presented for thermal management applications.Based on the periodic topology of each PCMH,a unit cell(UC)for thermal transport analysis was selected to calculate its effective thermal conductivity.Without introducing any empirical coefficient,we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range(0.7~0.98)by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC.Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume.The concept of ligament heat conduction efficiency(LTCE)was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity(ETC). Based upon the proposed theory,a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow:relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Prismatic cellular metal honeycombs(PCMHs),as one kind of multifunctional lattice frame materials(LFMs),are of considerable interest in practical applications for their excellent performance in load bearing,acoustic/vibration damping,and thermal management[1-3].Generally,an interconnected network of solid struts and plates,as PCMH edges and faces,is integrated inside which a number of periodic prismatic voids arranged in one particular direction are formed.Through topological design of cell size and distributions,distinct cellular architectures as shown in Fig.1 may be constructed.Not only high specific stiffness/strength[4],but also multifunctional designs can be achieved with such PCMHs. For instance,in situations where a structure needs to carry simultaneously mechanical and thermal loads[5-8],PCMHs can be employed for active cooling applications such as multi-chip cooling(Fig.1(o))and jet blast deflecting[3].Alternatively,when the forced convective flow is stagnant[9,10],PCMHs may act as thermal insulation in thermal protection designs,e.g.,the skin layer of a re-entry vehicle.For these applications,it is essential to achieve distinctive target thermal function,either heat dissipation or insulation,via topological design.

    For heat dissipation/insulation applications,the effective thermal conductivity(ETC)of PCMH is a key material property.To estimate the ETC of PCMH saturated with different kinds of fluids(e.g.,air,water,or refrigerant),it is unlikely to employ conventional analytical approaches based on idealized assumptions,such as random homogenization[11]and phase symmetrical distribution[12],to obtain satisfactory predictions due to the complicated and heterogeneous topology of PCMH.Rather,resistance analysis of thermal-electrical networks shows flexible applicability,which has been recently applied to analyze thermal transport in a variety of porous materials,including open-or closed-cell foams[12-15],sintered metal fiber networks[16]and honeycombs[10,17].For example,based on the idealized non-twisted geometric model for wire-woven bulk Kagome(WBK)structures,Yang et al.[12]developed an analytical ETC model based on one-dimensional(1D)conduction for high porosity(>0.9)air-saturated WBK sandwiches,and empirically correlated the anisotropic ETC behavior of WBK using numerical simulations.However,few studies have been conducted either on ETC prediction for a wide range of PCMHs or thermal design of PCMHs having different functionalities.Besides,as most LFMs(including the PCMHs considered here)exhibit anisotropic topologies and a wide range of porosity,existing ETC models for porous media need to be revisited.Further,there is insufficient physical insight into thermal transport in such materials as well as the mechanisms of pore-level heat transport.

    Fig.1.Cross-sectional view of PCHMs with different cell shapes:(a)square honeycomb-I;(b)square honeycomb-II;(c)uniform hexagonal honeycomb;(d)non-uniform hexagonal honeycomb;(e)diamond honeycomb-I;(f)diamond honeycomb-II;(g)diamond honeycomb-III;(h)diamond honeycomb-IV;(i)triangular honeycomb;(j)multilayered corrugations;(k)mixed triangular-square honeycomb;(l)Kagome-I;(m)Kagome-II;(n)Kagome-III;(o)schematic of multi-layered corrugated core heat exchanger for multi-chip cooling application.

    This study aims to calculate the ETCs of fourteen different types of fluid-saturated PCMH using a combined approach of analytical modeling and numerical simulation.The PCMHs are divided into layers so that the parallel model can be applied to explore the detailed mechanisms of solid-fluid heat exchange in each layer.Subsequently,to capture local two-dimensional(2D)heat conduction,these layers are treated with the series model using a simplistic approximate method.Further,to physically explain the mechanisms underlying the effect of ligament configuration on ETC,the concept of ligament heat conduction efficiency is proposed.

    With reference to Fig.2(a),consider a porous medium(e.g.,multi-layer corrugated panel)with periodical ligaments immergedinalowconductingfluidphase.Becauseofsymmetry,only one half of a whole corrugated cell is selected.The conventional series model of thermal-electric resistance model[18]takes theform of

    Fig.2.(a)Schematic of heat conduction process in multi-layer corrugated panel and(b)approximate model for 2D local heat conduction.θis inclination angle.

    where kedenotes the ETC of PCMH,and ke,1,ke,2,...,ke,nare the ETC of each layer(hi)which can be calculated using the parallel model of thermal-electric resistance,as

    Here,ksandkfarethethermalconductivitiesofsolidligamentsand saturating fluid,respectively;Vi,sand Viare the ligament-occupied volume and the volume of the total layer,respectively.

