• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy-Casimir method

    2016-11-14 03:41:49YulongYanBaozengYue

    Yulong Yan,Baozeng Yue

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy-Casimir method

    Yulong Yan,Baozeng Yue?

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    H i G H L i G H T s

    ?The mechanical model of the coupled spacecraft system is constructed.

    ?The nonlinear stability conditions are obtained by using the energy-Casimir method.

    ?The stability region of the coupled system is obtained in the parameter space.

    A R T i C L Ei N F O

    Article history:

    3 March 2016

    Accepted 4 March 2016

    Available online 24 March 2016

    Energy-Casimir method

    Liquid sloshing

    Nonlinear stability

    Flexible appendage

    The stability of partly liquid filled spacecraft with flexible attachment was investigated in this paper. Liquidsloshingdynamics wassimplifiedas thespring-massmodel,and flexibleattachmentwasmodeled as the linear shearing beam.The dynamic equations and Hamiltonian of the coupled spacecraft system were given by analyzing the rigid body,liquid fuel,and flexible appendage.Nonlinear stability conditions of the coupled spacecraft system were derived by computing the variation of Casimir function which was added to the Hamiltonian.The stable region of the parameter space was given and validated by numerical computation.Related results suggest that the change of inertia matrix,the length of flexible attachment,spacecraft spinning rate,and filled ratio of liquid fuel tank have strong influence on the stability of the spacecraft system.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The rapid development of aerospace industry requires modern spacecrafttocarrylargeamountsofliquidfuel,andthesizeofflexible attachments such as the solar panel,antennae,manipulator,is much bigger than before.The motion of the rigid body,liquid fuel,and flexible attachments constituted the complex dynamic system of spacecraft.Take the Cassini-Huygens as an example,which is an unmanned spacecraft sent to the planet Saturn[1].The spacecraftatlaunchweighed5712kg,whichincluded3132kgofpropellants.The flexible appendages of the spacecraft contained an 11-meter boom which was used to mount the magnetometer instrument and three other 10-meter rod-like booms which acted as the antennas for the radio plasma wave subsystem.The influence of liquid fuel and flexible attachments should be considered in modeling and analyzing of spacecraft dynamic system,while the weak nonlinear analysis based on perturbation theory was not appropriate for this situation.Related researches[2,3]show that complex nonlineardynamicbehaviorssuchasstatic,periodicmotion,quasiperiodic motion and chaos will be shown in the coupled spacecraft system,and the types of stable motion in-plane modes and outplane modes are different when the parameters of the external excitation varied.

    Energy-Casimir method can be viewed as a generalization of the classical Lagrange-Dirichlet method and was first proposed by Arnold[4]in studying the stability of stationary flows of perfect liquid.This method was widely used in stability analysis such as the rigid body with flexible appendage[5,6],liquid and plasmas[7].Casimir function[8]should be used when the energy-Casimir method was adopted in stability analysis. In this way,the conserved quantity can be captured by the Casimir function.In order to overcome the difficulty of constructing the Casimir function,energy-moment method was used to research the stability problems.Energy-moment method is a simplified method because the energy function and the moment map were employed in stability analysis.Simo[9]showed the stability of relative equilibria by the reduced energy-momentum method,and analyzed the nonlinear stability of three dimensional elasticity[10],coupled rigid bodies and geometricallyexact rods[11].This method has been extended into stability analysis of the rigid body with a spring-mass particle in the perfect liquid[12],underwater vehicle[13,14],nonholonomic system[15],and plasmas[16].

    The stability of the rigid body with flexible attachments can be analyzed by using energy-Casimir method.The dynamic equations of the rigid-flexible coupled system were derived by using Hamiltonian and Poisson bracket,and the stability of the coupled dynamic system was analyzed[6].The detailed derivations of the nonlinear stability of the rigid body with a linear shearing beam,and the stability conditions of the trivial and untrivial solutions were obtained[5].The rotation and translation motion of the rigid body with a cantilever beam was discussed by Kane[17],and centrifugal stiffening effect was first proposed.Coupled system which wasconstitutedbyaplanarrigidbodyandflexibleattachmentwas studied by Bloch[18],and the nonlinear stability of the equilibria of the equations was discussed.There are also some papers about attitude stability of liquid filled spacecraft.Nonlinear stability of asymmetrical rigid body with full liquid filled satellite was researched by using energy-Casimir method[19],while the self-spinning stability of full liquid filled satellite with flexible appendage was also studied by the same method[20].The attitude stability of partly liquid filled spacecraft was researched by using energy-Casimir methods,and the liquid sloshing dynamics was simplified as equivalent mass-spring mechanical model[21]and pendulum model[22]to analogue the liquid sloshing dynamics,the stability conditions,and stable region were also given.

