• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functions

    2016-11-04 08:53:34BinHuangJiWangJiankeDuYanGuoTingfengMaLijunYi
    Acta Mechanica Sinica 2016年5期

    Bin Huang·Ji Wang·Jianke Du·Yan Guo·Tingfeng Ma·Lijun Yi

    ?

    RESEARCH PAPER

    Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functions

    Bin Huang1·Ji Wang1·Jianke Du1·Yan Guo2·Tingfeng Ma1·Lijun Yi1

    The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions.The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state.Applying the principle ofcomplementary virtualwork,the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem.Then an iterative procedure is established to achieve convergent stress distributions.It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditionsduring the iterative processes.The stress componentsnearthe free edgesand in the interiorregions are calculated and compared with those obtained results by finite element method(FEM).The convergent stresses have good agreements with those results obtained by three dimensional(3D)FEM.For generality,various layup configurations are considered for the numerical analysis.The results show that the proposed polynomialstress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.

    ? Bin Huang huangbin@nbu.edu.cn

    1Piezoelectric Device Laboratory,School of Mechanical Engineering&Mechanics,Ningbo University,Ningbo 315211,China

    2College of Science&Technology,Ningbo University,Ningbo 315211,China

    Kantorovich method·Polynomial stress function·Composite laminates·Local stresses·3D FEM

    1 Introduction

    The use of composite laminates[1]in engineering has received considerable attention during recent decades due to their high stiffness-to-weight ratio and high strength-toweight ratio.However,it is well known that because of the mismatch of material properties between adjacent layers of composite laminates,there exist highly concentrated local stresses,especially at the vicinity of free edges within a short distance,which may initiate delamination or crack failures during their service life.This is called the stress singularity problem or boundary layer effect[2-4]in composite laminates,in which the stress state near the free edge is very complicated even though the laminates are only subjected to in-plane loads.Therefore,numerous research works[5,6]have been conducted focusing on how to calculate the local stresses near the free edge.However,no exact elasticity solution is known yet for the free edge stress problems;only the approximate solutions[7]have been achieved based on various displacement field based theories or stress function based theories due to the complexities involved in the problem.

    There isa large quantity ofliterature works introducing the local stresses in composite laminates with various theories. Initially,most of the theories were developed based on the displacement assumption,such as the classical laminate theory(CLT)[8,9],firstordersheardeformation theory(FSDT)[10,11],higherordersheardeformation theory(HSDT)[12-14],layerwise shear deformation theory(LWSDT)[15,16],refined shear deformation theory[17-19],and the finiteelement method(FEM)[20-22].These shear deformation theories are classified by the assumption of shear deformation through the thickness.For example,the CLT neglects the transverse shear deformation through the thickness,the FSDTassumesthe sheardeformation is linear,and the HSDT assumes the shear deformation is of higher order.These equivalent single-layer shear deformation theories are accurate in predicting the deflection or free vibration problems of plates and shells with specific boundary conditions,butinadequate to predict the localized stress concentrations where the stress distributions are normally obtained from the constitutive relationships that cannot guarantee the continuity of transverse shear stresses.A feasible approach is by implementing the generalFEMorusing the discrete layerapproach together with the displacement fields,the localized stress problem can be solved,but resulting in a huge volume of degrees of freedom and increasing the complexity of computation.

    Besides the displacement field based approach,many researchers seek candidate solution approaches by assuming the stress fields directly instead of the displacement fields that is called the stress function based approach[23-26]. For the stress function based equivalent single layer theories,the stress admissible functions approximate the stress distributions through the global laminates.However,the initial assumption must satisfy the equilibrium equations and stress boundary conditions.A work by Flanagan[27]developed a stress function based approach to solve the free edge stress distributions in composite laminates by means of the eigenfunctions of a clamped-clamped beam as the initial stress fields.The global assumption of stress fields satisfies both the pointwise equilibrium equation and the tractionfree boundary conditions in his work.However,the results present undesired oscillations through the thickness due to the initial harmonic assumption,and the accuracy is mainly dependenton the numberoftermsinvolved in the initialfunctions.A work by Yin[28,29]developed a stress function based layerwise approach by means of the piecewise polynomial functions for the out-of-plane stress functions.His method is more accurate than Flanagan’s work[27]butcomputationally much more expensive.