    BeforetakingfurtheractiontodeveloptheanalyticalETCmodel for PCMHs,the principle task is to determine the thermo-physical mechanisms underlying heat flow in both fluid and solid media. In general,depending upon the ratio of solid conductivity to fluid conductivity,there mainly exist three different mechanisms:(a)when ks? kf,heat conduction in solid flows along the solidligaments,while it flows perpendicular to the heating and cooling surfaces in fluid;(b)when ksand kfare comparable,heat flow is homogenized in the PCMH;(c)when ks? kf,heat flow in fluid becomes dominant,flowing approximately perpendicular to solid ligaments.Therefore,for porous metallic materials such as PCMHs,the thermal conductivity of solid ligaments is significantly larger than that of the saturating fluid,e.g.,ks/kf> 8000 and ks/kf>300 for air-and water-saturated aluminum PCMHs,respectively. As a result,heat flow in such PCMHs is mainly transported along the tortuous aluminum ligaments.Consequently,according to the Fourier law of heat conduction,a modified ETC for each layer of the PCMH is given by

    Based on the theory as outlined above,further analysis is needed to account for different cell distributions.As shown in Fig.2(a)for multi-layer corrugation,with the face sheet selected as layer 1,the direction of heat flow is perpendicular to it since constant temperature is imposed,and ke,1is equal to ksin this layer.In layer 2,heat mainly flows along the solid ligaments,but at the joint that connects different ligaments,local 2D conduction exists due to sudden change in heat conduction area.The effect of local2DconductionisnotsignificantforhighporosityPCMHs(ε>0.9).However,for lower porosity levels(0.7~0.9),the 2D effect on ETC is no longer negligible because the 2D effect increases with increasing joint section volume as the porosity is reduced.Because of the intrinsic complexity of calculating analytically the 2D effect,a numerical method can be utilized to decide the integration of heat conduction distance[19].To this end,a series of numerical simulations are carried out to estimate the integral mean thermal path through the‘corner’(local 2D conduction area).It is found that the equivalent heat conduction area and distance may be approximately determined by the middle line of the cross-section at the corner,e.g.,isothermals and heat flux of specific triangular case as illustrated in Fig.2(b).Therefore,the ETC of layer 2 may be expressed as

    In the third layer,because of its unique topology and the big differenceofETCbetweensolidandfluid,heatflowsperpendicular to the x-direction.Based on such characteristics of heat flow,ETC in this layer may be determined as

    Similarly,the rest of layers can all be treated.Substituting the ETCs of these layers into Eq.(1)gives the final prediction of ETC for a multi-layer corrugated panel.

    Next,to determine an optimal topology with high/low thermal conductivity along the x-direction of Fig.1,fourteen PCMHs with different distributions of cell shape and cell size are analyzed. These PCMHs may be fabricated using a variety of methods,such as assembling slotted sheets,bonding corrugated plates,direct extrusion,and thermal chemical processing[20-22].In the method of slotted sheets assembling,electro-discharge machining(EDM)is firstly applied to slot thin metal strips,which are thenglued or brazed together.Honeycombs with flat edges,such as square honeycomb and diamond structures,can be fabricated by this method.However,panels with bent edges like corrugated panels are typically processed by preparing corrugated plates first,followed by stacking these plates to form multi-layer structures. The extrusion and thermal chemical methods are usually utilized to process PCMHs in a single step.In Fig.1,the prismatic cellular materials all possess cell ligaments with uniform thickness except for the square honeycomb in Fig.1(d)that has two double thickness walls.Detailed expressions of ETC prediction for PCMHs are listed in Table 1.

    Fig.3.Boundary conditions and mesh details for multi-layer corrugated panel.

    To validate the analytical model and to further explore the physical process of heat transport in prismatic cellular materials,numerical simulations are carried out using the finite volume method(FVM)embedded into the commercially available software ANSYS-Fluent 14.5.Solid geometries for different PCMHs generated with SolidWorks are first meshed in ANSYS-ICEM 14.5 and then exported to ANSYS-Fluent 14.5 for steady-state heat conduction analysis.For illustration,F(xiàn)ig.3 depicts the boundary conditions and mesh details for a multi-layer corrugated panel. Constant temperature boundary conditions are applied on the upper and lower faces,while the other four faces are taken as symmetrical.

    Before proceeding further,a validation process is conducted. The ETCs of uniform hexagonal and triangular honeycombs are analytically modeled and numerically simulated,respectively.A comparison is made between the present predictions and the published numerical data[23].It is established that the present numerical analysis can not only reproduce existing simulation results(with a maximum deviation within 3.0%)but also achieve good agreement with the analytical predictions.