    In order to meet the precision requirement for modern liquid filled spacecraft with flexible appendages,the impact of rigid-flexible-liquid coupled effect on the spacecraft dynamics and control should be more carefully considered in detail.The equivalent mechanics models and computational fluid dynamics were often used to estimate the dynamic influence of propellant sloshing and attachment vibration on spacecraft[23].Hybridcoordinate and spring-mass equivalent model[24],smoothed particle hydrodynamics and absolute nodal coordinate formulation[25]can be utilized to model the spacecraft consisting of a liquid-filled rigid platform and some flexible appendages.There are also some control strategies,such as the variable structure controller[26],robust input shapers[27]for sloshing suppression of the coupled spacecraft system.The attitude maneuver of liquid-filled spacecraft with a cantilever appendage was studied by Yang[28]and the stability criteria of attitude maneuver were derived,while the sloshing liquid was modeled as a viscous pendulum.Relatedresearchesmentionedabovemainlyfocusedondynamical modeling and control scheme of the rigid-liquid-flexible coupledspacecraftsystem.However,itisfarawaytobecompletely solvedfortherigid-liquid-flexiblecoupleddynamicsproblem.For example,as we known,little attention has been devoted to the analytic solution of the stability of partly liquid filled spacecraft system with flexible attachment which plays an important role in the spacecraft dynamics analysis.Energy-Casimir method is an effective method to deal with the stability problem of spacecraft system,and the general stability conditions of the coupled spacecraft system can be obtained.

    This paper is concentrated on the stability of the rigid-liquidflexible coupled spacecraft dynamical system by the energy-Casimir method.The liquid fuel is modeled as a mass-spring mechanical model in order to consider lateral moving in one direction.For linear planar lateral liquid motion,this model is effective to describe linear dynamics of liquid motion and can be used to formulate the dynamic system behavior properly. The flexible attachment is simplified as a linear shearing beam. The framework of this article is this:The mechanical model of the coupled system is given,and dynamic equations and Hamilton function are deduced.Stability conditions were derivedby computing the variation of Casimir and energy function.The spin-rotation stability conditions of the coupled spacecraft system were given and the effectiveness of the theoretical derivation was verified by numerical simulation.Related results suggest that the change of inertia moment of rigid spacecraft,the length of beam,and filled ratio of the tank have strong influence on the stability of the coupled system.Conclusions were presented.

    Fig.1.Dynamic model of liquid filled spacecraft with flexible attachment.

    Fig.2.Equivalent mass-spring mechanical model of liquid fuel in spacecraft.

    The mechanical model of the spacecraft system with flexible attachment and ellipsoid tank is illustrated in Fig.1.In order to research the attitude stability of the coupled system,the body frame is centered at mass center O of the rigid spacecraft.The reference axes(e1,e2,e3)of the body frame are principal axes of rigid spacecraft and JH=diag(j11,j22,j33)denotes the inertia matrix of rigid spacecraft respect to the body frame.

    The equivalent mechanical model which was modeled as the mass-spring mechanical model is shown in Fig.2.Mass of sloshing liquid is represented byˉm,which is attached to the linear spring. The general position ofˉm is rˉm=(rm,0,a1)T,while the static position ofˉm is r′ˉm=(0,0,a1)T.Rest of the fuel mass mFis regarded as stationary,and its position is denoted by rF=(0,0,a2)T.

    The equivalent elastic force applied to moving mass can be denoted by fint=-k(rˉm-r′ˉm)=-?P/?(rˉm-r′ˉm),and k is the equivalent stiffness of the spring.Thus,the energy function of rigid-liquidcoupledsystemisthesumofkineticenergyandelastic potential energy of the spring.

    Next,the model of flexible attachment is considered in the subsequentparts.Theflexibleattachmentissimplifiedasthelinear shearing beam,and the beam is along the direction of e3-axis. The connection position between flexible attachment and rigid body can be represented by b=(0,0,b)T.The length of the beam is L and the uniform mass per unit length of the beam isρ0. The convected displacement and momentum density of the beam at point s are expressed as rb(s)andσ(s),respectively.K is the diagonal matrix of elastic coefficients of the shearing beam.The energy function of the beam can be represented by

    The boundary conditions of the beam are rb(0)=b=Hamiltonian of the coupled system can be given by Eqs.(3)and(4).

    The total angular momentum of the rigid and liquid parts of the spacecraft system can be defined asΠ =JS?- ˉmrˉm×(rˉm×?)+ ˉmrˉm×˙rˉm,and the linear momentum of sloshing mass is set as Pˉm=-ˉmrˉm×?+ ˉm˙rˉm.Thus,the dynamic equations of the coupled spacecraft system can be given.