    Another feasible approach is the extended Kantorovich method[30,31]that is actually an iterative approach.The extended Kantorovich method has been applied to solve the problems of extension,bending,and buckling in composite laminated plates and shells for the interlaminar stress analysis.Ithas also been applied to the piezolaminated plates considering the electro-mechanical coupling effect.To mention some of the representative works,Tahani et al.[32,33]developed the three dimensional(3D)iterative method for studying the interlaminar stresses in rectangular laminates with arbitrary layup stacking sequence and boundary conditions under multi-load conditions.In their approaches,the displacements are separated into three sets of independent functions representing three coordinates.By assuming two ofthe independentfunctions and using the variationalprinciple,the third function can be obtained.Repeating the iterative procedure,the stress distributions can be improved and the boundary conditions can be enforced.Work by Kapuria and Kumari[34,35]also studied the extended Kantorovich approach for the 3D elasticity solutions of laminated composite structures under cylindrical bending and the coupled piezoelasticity solutions of piezolaminated plates.In their study,Cho et al.[36,37]developed the stress function based extended Kantorovich method for analyzing interlaminar stresses in composite laminates under multi-load conditions,where the harmonic stress fields were initially assumed. They provided the 3D stress solutions,which satisfy the continuity conditions,as well as the traction-free boundary conditions.

    It is well known that the interlaminar stresses should satisfy the stress boundary conditions not only at the free edge,but also at the top and bottom surfaces of composite laminates.They also shouldsatisfy the continuity conditionsatthe ply interfaces.Since the displacement field based approach cannot satisfy the free edge stress boundary condition,the stress function based theories are preferred.To predict accurately the local stresses in composite laminates,an extended Kantorovich method based on stress function is developed by means of simple and arbitrary polynomial stress functions.The stress distributions are supposed to be improved through the iterative process.The proposed approach adopts the Lekhnitskii stress functions as the stress fields,which are separated into the in-plane stress functions and out-of-plane stress function.The solution procedure mainly consists of two steps,calculation of the in-plane stress functions from the initial assumption and improvement of the out-of-plane stress functions.The accuracy of the proposed methodology is dependent on the term number of initial functions and iteration numbers.Therefore,a convergence study will be given and the results will be compared with those obtained by the 3D FEM for verification.Finally,we will give some numerical examples by means of the proposed method that will prove our methodology is computationally efficient and accurate in predicting the local stresses in composite laminates.

    2 Theoretical formulations

    2.1Stress function based formulations

    Considering a rectangular laminate with traction-free edges,as shown in Fig.1,the laminate consists of orthotropic layers with equivalent thickness and material properties.Each layer has arbitrary orientation in the x-y plane.The linearconstitutive relation for each layer can be expressed by the 3D Hooke’s law considering the thermal effect.

    Fig.1 Geometry of composite laminate and its coordinate system

    where the matrix S is the generalized compliance matrix. The temperature induced strain εtcan be calculated by the product of thermal expansion coefficients and temperature change as follows

    In Eq.(1),the matrix form of linear constitutive relation contains six rows,including six strain and stress components. From the first row,we can calculate the stress component

    σ1,which is expressed in terms of ε1and other five stress components as follows

    Substituting Eq.(3)into Eq.(1),the strains,exceptε1,can be expressed in terms of materials properties,ε1and six stress components.

    The special case in which stresses and displacements are independent of length is the well-known generalized plane deformation.Under this assumption,the equations of equilibrium have the following form in absence of body force.

    Introducing the Lekhnitskiistress functions[38],F(xiàn)(η,ζ)and ψ(η,ζ),which satisfy the equilibrium equations of the plane strain state automatically.

    where η=y/b,ζ=z/H are the nondimensional coordinates.

    By using the principle of variable separation,the Lekhnitskii stress functions are divided into two types of individual functions called the in-plane stress function and out-of-plane stress function in this work,where the in-plane stress function is the function of y and the out-of-plane stress function is the function of z.They can be further expressed by the series functions as follows

    where fi(η)and pi(η)denote the in-plane stress functions,and gi(ζ)denote the out-of-plane stress function.The superscript I in Eq.(8)denotes the first order of differentiation.It isworth noting thatthe defined terminologies,in-plane stress function and out-of-plane stress function,differ from the terminologies of in-plane stress and out-of-plane stress in the following sections.