    Subsequently,analytical and numerical analyses are performed for the architectures shown in Fig.1 to explore the physical mechanismsofheatconductionindifferentPCMHs.Porosity,atthe first place,is considered to be a key factor in determining the ETC. Relatively high porosities in the range of 0.7~0.98 are considered,since the PCMHs within this porosity range have been extensively investigated for their high specific stiffness and strength.

    For square-I,square-II,uniform and non-uniform hexagon honeycombs,once porosity is determined,cell distribution is correspondingly decided.However,for the remaining PCMH structures of Fig.1,porosity is related to inclination angle of ligaments and ligament aspect ratio(t/l).To preclude the influence of inclination angle and to address specifically the effect of porosity,all the inclination angles are fixed at 60°.It can be observed from Fig.4 that,for all the structures considered,the ETC in either x-or y-direction increases with decreasing porosity.It needs to be pointed out thatthe ETCs are not linearly correlated with porosity.For sufficiently high porosities(ε>0.9),previous investigations[10,17]showed that the ETC exhibits a linear relationship with porosity,for heat conduction in thin solid ligaments could be approximately treated as 1D conduction.As the porosity is reduced,however,2D conduction in solid ligaments becomes remarkable.For instance,when the porosity is reduced to~0.7,ignoring such 2D heat conduction brings~20%deviation in ETC prediction.The effect of 2D heat con-duction on ETC prediction has been accounted for by the present model.Dividing a PCMH structure into sub-layers enables accurate depiction of heat conduction in each layer and efficient consideration of thermal interaction between fluid and solid.Besides,the concept of equivalent heat conduction distance and area proposedinthepresentstudyaccountsforlocalthermalconductionin solid,hence achieving a more accurate prediction(less than 4.6%)in comparison with the conventional 1D model.

    Table 1 Porosity(ε)and relevant items in Eqs.(1)and(3)for ETC along x-direction of selected PCMHs.

    Fig.4.Analytical predictions of ETCs for selected honeycombs in:(a)x-direction;(b)y-direction.

    Table 2 Analytical and numerical predictions of ETC in x-and y-directions for PCMHs of Fig.1.

    To design a porous material/structure for practical applications,the aspect ratio and inclination angle of ligaments as well as cell shape are the key morphological parameters to be considered. For thermal management with high ETC,the main principle is to put effective materials(metals)along the heat flux direction.In a lattice truss structure,the cell ligaments may be categorized into three maintypes:parallel,perpendicular,and inclinedto heat flow direction with an intersection angle of(90°-θ).If the ligaments are placed perpendicular to heat flow direction,they compose a series system together with the surrounding fluid,of which the ETC may be expressed as 1/ke= εs/ks+εf/kf.In comparison,if the ligaments are parallel to heat flow,a parallel model may be utilized to predict the ETC,as ke=εsks+εfkf.The parallel system provides a heat path in solid with maximum heat conduction area and shortest heat transfer distance.With increasing rotation of the ligaments from the parallel system,the distance for heat conduction increases while the heat conduction area decreases,until a series system is formed.According to Fourier’s law,we may have two arguments for a certain metallic ligament saturated in fluid.The superior thermal path for a single ligament is parallel to heat flux(parallel model for highest ETC),which possesses the highestthermalconductionefficiency,yieldingtheupperboundof ETC.On the contrary,if the ligament is perpendicular to heat flow(seriesmodelforlowestETC),ithasthelowestthermal conduction efficiency,resulting in the lower bound of ETC.

    From the results of Fig.4 and Table 2 it can be seen that,for a fixed inclination angle of 60°for all the PCMHs,the diamond-I of Fig.1(e)provides superior thermal conduction,while the multilayer corrugation of Fig.1(j)provides superior thermal insulation. For PCMHs having identical inclination angle,all the ligaments in diamond-I are configured with an intersection angle of 30° to heat flow:that is,no ligament is placed normal to heat flow. Consequently,diamond-IhasthehighestETCamongallthePCMHs investigated;see Fig.4(a)and Table 2.In diamond-II,some of its ligaments are placed normal to heat flow,leading to a reduced ETC along the x-direction compared with its parent structure,i.e.,diamond-I.In diamond-III and diamond-IV,as a few parallel ligaments are placed along the heat conduction direction,their ETCs are higher than that of diamond-II.

    Based on the physical mechanism of heat conduction,it is worthy to understand the particularly low ETC of multilayer corrugation.Given the distinct difference between fluid and metal as well as the special design of the joint,heat in this structure is forced to conduct along not only the inclined ligaments but also the‘series’ligaments,increasing dramatically the heat conduction distance.Compared to triangular structures as well as other competing honeycombs,the significant increase of heat conduction distance in the multi-layer corrugation reduces considerably its ETC.