    The energy and angular momentum of the coupled spacecraft system will be the conserved quantities if the coupled system without external forces or torques.Nonlinear stability of the coupled system will be researched by computing variations of the sum of Hamiltonian and Casimir function.The total angular momentum of the coupled spacecraft system can be expressed asSuppose thatC=‖α‖2,andCasimirfunctioncanbetakenasψ=ψC(C)/2. The first and second variation of Casimir function can be defined asThe expression of the sum of Hamiltonian and Casimir function is

    Firstly,the definitions will be given as follows:

    where f1is the energy function of rigid-liquid coupled system,and f2,f3are the kinetic energy and potential energy of the beam,respectively.The first variations of f1,f2,f3can be given by

    The first variation of Casimir function can be represented by

    The first variation of H+ψcan be derived from Eqs.(9)-(12)

    Next,the second variation of H+ψwill be computed.The second variation of f1can be obtained from Eq.(9).

    where(see Box I).

    Box I.

    Similarly,the second variations of f2,f3can be given from Eqs.(10)and(11).Suppose K is a diagonal matrix.The estimate of the upper bound can be derived by using Poincare-type inequality.

    where c=π2/4L2.Then,the second variation of Casimir function can be computed by Eq.(12).

    From Eqs.(14)-(17),the second variation of H+ψis

    where

    Let P=2ψ′α?α+ψ′I,and the last term of Eq.(18)can be expanded as

    where

    The following expression can be calculated by expanding the last term of Eq.(21).

    Now the quadratic term ofδ?in Eq.(18)and the first term in Eq.(23)will be collected,then

    where

    Similarly,the second and third terms of Eq.(23)can be analyzed by the following definitions:

    Then

    Collect the second term of Eqs.(18)and(24)-(26),then

    The first three terms of Eq.(27)is positive obviously,and the last term of Eq.(27)will be examined.

    where(see Box II).

    Thus,the expression can be obtained from Eq.(29).

    where

    Summarizing above derivations,Eq.(18)can be represented by

    Suppose that Re4,Te2are the matrixes of R4,T2at the equilibrium,respectively.According to Eq.(31),the nonlinear stability theorem of the coupled spacecraft system can be expressed as:if the matrixes Re4,Te2are positive definite,then the coupled spacecraft system is nonlinear stability.

    ThestabilityofsolutionofEq.(6)willbediscussed.Agrawal[29]showed that if a steady-state solution exists,it can only be a rotation of the complete spacecraft,rigid body and propellant,like a rigid body,and for a body with flexible elements,the only stable spin axis is the axis of maximum moment of inertia. The equilibrium of the coupled spacecraft system is expressed as(?e,˙reˉm,reˉm,σe,reb),and the angular velocity is?e= ωe3e3.If the beamdoesnotstretch,thenreb(s)=(b+s)e3,σe(s)=0,0≤s≤l. Equilibrium of sloshing mass satisfied that rm=0,˙rm=0,i.e.the position of the sloshing massˉm is at rest position,and the velocity is zero.The angular momentum at the equilibrium isαe=j33ωe3e3,and the value ofψ′,ψ′at the equilibrium can be represented by

    In order to assure that Te2is positive definite,the following inequalities should be satisfied.

    Box II.

    Fig.3.Distribution of stable region in parameter space(j33,L),and the unshaded area represents the stable region.

    where

    By substituting the equilibrium into the matrix R4,we can get that matrix Re4is the semi-positive.The coupled spacecraft system is nonlinear stability if Eq.(33)are satisfied.Now the physical meaning of these conditions will be explained.The first two inequalities are conditions about the admissible rotation rates of the configuration,i.e.the angular frequency of the system should not exceed the modified characteristic transverse beam frequencies.The last two conditions are similar to the classical stable conditions on the stable axes of rotation for the rigid body,and the inertia should be modified due to liquid fuel and flexible attachments.If liquid fuel is ignored,the stability conditions will be consistent with related conclusions[5].

    The computational results will be given in the following parts. The corresponding parameters are given in Table 1.The unshaded area in Fig.3 represents the stable region in the parameter space(j33,L).It is illustrated in Fig.3 that the increase of the inertia of spacecraft will strengthen the stability of the coupled spacecraft system,while the increase of the length of the beam will weaken the stability of the coupled system.

    The effect of angular velocity to stability of the coupled spacecraft system was given in Fig.4,and the unshaded area in Fig.4 denotes the stable region.It is shown in Fig.4 that the increaseofangularvelocitywillweakenthestabilityofthecoupled system.

    The effect of the filled ratio of tank will be considered.The corresponding parameters are also given in Table 1.Suppose the maximum mass of the liquid fuel in the tank is mliquid=300 kg,and the mass of total liquid denotes as mtotal=mslosh+mrest,wheremslosh,mrestrepresentthemassofsloshingfuelandrestfuel,respectively.Setη=mtotal/mliquidas filled ratio of the fuel tank,and 0≤η≤1.According to the conclusions of sloshing liquid in the spherical tank by Bauer[30]and Dodge[31],the parameters of mslosh/mtotal,mrest/mtotal,a1,a2,and sloshing frequency as the filled ratio of the fuel tank varied can be given.

    Fig.4.Distribution of stable region in parameter space(ωe3,L),and the unshaded area represents the stable region.

    Fig.5.Distribution of stable region asηvaried,and the unshaded area represents the stable region.