    A Ritz-type solution method is developed for solving the localstresses in composite laminates in this work.Therefore,we firstly assume the out-of-plane stressfunction gi(ζ)asthe polynomial function and solve the in-plane stress functions(fi(η)and pi(η))via the virtualwork principle.The out-ofplane trial function is assumed simply as follows in which the second differentiation is guaranteed.

    It should be noted that the pre-assumed out-of-plane trial function does not satisfy the required traction-free boundary conditions,where σ3=σ4=σ5=0 at ζ=±1/2. For the extended Kantorovich method,satisfying boundary conditions for initial trial function is not mandatory since the boundary conditions and continuity conditions will be enforced in each process.Thus,the accuracy of stress distributions can be improved while satisfying the boundary and continuity conditions during the iterations.

    For static stress analysis of an elastic body,the complementary strain energy of symmetrically layered laminates subjected to uniaxial tensile load is given by

    Substituting Eqs.(4)and(7)into Eq.(10),and with the help of Eqs.(8)and(9),conducting integration by partsand applying the traction-free boundary conditions,the governing equation can be obtained in the matrix form.

    where the coefficients A(4),A(2),A(0),B(2),B(0),C(2),and C(0),listed below,are n by n matrices,which are expressed in terms of material properties and geometric dimensions. The unknown in-plane functions f={f}and p={p}are n dimensional vectors.The superscripts IV and II represent the fourth and second derivatives with respect to η.

    where N is the numberoflayers.The solutions to the governing equation can be obtained by solving ordinary differential equations with homogeneous solutions and a particular solution.Firstly,we assume the homogeneous solutions as

    where the vectors vfand vpconsistofcoefficients appearing in the homogeneous solutions,and λ is the factor of exponential function.

    Substituting Eq.(13)into Eq.(11)yields the following equations.

    where λ2are the eigenvalues andare the eigenvectors.We know that when the local stresses concentrate near the free edges with a short distance and decrease in the interior region,the negative roots of eigenvalues are selected.Therefore,after solving the eigenproblem,the homogeneous solutions can be expressed as the following equations

    where t={t}and the constant t is to be determined by boundary conditions at the free edge.

    The particular solution can be obtained by considering the in-plane stress functions as constants.Therefore,all their derivatives vanish in the governing equationsand the remaining terms can be written as the following two equations.

    Here,r={r}and s={s}.The final step is to determine the constant t appearing in the homogeneous solutions by enforcing the free edge boundary conditions(σ2=σ4= σ6=0,at η=0)that yields the following equations

    Once the in-plane stress functions are obtained from the governing equations,the stress components can be obtained via substituting the solutions and out-of-plane stress function into the Lekhnitskii stress functions.

    2.2Iterative formulations

    The extended Kantorovich method requiresiterative processes to improve the accuracy of local stress distributions.Therefore,from the second process,the stress function based approach is repeated and the solution procedure is same.The difference is that the out-of-plane stress function is unknown and to be calculated in the second process,while the in-plane stress function are adopted from the results of first process. It should be noted that the out-of-plane stress function in the second process is assumed to be layerwise function,and the continuity conditions are enforced to guarantee the continuity of stresses along the thickness.The third process is as same as the first process,and therefore,for the sake of brevity,will not be introduced here.

    The solution procedure for the second process is the same as the first process.The principle of complementary virtual work is applied again that yields the following governing equation

    where the coefficients D(4)(k),D(2)(k),D(0)(k),and X(k)are expressed in terms of material constants,geometries,and inplane stress functions

    Equation(20)is the fourth order ordinary differential equation.Therefore,we assume the homogeneous solutions as

    where vg(k)is the coefficient and μ(k)contains the factors of exponential functions.

    Substituting the homogeneous solution into the governing equation,it results in the following equation

    where the constant b(k)is to be calculated from the boundary conditions as well.

    The particularsolutions g(k)(P)are calculated similarly by considering the out-of-plane stressfunction as constantin the governing equation resulting in the following equation.