    To further reveal the physical mechanisms,the concept of ligament thermal conduction efficiency(LTCE)is proposed to explain the reason why PCMHs with identical porosity exhibit different ETCs,as shown in Fig.4 and Table 2.Quantitatively,LTCE is defined here asη=sin2θe,θebeing the equivalent interaction angle(EIA)of a whole UC,which may be calculated by solving equation ke= (sin2θe)εsks+(1-εs)kfafter obtaining the ETC of a PCMH using the present analytical model.For diamond-I withθfixedat60°,thereexistsonlyonekindofligaments,i.e.,ligaments with an inclination angle of 60°.However,its EIA(θe)along the xdirection is calculated to be 59.2°.This is understandable because,at the joint,heat conduction area in the solid is reduced and hence the thermal conduction ability is decreased,which is reflected as a decrease in EIA.Thus,the presence of joints leads to reduced LTCE in PCMHs.

    Fig.5.Influence of ligament inclination angle(θin Fig.2)on ETC of selected honeycombs:(a)x-direction;(b)y-direction.

    Table 3 Influence of ligament inclination angle on EIA of triangular honeycomb with a porosity of 0.8.

    Relative to diamond-I,other PCMHs have more complicated cellular topologies.In these PCMHs,a variety of ligaments with different inclination angles exist,forming a competing system that finally determines the ETC.Figure 5 presents the effect of ligament inclination angle upon ETC for PCMHs having identical porosity(0.8).Except those PCMHs having fixed inclination angle(square-I,square-II,uniform hexagon and non-uniform hexagon honeycombs),the ETC along the x-direction increases withincreasinginclinationangle(θinFig.2).Forafixedinclination angle(albeit less than 45°),square-II is the most favorable PCMH for heat conduction.Otherwise,diamond-I or diamond-IV is the preferable choice.

    We have explained in previous sections the difference of ETC between different PCMHs.In this section,we demonstrate further that,as the inclination angle is increased,the ETC increases.The physical mechanism for this change is that there is more heat conduction material in a parallel system increases,whereas less metallic material is present in its counterpart series system.As previously discussed,placing more materials in a series system(i.e.,perpendicular to the heating surfaces)is beneficial for heat conduction,resulting in increased ETC.Based on the present theory for ligament heat conduction efficiency,the variation trend of ETC in the y-direction as a function of inclination angle(Fig.5(b))may be understood as well.Besides,Table 3 presents the EIA of triangular honeycomb for selected inclination angles. As the inclination angle is increased,the EIA increases along the x-direction but decreases along the y-direction.Therefore,for those PCMHs with angle flexibility,increasing the inclination angle enhances conductivity along the x-direction and reduces conductivity along the y-direction.

    In summary,the effective thermal conductivities of fourteen different types of prismatic cellular metal honeycomb saturated with fluid are calculated,both numerically and analytically.A parallel-series thermal-electric network model based on unit cell topology is developed.The model is verified within a wide porosity range(0.7~0.98)by considering local 2D heat conduction and interactive effect between fluid and solid.The model is then utilized to analyze and design thermal conduction/insulation honeycomb structures.For thermal conduction,the fundamental principle is to place more metals along the heat flux direction. For thermal insulation,the multilayered corrugation is preferable because its unique structure enables elongated heat conduction distance.For a given cellular topology,the LTCE may serve as a quantitative parameter to identify competing mechanisms of heat conductionindifferenttypesofcellligament.WithlargeLTCEs,the overall competing effect of cell ligaments enhances the conduction ability of a honeycomb;otherwise,the structure is favorable for thermal insulation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(51506160,11472208,11472209),China Post-Doctoral Science Foundation Project(2015M580845),the FundamentalResearchFundsforXi’anJiaotongUniversity(xjj2015102),and the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01).

    [1]Q.C.Zhang,X.H.Yang,P.Li,et al.,Bioinspired engineering of honeycomb structure—using nature to inspire human innovation,Prog.Mater.Sci.74(2015)332-400.

    [2]A.G.Evans,J.W.Hutchinson,N.A.Fleck,et al.,The topological design of multifunctional cellular metals,Prog.Mater.Sci.46(2001)309-327.

    [3]T.J.Lu,D.P.He,C.Q.Chen,et al.,The multi-functionality of ultra-light porous metals and their applications,Adv.Mech.36(2006)517-535(in Chinese).

    [4]L.J.Gibson,M.F.Ashby,Cellular Solids:Structure and Properties,Cambridge University Press,1997.