    The stable region is shown as unshaded area in Fig.5,while the parameters of rigid spacecraft and flexible attachment are fixed. Stability of the coupled system will be weakened asηless than 0.3. This is related to the rapid increase of mslosh,and mslosh> mrest. The increase rate of mslosh,and mrestwill be almost same as 0.3≤η≤ 0.4,and the boundary of the stable and unstable region has no significant change in parameterη.The increase rate of mrestis rapid than mslosh,as 0.4≤η≤0.62,and the stability of the coupled spacecraft system will be gradually increased.The mass of rest liquid will be larger than that of the sloshing liquid when ηis bigger than 0.62,and the corresponding stable region will be growing rapidly.The results demonstrate that the increase ofmslosh,will reduce the stability of liquid-filled spacecraft,while the increaseofmrestwillstrengthenthestabilityofthecoupledsystem. This result is in agreement with the conclusions by Yue[21](2013)that increase of mslosh,will decrease the stability of liquid filled spacecraft.

    Table 1 Physical parameters for rigid-liquid-flexible coupled spacecraft system.

    This paper mainly concerns about the stability of the liquid filled spacecraft with flexible attachment.First,the model of the rigid-liquid-flexible coupled system was built,the total energy function and Casimir function were constructed by analyzing the Hamiltonian of each subsystem.Then,the equilibrium conditions for the coupled spacecraft system were obtained and nonlinear stability conditions were captured by using the energy-Casimir method.Finally,the numerical computations were conducted to verify the validity of the result presented.The computational results shown that the increase of inertia matrix will strengthen the stability of coupled system,and the increase of the length of beam and the spacecraft spinning rate will weaken the stability of coupled system,while the change of the filled ratio of liquid fuel tankhavecomplexinfluenceonthestabilityofcoupledliquidfilled flexible spacecraft system.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11472041,11532002),the Innovation Fund DesignatedforGraduateStudentsofBeijingInstituteofTechnology(2015CX10003),and the Research Fund for the Doctoral Program of Higher Education of China(20131101110002).

    [1]D.L.Matson,L.J.Spilker,J.Lebreton,The Cassini/Huygens mission to the Saturnian system,Space Sci.Rev.104(2002)1-58. http://dx.doi.org/10.1023/A:1023609211620.

    [2]B.Z.Yue,Nonlinear coupled dynamics of liquid-filled spherical container in microgravity,Appl.Math.Mech.Engl.29(2008)1085-1092. http://dx.doi.org/10.1007/s10483-008-0812-y.

    [3]M.Utsumi,A mechanical model for low-gravity sloshing in an axisymmetric tank,Trans.ASME,J.Appl.Mech.71(2004)724-730. http://dx.doi.org/10.1115/1.1794700.

    [4]V.I.Arnold,An a priori estimate in the theory of hydrodynamic stability,Izv. Vyssh.Uchebn.Zaved.Mat.5(1966)3-5.

    [5]T.A.Posbergh,P.S.Krishnaprasad,J.E.Marsden,Stability analysis of a rigid body with a flexible attachment using the energy-Casimir method,Commun. Contemp.Math.68(1987)253-273.

    [6]P.S.Krishnaprasad,J.E.Marsden,Hamiltonian structures and stability for rigid bodies with flexible attachments,Arch.Ration.Mech.Anal.98(1987)71-93.

    [7]D.D.Holm,J.E.Marsden,T.Ratiu,et al.,Nonlinear stability of fluid and plasma equilibria,Phys.Rep.115(1991)15-59. http://dx.doi.org/10.1007/BF01881678.

    [8]A.M.Bloch,J.Baillieul,P.Crouch,et al.,Nonholonomic Mechanics and Control,Springer,New York,2003.

    [9]J.C.Simo,D.Lewis,J.E.Marsden,Stability of relative equilibria.Part I:The reduced energy-momentum method,Arch.Ration.Mech.Anal.115(1991)15-59.http://dx.doi.org/10.1007/BF01881678.

    [10]J.C.Simo,T.A.Posbergh,J.E.Marsden,Stability of relative equilibria II: Three dimensional elasticity,Arch.Ration.Mech.Anal.115(1991)61-100. http://dx.doi.org/10.1007/BF01881679.

    [11]J.C.Simo,T.A.Posbergh,J.E.Marsden,Stability of coupled rigid body and geometrically exact rods:Block diagonalization and the energy-momentum method,Phys.Rep.193(1990)279-360.http://dx.doi.org/10.1016/0370-1573(90)90125-L.

    [12]C.A.Woolsey,Reduced Hamiltonian dynamics for a rigid body/mass particle system,J.Guid.Control Dyn.28(2005)131-138. http://dx.doi.org/10.2514/1.5409.

    [13]N.E.Leonard,J.E.Marsden,Stability and drift of underwater vehicle dynamics: Mechanical systems with rigid motion symmetry,Physica D 105(1997)130-162.http://dx.doi.org/10.1016/S0167-2789(97)83390-8.