    The final step is to determine the constant b(k)appearing in the homogeneous solutions by means of the traction-free boundary conditions at the top and bottom surfaces,as well as the continuity conditions at the layer interfaces.

    Equation(26)results in the following relations for the outof-plane stress functions with the help of Lekhnitskii stress functions.

    Once the out-of-plane stress function is solved,all stress components from the second process can be expressed by the following equations.

    3 Results and discussion

    Based on the mathematical formulations introduced in this work,a computer program was developed to study the local stresses in symmetrically layered composite laminates with finite dimensions subjected to uniaxial tensile strain load.It is assumed that the laminates have total thickness H and inplane length 2b,which is equivalent to four times the total thickness,shown in Fig.1.Each of the composite layers is of equal thickness,h=0.5 mm,and has orthotropic material properties with different material orientations.The mechanical properties of each graphite/epoxy lamina are given by[39]

    Forverification,the 3DFEManalysis is conducted by means of commercial package ANSYS to compare the numerical results with those of the proposed approach,using solid 64 element for composite layers considering the generalized material properties.In the FEM analysis,the laminate has a length of ten times the width to express effectively the plane strain state.The clamped boundary conditions are applied to both ends of the laminate.The results are extracted at the middle of the laminate where the boundary effect has decayed.It should be noted that the FEM analysis requires very fine mesh,and refine at the free edges and layer interfaces to achieve accurate localized stress distributions,asshown in Fig.2.Therefore,the element numbers used in length,width,and each individual layer thickness are 50,30,and 20,respectively,resulting in a huge number of degree of freedoms(DOFs).Thus,it is computationally much more expensive when using the 3D FEM analysis.Without loss of generality,various layup configurations are considered in the present study.

    Fig.2 Finite element modeling of composite laminate with mesh

    3.1Convergence study

    The solution convergence is related to the number of terms in the series functions and the number of iterations for the stress function based extended Kantorovich method.These two factors will be examined in this subsection by considering a cross-ply laminate([0/90]s)subjected to uniaxialtensile strain load to show the validity and accuracy of the present method.To test the reliability of the analysis,the results are compared with those obtained by 3D FEM.Once the reliability of the present method has been successfully proved,further cases will be studied with various layup configurations.

    Figures 3 and 4 present two stages of convergence for the free edge(y/b=0)normal stress σ3in[0/90]slaminate subjected to 1%uniaxial tensile strain load for term numbers and iteration numbers,respectively.These two figures demonstrate that with the fixed term number 4,it cannot predict the free edge normal stress accurately until the fifth iteration,where the interfaces of stress concentration can be accurately predicted.With the fixed iteration number 5,convergent results can be achieved when using four terms.The 3D FEM results are also given and compared with the proposed method.It is found that the FEM results follow the same tendency with the presentresults.Although there exists the difference of magnitude for the free edge stress because FEM underestimates the stress concentration at the interface of 0/90 layers,such difference is still tolerable and the correctness of the proposed method can be proved.Therefore,it can be concluded that using four terms and five iterations,

    Fig.3 Convergence of free edge normal stress σ3in[0/90]slaminate under 1%uniaxial tensile strain,n=4,iters.2-5,where y/b=0

    Fig.4 Convergence of free edge normal stress σ3in[0/90]slaminate under 1%uniaxial tensile strain,n=2-4,iter.5,where y/b=0

    Fig.5 Interlaminar normal stress σ3in[0/90]sand[90/0]slaminates under 1%uniaxial tensile strain,where z/H=1/4

    Fig.6 Interlaminar shear stress σ4in[0/90]sand[90/0]slaminates under 1%uniaxial tensile strain,where z/H=1/4

    the accuracy can be guaranteed for the proposed method.It should be noted thatthe initialpolynomialassumption forthe out-of-plane stress function is arbitrary and does not satisfy boundary conditions.However,the free edge normal stress satisfies the traction-free boundary condition at both top and bottom surfaces,where the boundary conditions are enforced during the iterative processes.Moreover,the present method takes 3 s to solve a single case on an IntelCore i7(3.60 GHz)processor,whereas the computational time for the 3D FEM is longer than 5 min.Although the 3D FEM analysis can deal with the problem of complicated geometry and boundary conditions,the proposed extended Kantorovich method is computationally much more efficient than the 3D FEM for solving the local stresses in such symmetrically layered laminated structures.