    [5]C.C.Seepersad,B.Dempsey,J.K.Allen,et al.,Design of multifunctional honeycomb materials,AIAA J.42(2004)1025-1033.

    [6]C.C.Seepersad,R.S.Kumar,J.K.Allen,et al.,Multifunctional design of prismatic cellular materials,J.Comput-Aided.Mater.11(2004)163-181.

    [7]D.F.Wu,A.F.Zhou,L.M.Zheng,et al.,Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments,Theor.Appl.Mech.Lett.4(2014)021004.

    [8]S.T.Liu,Y.C.Zhang,L.Peng,New analytical model for heat transfer efficiency of metallic honeycomb structures,Int.J.Heat Mass Transfer 51(2008)6254-6258.

    [9]C.T.Hsu,P.Cheng,K.W.Wong,Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media,Int.J.Heat Mass Transfer 37(1994)2751-2759.

    [10]T.J.Lu,Heat transfer efficiency of metal honeycombs,Int.J.Heat Mass Transfer 42(1999)2031-2040.

    [11]T.H.Bauer,A general analytical approach toward the thermal conductivity of porous media,Int.J.Heat Mass Transfer 36(1993)4181-4191.

    [12]X.H.Yang,J.X.Bai,J.J.Kang,etal.,Effectivethermalconductivityofwire-woven bulk Kagome sandwich panels,Theor.Appl.Mech.Lett.4(2014)051010.

    [13]X.H.Yang,J.J.Kuang,T.J.Lu,et al.,A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams,J.Phys.D Appl.Phys.46(2013)255302-255307.

    [14]X.H.Yang,T.J.Lu,T.Kim,Effective thermal conductivity modelling for closedcell porous media with analytical shape factors,Transp.Porous Media 100(2013)211-224.

    [15]X.H.Yang,J.X.Bai,H.B.Yan,et al.,An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams,Transp.Porous Media 102(2014)403-426.

    [16]Z.G.Qu,T.S.Wang,W.Q.Tao,et al.,A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid,Heat Mass Transfer 48(2012)1385-1395.

    [17]S.Gu,T.J.Lu,A.G.Evans,On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity,Int.J.Heat Mass Transfer 44(2001)2163-2175.

    [18]J.C.Maxwell,ATreatiseonElectricityandMagnetism,ClarendonPress,Oxford,1881.

    [19]X.H.Yang,T.J.Lu,T.Kim,Thermal stretching in two-phase porous media: Physical basis for Maxwell model,Theor.Appl.Mech.Lett.3(2013)57-61.

    [20]H.N.Wadley,Multifunctional periodic cellular metals,Philos.T.R.Soc.A 364(2006)31-68.

    [21]J.K.Cochran,K.J.Lee,D.L.McDowell,et al.Multifunctional metallic honeycombs by thermal chemical processing,in:Proceedings of Processing and Properties of Lightweight Cellular Metals and Structures,2002,pp.127-136.

    [22]F.C?té,V.S.Deshpande,N.A.Fleck,et al.,The out-of-plane compressive behavior of metallic honeycombs,Mater.Sci.Eng.A 380(2004)272-280.

    [23]S.Hyun,S.Torquato,Optimal and manufacturable two-dimensional,Kagomelike cellular solids,J.Mater.Res.17(2002)137-144.

    29 September 2015

    at:MOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China.

    E-mail addresses:zqc111999@xjtu.edu.cn(Q.Zhang),tjlu@xjtu.edu.cn(T.Lu).