    [14]N.E.Leonard,Stability of a bottom-heavy underwater vehicle,Automatica 33(1997)331-346.http://dx.doi.org/10.1016/S0005-1098(96)00176-8.

    [15]D.V.Zenkov,A.M.Bloch,J.E.Marsden,The energy-momentum method for the stability of non-holonomic systems,Dyn.Stab.Syst.13(1998)123-165. http://dx.doi.org/10.1080/02681119808806257.

    [16]G.Rein,J.Vukadinovic,P.Braasch,Nonlinear stability of stationary plasmas—an extension of the energy-Casimir method,Siam J.Appl.Math.59(1998)831-844.

    [17]T.R.Kane,R.Ryan,A.K.Banerjee,Dynamics of a cantilever beam attached to a moving base,J.Guid.Control Dyn.10(1987)139-151. http://dx.doi.org/10.2514/3.20195.

    [18]A.M.Bloch,Stability analysis of a rotating flexible system,Acta Appl.Math.15(1989)211-234.http://dx.doi.org/10.1007/BF00047531.

    [19]G.Cheng,Y.Z.Liu,Attitude stability of liquid-filled satellite with flexible appendage in gravitational field,Chin.J.Space Sci.17(1997)367-371.(in Chinese).

    [20]J.L.Kuang,K.L.Huang,The nonlinear stability of the liquid-filled satellite with four-flexible-attachments using the energy-Casimir method,Acta Aeronaut. Astronaut.Sin.15(1994)433-439(in Chinese).

    [21]B.Z.Yue,A.Salman,X.J.Song,Casimir method for attitude stability analysis of liquid-filled spacecraft,Sci.Sinica.Ser.A.43(2013)401-406. http://dx.doi.org/10.1360/132012-689.in Chinese.

    [22]A.Salman,B.Z.Yue,Bifurcation and stability analysis of the Hamiltonian casimir model of liquid sloshing,Chin.Phys.Lett.29(2012)060501. http://dx.doi.org/10.1088/0256-307X/29/6/060501.

    [23]K.Dong,N.M.Qi,X.L.Wang,et al.,Dynamic influence of propellant sloshing estimation using hybrid:Mechanical analogy and CFD,Trans.Japan Soc. Aeronaut.Space.Sci.52(2009)144-151.

    [24]Y.H.Jia,S.J.Xu,R.Nie,Modeling and dynamics analysis of liquid-filled flexible spacecraft,J.Beijing Univ.Aeronaut.Astronaut.29(2003)35-38.(in Chinese).

    [25]W.Hu,Q.Tian,H.Y.Hu,Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method,Nonlinear Dyn.75(2014)653-671.http://dx.doi.org/10.1007/s11071-013-1093-3.

    [26]D.L.Peng,Dynamic model and variable structure control for flexible fuel-filled spacecraft,IEEE Pap.(2006)2067-2071. http://dx.doi.org/10.1109/TENCON.2005.301029.

    [27]B.Pridgen,K.Bai,W.Singhose,Shaping container motion for multimode and robust slosh suppression,J.Spacecr.Rockets 50(2013)440-448. http://dx.doi.org/10.2514/1.A32137.

    [28]D.D.Yang,B.Z.Yue,W.J.Wu,etal.,Attitudemaneuverofliquid-filledspacecraft with a flexible appendage by momentum wheel,Acta Mech.Sin.28(2012)543-550.http://dx.doi.org/10.1007/s10409-012-0060-4.

    [29]B.N.Agrawal,Stability of spinning spacecraft with partially liquid-filled tanks,J.Guid Control.Dyn.5(1982)344-350.http://dx.doi.org/10.2514/3.56181.

    [30]H.F.Bauer,W.Eidel,Liquid oscillations in a prolate spheroidal container,in:Nasa Sti/Recon Technical Report N,1988.

    [31]F.T.Dodge,Thenewdynamicbehaviorofliquidsinmovingcontainers,in:Nasa Sti/Recon Technical Report N,2000.

    5 January 2016

    .

    E-mail address:bzyue@bit.edu.cn(B.Yue).