    Fig.7(Color online)Distribution of interlaminar normal stress σ3 along the width in[0/90]slaminate under 1%uniaxial tensile strain,where z/H=1/4

    Fig.8(Color online)Distribution of interlaminar normal stress σ3 along the width in[90/0]slaminate under 1%uniaxial tensile strain,where z/H=1/4

    3.2Case study

    In this subsection,various layup configurations will be considered to study the local stresses in composite laminates in the interior region and at vicinity of the free edges.Since the previousconvergence study has already proved thatwith four terms and five iterations convergent results can be achieved,the following case study will use four terms and five iterations.The first example is two cross-ply laminates([0/90]sand[90/0]s)which are subjected to 1%uniaxial tensile strain load.The in-plane distribution of interlaminar normal stress σ3and shear stress σ4are shown in Figs.5 and 6 together with the FEM results.For both cross-ply stacking sequences,the large positive normal stress σ3concentrates at the free edge,where y/b=0,and vanishes in the interior region.This positive peeling stress could lead to the underly-ing delamination failure during the service life of composite laminates.The resultsare also wellvalidated by the 3DFEM,except for the difference at the free edge.This is because the FEM normally underestimates the peak values even using very fine mesh.For the shear stress σ4,the proposed method satisfies the prescribed stress boundary condition at the free edge and presents large stress values near the free edge. However,the FEM does not satisfy the free edge boundary condition for the shear stress σ4.The normal stress distributions along the width are shown in Figs.7 and 8 for[0/90]slaminate and[90/0]slaminate,respectively.These two graphs indicate that the stress vary significantly near the free edge along the z axisand converge in the interiorregions.Itisnoted here,the stress distribution is restricted to the cross-section of the laminate that is independent of the longitudinal axis. Thisresultwellrevealsthe edge-effectofcomposite laminate caused by the mismatch ofmechanicalproperties in adjacent layers.

    Fig.9 Interlaminar normal stress σ3in[30/-30]s,[45/-45]s,and[60/-60]slaminates under 1%uniaxial tensile strain,where z/H=1/4

    Fig.10 Interlaminar shear stress σ4in [30/-30]s,[45/-45]s,and[60/-60]slaminates under 1%uniaxial tensile strain,where z/H=1/4

    Fig.11 Interlaminar shear stress σ5in[30/-30]s,[45/-45]s,and[60/-60]slaminates under 1%uniaxial tensile strain,where z/H=1/4

    Fig.12 Free edge shear stress σ5in[45/-45]slaminate under 1% uniaxial tensile strain,where y/b=0,0.01,0.02,and 0.03

    Fig.13 Interlaminar normal stress σ3in[0/90/45/-45]slaminate under 1%uniaxial tensile strain,where z/H=3/8,2/8,and 1/8

    Fig.14 Interlaminar shear stress σ4in[0/90/45/-45]slaminate under 1%uniaxial tensile strain,where z/H=3/8,2/8,and 1/8

    Next,three angle-ply cases([30/-30]s,[45/-45]s,and[60/-60]s)are investigated for the local stresses subjected to 1%uniaxial tensile strain load,where the in-plane stress distributions are shown in Figs.9,10,and 11,at the interface of z/H=1/4.For the normal stress σ3distribution,shown in Fig.9,it presents negative peak value at the free edge,and increasing the fiber orientations rapidly increases the magnitude of the free edge value.The shear stress σ4,shown in Fig.10,satisfies the boundary condition as well,and oscillates near the free edge and vanishes in the interior region.It can be seen that by changing the fiber orientation and layup stacking sequence of each layer,the local stress distributions can be significantly changed atthe layerinterfaces.The angle-ply cases can sustain large shear stress σ5at the free edge due to the fiber orientations,shown in Fig.11,while cross-ply laminate cannot.It is seen that[30/-30]slaminate presents the largest magnitude of σ5at the free edge among three cases.To examine the σ5distribution along the thickness and at the vicinity of the free edge,we provide the σ5distribution in[45/-45]slaminate through the thickness for four positions,where y/b=0,0.01,0.02,and 0.03,as shown in Fig.12.The interfacial value decreases gradually when approaching the interior region.The result of FEM at y/b=0 also shows excellent agreement with the proposed method.[0/90/45/-45]slaminate isinvestigated as well,where the inplane stress distributions are shown in Figs.13,14 and 15 and the out-of-plane stressdistributions are shown in Figs.16,17,and 18.For this case,the local stresses at various interfaces(z/H=3/8,2/8,and 1/8)and positions at the vicinity of free edge(y/b=0.0.01,0.02,and 0.03)are examined.For the inplane interlaminar stress distributions,it can be concluded that the stress concentration is found near the free edge at all interfaces,although there exists the difference of magnitude. Furthermore,the out-of-plane free edge stress distributions show thatthe stressmagnitude decreaseswhen increasing the value of y/b.Forexample,the peak value ofσ3atthe position y/b of 0 is almost 25%larger than that at the position y/b of 0.03.This indicates that the stress decays very fast and concentrates at the free edge only within a short distance.