    http://dx.doi.org/10.1016/j.taml.2016.01.003

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Solid Mechanics

    搡老妇女老女人老熟妇| 日韩欧美 国产精品| 正在播放国产对白刺激| 国产真实乱freesex| 日韩av在线大香蕉| 国产精品爽爽va在线观看网站| 欧美黑人欧美精品刺激| 国产高清视频在线观看网站| 亚洲中文字幕日韩| 手机成人av网站| 在线a可以看的网站| 好男人电影高清在线观看| 他把我摸到了高潮在线观看| cao死你这个sao货| e午夜精品久久久久久久| 免费在线观看日本一区| 又紧又爽又黄一区二区| 欧美在线黄色| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 一级黄色大片毛片| 亚洲国产看品久久| 国产伦人伦偷精品视频| 免费在线观看成人毛片| 午夜久久久久精精品| 婷婷亚洲欧美| 丰满的人妻完整版| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 不卡av一区二区三区| 亚洲专区中文字幕在线| 国产高清视频在线观看网站| 国产麻豆成人av免费视频| 亚洲欧美日韩高清在线视频| 男人舔女人的私密视频| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 麻豆久久精品国产亚洲av| 88av欧美| 成人av在线播放网站| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 久久精品国产清高在天天线| 久久九九热精品免费| 午夜久久久久精精品| 日本成人三级电影网站| 婷婷六月久久综合丁香| 欧美zozozo另类| 国产成人一区二区三区免费视频网站| 成人三级做爰电影| 日韩国内少妇激情av| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 国产亚洲欧美98| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 舔av片在线| 免费在线观看亚洲国产| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 淫秽高清视频在线观看| 一进一出抽搐动态| 黄色毛片三级朝国网站| 99久久久亚洲精品蜜臀av| 久久久水蜜桃国产精品网| 毛片女人毛片| 91老司机精品| 午夜福利在线在线| 一区福利在线观看| 日韩三级视频一区二区三区| 国产精品 国内视频| 久99久视频精品免费| 国产人伦9x9x在线观看| 亚洲av中文字字幕乱码综合| 国产精品免费视频内射| 日本五十路高清| 日本免费一区二区三区高清不卡| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| 18禁美女被吸乳视频| 最近最新免费中文字幕在线| 久久亚洲真实| 老鸭窝网址在线观看| 最近最新免费中文字幕在线| 国产av又大| 日韩有码中文字幕| 午夜激情福利司机影院| 亚洲免费av在线视频| 欧美成人免费av一区二区三区| 日本在线视频免费播放| 精品久久久久久成人av| 国产1区2区3区精品| or卡值多少钱| 成人亚洲精品av一区二区| 亚洲一区中文字幕在线| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 在线免费观看的www视频| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 一级作爱视频免费观看| 中文字幕av在线有码专区| 午夜福利在线在线| 男女之事视频高清在线观看| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 床上黄色一级片| 最近在线观看免费完整版| 午夜久久久久精精品| 黄色 视频免费看| 国产一区二区在线av高清观看| 亚洲人与动物交配视频| 国产亚洲精品av在线| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 久久久精品国产亚洲av高清涩受| 白带黄色成豆腐渣| 免费电影在线观看免费观看| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 久久这里只有精品中国| 久久久久九九精品影院| 国内精品久久久久精免费| 亚洲av成人不卡在线观看播放网| a级毛片在线看网站| 亚洲人成网站高清观看| 伊人久久大香线蕉亚洲五| 一个人免费在线观看电影 | 岛国在线观看网站| 国产欧美日韩一区二区三| 好男人在线观看高清免费视频| 日韩欧美在线乱码| av在线播放免费不卡| 日韩高清综合在线| 99精品在免费线老司机午夜| 午夜影院日韩av| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 久久久久久九九精品二区国产 | 免费无遮挡裸体视频| 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 国产区一区二久久| av免费在线观看网站| 久久久久久久久久黄片| 国产成人aa在线观看| 不卡av一区二区三区| 国产精品一及| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看| 欧美性猛交╳xxx乱大交人| 免费在线观看黄色视频的| 日日夜夜操网爽| 日本黄大片高清| 88av欧美| 国产真实乱freesex| 窝窝影院91人妻| 久久久久久九九精品二区国产 | 夜夜躁狠狠躁天天躁| 国产一级毛片七仙女欲春2| 在线免费观看的www视频| av福利片在线| 91在线观看av| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 这个男人来自地球电影免费观看| 国产亚洲欧美98| 看片在线看免费视频| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| av超薄肉色丝袜交足视频| 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 亚洲精品一区av在线观看| 亚洲熟妇中文字幕五十中出| 最近视频中文字幕2019在线8| 99久久无色码亚洲精品果冻| 欧美人与性动交α欧美精品济南到| 国产片内射在线| 欧美激情久久久久久爽电影| 少妇粗大呻吟视频| 色噜噜av男人的天堂激情| 99久久久亚洲精品蜜臀av| 国产精品香港三级国产av潘金莲| 深夜精品福利| 久久久久久久精品吃奶| 亚洲七黄色美女视频| 亚洲色图 男人天堂 中文字幕| www.