    http://dx.doi.org/10.1016/j.taml.2016.03.001

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Dynamics and Control

    午夜免费男女啪啪视频观看| 一级黄片播放器| 久久99热6这里只有精品| 老师上课跳d突然被开到最大视频| 亚洲无线观看免费| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 男人和女人高潮做爰伦理| 高清在线视频一区二区三区 | 亚洲精品乱码久久久久久按摩| 最近最新中文字幕免费大全7| 亚洲av熟女| 少妇熟女欧美另类| 国产伦一二天堂av在线观看| 国产极品天堂在线| 中国国产av一级| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 国产毛片a区久久久久| 黄片无遮挡物在线观看| 精品免费久久久久久久清纯| 国产单亲对白刺激| 在线播放无遮挡| 国产精品1区2区在线观看.| 久久久欧美国产精品| 少妇丰满av| 又粗又爽又猛毛片免费看| 国产老妇女一区| 日本-黄色视频高清免费观看| 在线观看66精品国产| 高清午夜精品一区二区三区| 欧美bdsm另类| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 日韩大片免费观看网站 | 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 成人性生交大片免费视频hd| 免费av观看视频| 又粗又爽又猛毛片免费看| 成年女人永久免费观看视频| 久久精品国产亚洲网站| 尾随美女入室| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 欧美极品一区二区三区四区| 熟女电影av网| 色吧在线观看| 人妻少妇偷人精品九色| 久久久欧美国产精品| 2022亚洲国产成人精品| 国产黄色小视频在线观看| 婷婷色av中文字幕| 日韩国内少妇激情av| 欧美日韩在线观看h| 亚洲最大成人av| 日韩一区二区三区影片| 天天一区二区日本电影三级| 99久久精品热视频| 亚洲四区av| 亚洲在线自拍视频| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 国产片特级美女逼逼视频| 久久精品熟女亚洲av麻豆精品 | 日韩精品青青久久久久久| 久久久久久久午夜电影| 久久久久性生活片| 日韩国内少妇激情av| 亚洲经典国产精华液单| 久久这里只有精品中国| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 纵有疾风起免费观看全集完整版 | 色吧在线观看| 欧美色视频一区免费| 精品久久久噜噜| 亚洲精品aⅴ在线观看| 精品久久久久久久久av| 国产精品久久久久久精品电影小说 | 色网站视频免费| 午夜a级毛片| 狠狠狠狠99中文字幕| 午夜福利成人在线免费观看| 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 中文资源天堂在线| 免费播放大片免费观看视频在线观看 | 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| 草草在线视频免费看| 久久午夜福利片| 国产 一区 欧美 日韩| 久久精品91蜜桃| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 久久久欧美国产精品| 亚洲成人精品中文字幕电影| 嫩草影院入口| 别揉我奶头 嗯啊视频| 夫妻性生交免费视频一级片| 爱豆传媒免费全集在线观看| 51国产日韩欧美| 欧美变态另类bdsm刘玥| 久久国产乱子免费精品| 午夜免费激情av| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| 五月玫瑰六月丁香| 99热全是精品| 国产成人一区二区在线| 国产 一区精品| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 长腿黑丝高跟| 国产亚洲一区二区精品| 一级黄色大片毛片| 日本猛色少妇xxxxx猛交久久| 午夜激情欧美在线| 国语自产精品视频在线第100页| 菩萨蛮人人尽说江南好唐韦庄 | 少妇熟女aⅴ在线视频| 搡女人真爽免费视频火全软件| 大香蕉97超碰在线| 国产午夜精品论理片| 免费观看a级毛片全部| av卡一久久| 真实男女啪啪啪动态图| 亚洲精品久久久久久婷婷小说 | 99热这里只有是精品50| 2021天堂中文幕一二区在线观| 岛国在线免费视频观看| 天堂网av新在线| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 国产片特级美女逼逼视频| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 视频中文字幕在线观看| 午夜激情欧美在线| 18禁动态无遮挡网站| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区免费观看| 1000部很黄的大片| 汤姆久久久久久久影院中文字幕 | 美女脱内裤让男人舔精品视频| 国产av在哪里看| 亚洲国产精品sss在线观看| 久久热精品热| 亚洲av男天堂| 卡戴珊不雅视频在线播放| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久久免| 日韩视频在线欧美| 不卡视频在线观看欧美| ponron亚洲| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 色吧在线观看| 亚洲欧美日韩高清专用| 91狼人影院| 美女国产视频在线观看| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 一级爰片在线观看| 精华霜和精华液先用哪个| 国产精华一区二区三区| 亚洲欧美日韩东京热| 日韩大片免费观看网站 | 成人毛片a级毛片在线播放| 深爱激情五月婷婷| 精品久久久噜噜| 亚洲成人精品中文字幕电影| 亚洲国产精品成人久久小说| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 成人无遮挡网站| 波多野结衣巨乳人妻| 国产av在哪里看| 两个人视频免费观看高清| 水蜜桃什么品种好| 免费大片18禁| 久久久色成人| av在线老鸭窝| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 深爱激情五月婷婷| 99久国产av精品| av专区在线播放| 国产精品女同一区二区软件| 国产麻豆成人av免费视频| 色尼玛亚洲综合影院| 亚洲电影在线观看av| 国产高清视频在线观看网站| 午夜老司机福利剧场| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 日日啪夜夜撸| 一边亲一边摸免费视频| 禁无遮挡网站| 直男gayav资源| 国产淫语在线视频| 高清午夜精品一区二区三区| 国产亚洲5aaaaa淫片| 久久久久久国产a免费观看| 卡戴珊不雅视频在线播放| 又爽又黄无遮挡网站| 成人午夜精彩视频在线观看| av天堂中文字幕网| 日本午夜av视频| 乱人视频在线观看| 麻豆成人午夜福利视频| 欧美成人午夜免费资源| 久久久久久久久久成人| 看非洲黑人一级黄片| 日日干狠狠操夜夜爽| 国产高清三级在线| 少妇被粗大猛烈的视频| 久99久视频精品免费| 免费无遮挡裸体视频| 国产亚洲午夜精品一区二区久久 | 美女cb高潮喷水在线观看| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 建设人人有责人人尽责人人享有的 | www.