    Fig.15 Interlaminar shear stress σ5in[0/90/45/-45]slaminate under 1%uniaxial tensile strain,where z/H=3/8,2/8,and 1/8

    Fig.16 Free edge normal stress σ3in[0/90/45/-45]slaminate under 1%uniaxial tensile strain,where y/b=0,0.01,0.02,and 0.03

    Fig.17 Free edge normal stress σ3 in[0/90/45/-45]s laminate under 1%uniaxial tensile strain,where y/b=0,0.01,0.02,and 0.03

    Fig.18 Free edge normal stress σ3in[0/90/45/-45]slaminate under 1%uniaxial tensile strain,where y/b=0,0.01,0.02,and 0.03

    4 Conclusions

    In this study,the local stresses in composite laminate with finite dimensions are studied by means of the extended Kantorovich method upon the polynomial stress functions.The symmetrically layered laminates with various layup configurations are considered for the numerical analysis under the uniaxial tensile load.The stress distributions satisfy the traction-free boundary conditions as well as the free edge boundary conditions,although the pre-assumed polynomial assumption is arbitrary.The free edge effect is clearly revealed in this work for both the in-plane stress distributions and out-of-plane stress distributions.The effectiveness and accuracy of the proposed method in investigating the local stresses are demonstrated by comparing those results of 3D FEM.The convergence study is also performed to investigate the effect of term number in the initially assumed out-of-plane stress function and iteration numberon the convergence.Although increasing the termnumberimprovesthe accuracy of the results,the desired convergent results can be obtained by using only four terms in this work.Finally,several numerical examples are presented to study the local stress distributions based on the proposed methodology.The results show that the present methodology can be used as an efficient tool in the initial design of composite laminated structures to compute the local stresses at the interfaces and at the vicinity of free edges to control the local stresses or optimize the layup stacking sequences.

    Acknowledgments This work was supported by the National Natural Science Foundation of China(Grants 11372145,11372146,and 11272161),the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(Grant MCMS-0516Y01),Zhejiang Provincial Top Key Discipline of Mechanics Open Foundation(Grant xklx1601),and the K.C.Wong Magna Fund through Ningbo University.

    1.Herakovich,C.T.:Mechanics of composites:a historical review. Mech.Res.Commun.41,1-20(2012)

    2.Wang,S.S.,Choi,I.:Boundary-layer effects in composite laminates:part 1-free-edge stress singularities.J.Appl.Mech.49,541-548(1982)

    3.Wang,S.S.,Choi,I.:Boundary-layer effects in composite laminates:part 2-free-edge stress solutions and basic characteristics. J.Appl.Mech.49,549-560(1982)

    4.Spilker,R.L.,Chou,S.C.:Edge effects in symmetric composite laminates:importance of satisfying the traction-free-edge condition.J.Compos.Mater.14,2-20(1980)

    5.Ghugal,Y.M.,Shimpi,R.P.:A review of refined shear deformation theories of isotropic and anisotropic laminated plates.J.Reinf. Plast.Compos.21,775-813(2002)

    6.Kassapoglou,C.,Lagace,P.A.:An efficientmethod forthe calculation ofinterlaminarstressesin composite materials.J.Appl.Mech. 53,744-750(1986)