精华液| 看黄色毛片网站| 欧美精品啪啪一区二区三区| 午夜福利在线在线| 人人妻人人澡欧美一区二区| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 欧美日韩国产亚洲二区| av中文乱码字幕在线| 两个人视频免费观看高清| 成人国语在线视频| 一级黄色大片毛片| 欧美性猛交╳xxx乱大交人| 国产aⅴ精品一区二区三区波| 日韩精品青青久久久久久| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 国产主播在线观看一区二区| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 日本a在线网址| 国产成人av激情在线播放| 美女免费视频网站| 真人一进一出gif抽搐免费| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 91九色精品人成在线观看| 国产精品一及| 午夜成年电影在线免费观看| 亚洲欧美日韩无卡精品| 又大又爽又粗| 欧美日韩瑟瑟在线播放| 欧美一区二区国产精品久久精品 | av天堂在线播放| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产日本99.免费观看| 少妇粗大呻吟视频| 无遮挡黄片免费观看| 极品教师在线免费播放| 国产成人欧美在线观看| 变态另类丝袜制服| 免费观看人在逋| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 国产精品久久久久久精品电影| av在线天堂中文字幕| 国产三级黄色录像| 亚洲国产精品成人综合色| 国产精品久久久久久人妻精品电影| 99在线视频只有这里精品首页| 国产成人av激情在线播放| 熟妇人妻久久中文字幕3abv| 午夜福利在线在线| 亚洲精品国产精品久久久不卡| 午夜福利视频1000在线观看| 人妻久久中文字幕网| 9191精品国产免费久久| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| 免费av毛片视频| 黄片大片在线免费观看| 少妇的丰满在线观看| 天堂av国产一区二区熟女人妻 | 女人高潮潮喷娇喘18禁视频| 亚洲男人天堂网一区| 午夜福利在线观看吧| 亚洲第一欧美日韩一区二区三区| 国产99白浆流出| 两个人视频免费观看高清| 在线国产一区二区在线| 宅男免费午夜| 真人一进一出gif抽搐免费| 在线观看舔阴道视频| 久久99热这里只有精品18| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 五月玫瑰六月丁香| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 90打野战视频偷拍视频| 欧洲精品卡2卡3卡4卡5卡区| 一a级毛片在线观看| 久久久精品国产亚洲av高清涩受| 精品电影一区二区在线| 黄片大片在线免费观看| 国语自产精品视频在线第100页| 亚洲人成77777在线视频| xxx96com| 国产主播在线观看一区二区| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 欧美精品亚洲一区二区| 欧美日韩乱码在线| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 亚洲第一电影网av| av在线播放免费不卡| 久久久久久亚洲精品国产蜜桃av| 最近最新免费中文字幕在线| 成熟少妇高潮喷水视频| 午夜影院日韩av| 亚洲人与动物交配视频| 亚洲成人久久性| 18美女黄网站色大片免费观看| 特级一级黄色大片| 黄色视频,在线免费观看| 国产精品野战在线观看| 欧美黄色片欧美黄色片| 高清在线国产一区| avwww免费| 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| av免费在线观看网站| 岛国在线免费视频观看| 国产免费男女视频| 亚洲av电影在线进入| 国产av麻豆久久久久久久| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 在线播放国产精品三级| avwww免费| 成年女人毛片免费观看观看9| 午夜福利高清视频| 亚洲成av人片免费观看| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 国产午夜精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| 窝窝影院91人妻| 黄色a级毛片大全视频| 校园春色视频在线观看| 在线国产一区二区在线| 久久亚洲精品不卡| av福利片在线| 色综合婷婷激情| 午夜免费观看网址| 成人三级做爰电影| 999精品在线视频| 香蕉丝袜av| 男女那种视频在线观看| 18禁观看日本| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 中出人妻视频一区二区| 在线观看www视频免费| 天天添夜夜摸| 级片在线观看| 999久久久国产精品视频| 一夜夜www| 久久热在线av| 亚洲乱码一区二区免费版| 麻豆av在线久日| 黄色毛片三级朝国网站| 国产一区二区在线观看日韩 | 91大片在线观看| 亚洲激情在线av| 中文在线观看免费www的网站 | 成人欧美大片| 男女做爰动态图高潮gif福利片| 老司机午夜十八禁免费视频| 亚洲精品中文字幕一二三四区| 欧美黄色淫秽网站| 久久国产精品影院| videosex国产| 午夜成年电影在线免费观看| 999久久久国产精品视频| 国产黄色小视频在线观看| 亚洲在线自拍视频| 美女大奶头视频| 国产欧美日韩一区二区精品| 天天一区二区日本电影三级| 亚洲,欧美精品.| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 中国美女看黄片| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 免费无遮挡裸体视频| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| av福利片在线| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 国产精品国产高清国产av| 日韩av在线大香蕉| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 三级国产精品欧美在线观看 | 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| www日本在线高清视频| 亚洲黑人精品在线| 亚洲中文字幕日韩| 欧美色视频一区免费| 欧美+亚洲+日韩+国产| 国产区一区二久久| 男女下面进入的视频免费午夜| 美女扒开内裤让男人捅视频| 亚洲乱码一区二区免费版| 桃红色精品国产亚洲av| 欧美乱妇无乱码| 不卡av一区二区三区| 99在线人妻在线中文字幕| 精品久久久久久成人av| 美女大奶头视频| 亚洲片人在线观看| 成年人黄色毛片网站| 欧美激情久久久久久爽电影| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 1024香蕉在线观看| 日本在线视频免费播放| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 午夜老司机福利片| 大型黄色视频在线免费观看| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 国内精品一区二区在线观看| 99国产综合亚洲精品| 一级毛片高清免费大全| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 欧美在线黄色| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 国产日本99.免费观看| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 成人午夜高清在线视频| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 日韩精品免费视频一区二区三区| 午夜激情福利司机影院| 欧美日韩黄片免| 这个男人来自地球电影免费观看| www日本在线高清视频| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 久久久国产精品麻豆| 男女那种视频在线观看| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 午夜福利18| 国产日本99.免费观看| 久久久久亚洲av毛片大全| 1024手机看黄色片| 亚洲精品在线美女| 欧美人与性动交α欧美精品济南到| 国产一级毛片七仙女欲春2| 香蕉av资源在线| 免费看十八禁软件| 亚洲一区中文字幕在线| 欧美成人性av电影在线观看| 国产亚洲精品av在线| 琪琪午夜伦伦电影理论片6080| 一本精品99久久精品77| 国产一区二区在线观看日韩 | 天天一区二区日本电影三级| 久久中文字幕人妻熟女| 在线观看舔阴道视频| 国产精品日韩av在线免费观看| 看片在线看免费视频| 午夜福利免费观看在线| 黄色毛片三级朝国网站| 88av欧美| 国产探花在线观看一区二区| 十八禁网站免费在线| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 极品教师在线免费播放| 亚洲中文日韩欧美视频| 国产av不卡久久| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美三级三区| 久久国产精品人妻蜜桃| 岛国视频午夜一区免费看| 国产在线精品亚洲第一网站| 亚洲18禁久久av| 国内精品久久久久精免费| 哪里可以看免费的av片| 亚洲精品av麻豆狂野| 久久久久久国产a免费观看| 精品电影一区二区在线| 禁无遮挡网站| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站| 日本成人三级电影网站| 国产精品久久久久久人妻精品电影| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 波多野结衣巨乳人妻| 色综合站精品国产| 一级毛片精品| 久久精品综合一区二区三区| 人人妻人人看人人澡| 午夜福利免费观看在线| 在线国产一区二区在线| 亚洲人成77777在线视频| 搡老熟女国产l中国老女人| 中文字幕熟女人妻在线| 黑人操中国人逼视频| 免费观看人在逋| 亚洲国产精品合色在线| 日本 欧美在线| 黑人巨大精品欧美一区二区mp4| 午夜免费激情av| 悠悠久久av| 免费在线观看亚洲国产| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一及| 日韩大尺度精品在线看网址| 久久久国产精品麻豆| 亚洲一区二区三区不卡视频| cao死你这个sao货| 午夜两性在线视频| av福利片在线| 亚洲美女黄片视频| 亚洲第一电影网av| av有码第一页| 又黄又爽又免费观看的视频| 毛片女人毛片| 国产三级中文精品| 久久这里只有精品19| 国产精品久久久人人做人人爽| 91在线观看av| 一本一本综合久久| 国内揄拍国产精品人妻在线| 日韩欧美在线乱码| 久久性视频一级片| 一a级毛片在线观看| 男男h啪啪无遮挡| 十八禁人妻一区二区| 亚洲国产精品sss在线观看| 国产99久久九九免费精品| 夜夜爽天天搞| 人人妻人人澡欧美一区二区| 欧美一级a爱片免费观看看 | 精品不卡国产一区二区三区| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 婷婷精品国产亚洲av| 99热6这里只有精品| 他把我摸到了高潮在线观看| 一本大道久久a久久精品| 别揉我奶头~嗯~啊~动态视频| 99久久精品热视频| 一级毛片精品| www.www免费av| 搡老岳熟女国产| 成人精品一区二区免费| 男插女下体视频免费在线播放| 国产精品久久久av美女十八| 成人一区二区视频在线观看| 久久精品成人免费网站| 日韩成人在线观看一区二区三区| 日日爽夜夜爽网站| 国产精品久久久久久人妻精品电影| 午夜免费成人在线视频| 人妻丰满熟妇av一区二区三区| 一级片免费观看大全| 亚洲乱码一区二区免费版| 国产精品电影一区二区三区| 在线观看午夜福利视频| 国产在线观看jvid| 看黄色毛片网站| 成年人黄色毛片网站| 婷婷精品国产亚洲av在线| 久久伊人香网站| 国产伦人伦偷精品视频| 91字幕亚洲| 淫妇啪啪啪对白视频| 最近最新免费中文字幕在线|