色视频.com| a级毛色黄片| 日本-黄色视频高清免费观看| 久久99热这里只频精品6学生 | 精品久久久久久久久亚洲| 亚洲综合精品二区| 人妻制服诱惑在线中文字幕| 久久精品综合一区二区三区| 一级爰片在线观看| 精品一区二区免费观看| 国产精品伦人一区二区| 神马国产精品三级电影在线观看| 春色校园在线视频观看| h日本视频在线播放| 久久久久久大精品| 精品久久久噜噜| 日韩精品有码人妻一区| 欧美3d第一页| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 欧美+日韩+精品| 亚洲怡红院男人天堂| 91久久精品国产一区二区三区| 国产免费福利视频在线观看| 久久精品久久久久久噜噜老黄 | 国产亚洲av片在线观看秒播厂 | 99久久精品国产国产毛片| 亚洲精品乱码久久久v下载方式| 99热这里只有是精品50| av.在线天堂| 七月丁香在线播放| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 男的添女的下面高潮视频| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 日韩视频在线欧美| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 国产成人a∨麻豆精品| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 中文字幕亚洲精品专区| 日本-黄色视频高清免费观看| 长腿黑丝高跟| 国产老妇伦熟女老妇高清| 色播亚洲综合网| 国产老妇伦熟女老妇高清| 国产在线一区二区三区精 | 九九在线视频观看精品| 国产三级在线视频| 69av精品久久久久久| 真实男女啪啪啪动态图| 你懂的网址亚洲精品在线观看 | 少妇的逼水好多| 精品人妻偷拍中文字幕| 男女国产视频网站| 欧美成人免费av一区二区三区| 少妇高潮的动态图| 午夜a级毛片| 嫩草影院入口| 成人综合一区亚洲| 亚洲av日韩在线播放| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 91狼人影院| 亚洲自拍偷在线| 69av精品久久久久久| 国产成人a区在线观看| 国产乱人视频| 久久99热这里只频精品6学生 | 国产精品久久久久久精品电影| 韩国高清视频一区二区三区| 久久欧美精品欧美久久欧美| 国产美女午夜福利| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| www.av在线官网国产| 青春草亚洲视频在线观看| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 亚洲av成人精品一区久久| 免费av毛片视频| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄 | 最近最新中文字幕免费大全7| 亚洲国产精品久久男人天堂| 日韩制服骚丝袜av| 99久久成人亚洲精品观看| 五月伊人婷婷丁香| 干丝袜人妻中文字幕| 男人舔奶头视频| 熟女人妻精品中文字幕| 亚洲国产精品成人综合色| 啦啦啦韩国在线观看视频| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 久久婷婷人人爽人人干人人爱| 国产91av在线免费观看| 国产精品av视频在线免费观看| 中文字幕制服av| 只有这里有精品99| 美女高潮的动态| 日韩精品青青久久久久久| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 精品欧美国产一区二区三| 天堂中文最新版在线下载 | 亚洲av成人av| 国产探花在线观看一区二区| 高清av免费在线| 国产成人精品一,二区| 国产精品一及| 观看免费一级毛片| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 久久久精品94久久精品| 亚洲国产日韩欧美精品在线观看| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 亚洲av熟女| 黄色一级大片看看| 国产精品久久视频播放| 精品不卡国产一区二区三区| 亚洲四区av| 亚洲欧美精品自产自拍| 麻豆成人午夜福利视频| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 日本五十路高清| 99热这里只有是精品在线观看| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 建设人人有责人人尽责人人享有的 | 五月玫瑰六月丁香| 一卡2卡三卡四卡精品乱码亚洲| 日韩av不卡免费在线播放| 一级二级三级毛片免费看| 久久这里只有精品中国| 成人av在线播放网站| 少妇的逼水好多| 久久久久精品久久久久真实原创| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 美女黄网站色视频| 免费看日本二区| 全区人妻精品视频| 91久久精品国产一区二区成人| 秋霞伦理黄片| 亚洲自拍偷在线| 一区二区三区四区激情视频| 午夜精品国产一区二区电影 | kizo精华| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 国产乱人偷精品视频| 日本五十路高清| 午夜老司机福利剧场| 久久久a久久爽久久v久久| 成人国产麻豆网| 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频| 久久这里有精品视频免费| 国内揄拍国产精品人妻在线| 久久精品夜色国产| 国产老妇女一区| 免费观看性生交大片5| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 