    7.Zhu,C.,Lam,Y.C.:A Rayleigh-Ritz solution for local stresses in composite laminates.Compos.Sci.Technol.58,447-461(1998)

    8.Konieczny,S.,Wo′zniak,C.:Corrected 2D-theories for composite plates.Acta Mech.103,145-155(1994)

    9.Wang,Y.Y.,Lam,K.Y.,Liu,G.R.etal.:Astrip elementmethod for bending analysis of orthotropic plates.JSME Int.J.40,398-406(1997)

    10.Kapuria,S.,Dube,G.P.,Dumir,P.C.:First-ordersheardeformation theory solution for a circular piezoelectric composite plate under axisymmetric load.Smart Mater.Struct.12,417(2003)

    11.Thai,H.T.,Choi,D.H.:A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates.Compos.Struct.101,332-340(2013)

    12.Reddy,J.N.,Liu,C.F.:A higher-order shear deformation theory of laminated elastic shells.Int.J.Eng.Sci.23,319-330(1985)

    13.Cho,M.,Parmerter,R.:Efficient higher order composite plate theory for general lamination configurations.AIAA J.31,1299-1306(1993)

    14.Chattopadhyay,A.,Gu,H.:New higher order plate theory in modeling delamination buckling of composite laminates.AIAA J.32,1709-1716(1994)

    15.Robbins,D.H.,Reddy,J.N.:Modelling of thick composites using a layerwise laminate theory.Int.J.Numer.Methods Eng.36,655-677(1993)

    16.Zhou,X.,Chattopadhyay,A.,Kim,H.S.:An efficient layerwise shear-deformation theory and finite element implementation.J. Reinf.Plast.Compos.23,131-152(2004)

    17.Oh,J.H.,Cho,M.,Kim,J.S.:Enhanced lower-order shear deformation theory for fully coupled electro-thermo-mechanical smart laminated plates.Smart Mater.Struct.16,2229-2241(2007)

    18.Kim,J.S.:Free vibration of laminated and sandwich plates using enhanced plate theories.J.Sound Vib.308,268-286(2007)

    19.Mitchell,J.A.,Reddy,J.N.:A refined hybrid plate theory for composite laminates with piezoelectric laminae.Int.J.Solids Struct. 32,2345-2367(1995)

    20.Detwiler,D.T.,Shen,M.H.,Venkayya,V.B.:Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors.Finite Elem.Anal.Des.20,87-100(1995)

    21.Artel,J.,Becker,W.:Coupled and uncoupled analyses of piezoelectric free-edge effect in laminated plates.Compos.Struct.69,329-335(2005)

    22.Oh,J.H.,Cho,M.,Kim,J.S.:Buckling analysis of a composite shell with multiple delaminations based on a higher order zig-zag theory.Finite Elem.Anal.Des.44,675-685(2008)

    23.Lee,J.,Cho,M.,Kim,H.S.:Bending analysis of a laminated composite patch considering the free-edge effect using a stress-based equivalentsingle-layercomposite model.Int.J.Mech.Sci.53,606-616(2011)

    24.Kim,H.S.,Lee,J.,Cho,M.:Free-edge interlaminar stress analysis of composite laminates using interface modeling.J.Eng.Mech. 138,973-983(2012)

    25.Huang,B.,Kim,H.S.:Free-edge interlaminar stress analysis of piezo-bonded composite laminates under symmetric electric excitation.Int.J.Solids Struct.51,1246-1252(2014)

    26.Kim,H.S.,Cho,M.,Lee,J.,etal.:Three dimensionalstressanalysis of a composite patch using stress functions.Int.J.Mech.Sci.52,1646-1659(2010)

    27.Flanagan,G.:An efficient stress function approximation for the free-edge stresses in laminates.Int.J.Solids Struct.31,941-952(1994)

    28.Yin,W.L.:Free-edge effects in anisotropic laminates under extension,bending and twisting,Part I:a stress-function-based variational approach.J.Appl.Mech.61,410-415(1994)

    29.Yin,W.L.:Free-edge effects in anisotropic laminates under extension,bending,and twisting,Part II:eigenfunction analysis and the resultsforsymmetriclaminates.J.Appl.Mech.61,416-421(1994)

    30.Kerr,A.D.,Alexander,H.:An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate.Acta Mech.6,180-196(1968)