好男人在线观看高清免费视频| 搞女人的毛片| 久久久久久国产a免费观看| av女优亚洲男人天堂| 人体艺术视频欧美日本| 免费观看性生交大片5| 直男gayav资源| 亚洲成人精品中文字幕电影| 水蜜桃什么品种好| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 免费人成在线观看视频色| 精品国产三级普通话版| 国产精品久久久久久久久免| 男的添女的下面高潮视频| 性色avwww在线观看| 国产又色又爽无遮挡免| 国产黄片美女视频| 精品熟女少妇av免费看| 免费看美女性在线毛片视频| 亚洲国产成人一精品久久久| 日本黄大片高清| 中国美白少妇内射xxxbb| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 精品国产露脸久久av麻豆 | 国产精品久久视频播放| 国产真实乱freesex| 美女脱内裤让男人舔精品视频| 99九九线精品视频在线观看视频| 啦啦啦观看免费观看视频高清| 亚洲怡红院男人天堂| 美女高潮的动态| 国产三级中文精品| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 啦啦啦观看免费观看视频高清| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 丝袜美腿在线中文| 高清午夜精品一区二区三区| 午夜激情欧美在线| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 亚洲熟妇中文字幕五十中出| 97超碰精品成人国产| 亚洲av熟女| 国产高清不卡午夜福利| 在线免费十八禁| 日韩一本色道免费dvd| 精品无人区乱码1区二区| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区| 久久精品国产自在天天线| 精品久久久久久久久久久久久| 高清av免费在线| 国产伦一二天堂av在线观看| 丰满少妇做爰视频| 国产黄色小视频在线观看| 看免费成人av毛片| 色播亚洲综合网| 全区人妻精品视频| 人妻系列 视频| av国产免费在线观看| 国产 一区 欧美 日韩| 国产一区二区在线av高清观看| 人人妻人人看人人澡| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 18禁在线无遮挡免费观看视频| 欧美三级亚洲精品| 麻豆乱淫一区二区| 亚洲伊人久久精品综合 | 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 村上凉子中文字幕在线| 久久久久久久久久久丰满| 精品国产三级普通话版| 亚洲国产成人一精品久久久| 日本五十路高清| 日本免费一区二区三区高清不卡| 亚洲国产色片| 99久久九九国产精品国产免费| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 久久99热这里只有精品18| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 性插视频无遮挡在线免费观看| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 18+在线观看网站| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 十八禁国产超污无遮挡网站| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 久久这里只有精品中国| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 黄色配什么色好看| 综合色丁香网| 国产又黄又爽又无遮挡在线| 91av网一区二区| 久久久久久久国产电影| 在线观看一区二区三区| 精品久久久久久成人av| 久久99热这里只有精品18| 99热精品在线国产| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 国产精品久久久久久精品电影小说 | 狂野欧美激情性xxxx在线观看| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 久久精品久久久久久噜噜老黄 | 青青草视频在线视频观看| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o | 精品久久久久久久人妻蜜臀av| 亚洲av熟女| 人妻夜夜爽99麻豆av| 老司机福利观看| 久久人人爽人人爽人人片va| 久久久久国产网址| 水蜜桃什么品种好| 国产 一区精品| 啦啦啦观看免费观看视频高清| 天美传媒精品一区二区| 永久网站在线| 亚洲国产成人一精品久久久| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 能在线免费观看的黄片| 99久久精品热视频| 啦啦啦观看免费观看视频高清| 成人午夜高清在线视频| 国产免费一级a男人的天堂| 如何舔出高潮| 久久人人爽人人爽人人片va| 成年版毛片免费区| 99久国产av精品国产电影| 日本色播在线视频| 亚洲三级黄色毛片| 日日摸夜夜添夜夜爱| 亚洲精品aⅴ在线观看| 中文字幕亚洲精品专区| 国产精品三级大全| 女人久久www免费人成看片 | 久久久久精品久久久久真实原创| av专区在线播放| 国产免费视频播放在线视频 | 中文字幕熟女人妻在线| 三级男女做爰猛烈吃奶摸视频| 韩国高清视频一区二区三区| 免费电影在线观看免费观看| 久久精品国产亚洲av涩爱| 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 啦啦啦韩国在线观看视频| 久久99热这里只频精品6学生 | 午夜免费激情av| 深夜a级毛片| 国产成人a区在线观看| 一二三四中文在线观看免费高清| 精品不卡国产一区二区三区| 日本一二三区视频观看| 日本-黄色视频高清免费观看| 国产真实乱freesex| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 亚洲高清免费不卡视频| 在线a可以看的网站| 三级毛片av免费| 人人妻人人澡欧美一区二区| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 看黄色毛片网站| 一区二区三区四区激情视频| 小说图片视频综合网站| 简卡轻食公司| 亚洲自拍偷在线| 国产乱人偷精品视频| 亚洲av成人av| 麻豆成人av视频| 一个人观看的视频www高清免费观看| 天堂中文最新版在线下载 | 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 国产三级中文精品| 免费看av在线观看网站| 国产精品一及|