    31.Kerr,A.D.:An extended Kantorovich method for the solution of eigenvalue problems.Int.J.Solids Struct.5,559-572(1969)

    32.Tahani,M.,Andakhshideh,A.:Interlaminar stresses in thick rectangular laminated plates with arbitrary laminations and boundary conditions under transverse loads.Compos.Struct.94,1793-1804(2012)

    33.Tahani,M.,Naserian-Nik,A.M.:Bending analysis of piezolaminated rectangular plates under electromechanical loadings using multi-term extended Kantorovich method.Mech.Adv.Mater. Struct.20,415-433(2013)

    34.Kapuria,S.,Kumari,P.:Extended Kantorovich method for coupled piezoelasticity solution ofpiezolaminated plates showing edge effects.Proc.R.Soc.A Math.Phys.469,20120565(2013)

    35.Kapuria,S.,Kumari,P.:Extended Kantorovich method for threedimensional elasticity solution of laminated composite structures in cylindrical bending.Journal of Applied Mechanics 78,1774-1800(2011)

    36.Cho,M.,Kim,H.S.:Iterative free-edge stressanalysisofcomposite laminates underextension,bending,twisting and thermalloadings. Int.J.Solids Struct.37,435-459(2000)

    37.Kim,H.S.,Cho,M.,Kim,G.I.:Free-edge strength analysisin composite laminates by the extended Kantorovich method.Compos. Struct.49,229-235(2000)

    38.Lekhnitskii,S.G.:Theory of Elasticity of an Anisotropic Body. Holden-Day,San Francisco(1963)

    39.Tahani,M.,Nosier,A.:Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates. Mater.Des.24,121-130(2003)

    29 October 2015/Revised:9 March 2016/Accepted:12 April 2016/Published online:15 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    亚洲精华国产精华精| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 99国产精品一区二区三区| 精品午夜福利视频在线观看一区| 满18在线观看网站| 在线永久观看黄色视频| 一进一出抽搐gif免费好疼| 欧美日韩瑟瑟在线播放| 欧美成人免费av一区二区三区| cao死你这个sao货| 美女高潮喷水抽搐中文字幕| 999精品在线视频| 成人欧美大片| 最新在线观看一区二区三区| 丁香欧美五月| 国语自产精品视频在线第100页| 免费女性裸体啪啪无遮挡网站| 中文在线观看免费www的网站 | 免费在线观看影片大全网站| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品第一综合不卡| 国产激情偷乱视频一区二区| 欧美日韩乱码在线| 日韩免费av在线播放| 不卡av一区二区三区| 日本在线视频免费播放| 国产精华一区二区三区| 露出奶头的视频| 日韩精品青青久久久久久| 一级毛片女人18水好多| 亚洲av熟女| 日韩欧美一区视频在线观看| 久久久久久免费高清国产稀缺| 99国产精品99久久久久| 日本撒尿小便嘘嘘汇集6| 丝袜人妻中文字幕| 美女高潮喷水抽搐中文字幕| 亚洲成人精品中文字幕电影| 美国免费a级毛片| 成人亚洲精品av一区二区| 国产av一区在线观看免费| 国产成人av激情在线播放| 色综合婷婷激情| 亚洲专区字幕在线| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 中文字幕精品亚洲无线码一区 | 欧美激情极品国产一区二区三区| 亚洲真实伦在线观看| 男人舔女人的私密视频| 亚洲熟女毛片儿| 亚洲av成人不卡在线观看播放网| 亚洲精品久久成人aⅴ小说| 亚洲精品色激情综合| 亚洲av美国av| 午夜免费成人在线视频| 色哟哟哟哟哟哟| 制服人妻中文乱码| 啦啦啦观看免费观看视频高清| 日韩欧美在线二视频| √禁漫天堂资源中文www| 成年人黄色毛片网站| 国产精品国产高清国产av| 美国免费a级毛片| 久久伊人香网站| 满18在线观看网站| 2021天堂中文幕一二区在线观 | 亚洲人成77777在线视频| 亚洲最大成人中文| 免费在线观看成人毛片| 国产欧美日韩精品亚洲av| 久久久国产欧美日韩av| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡| 亚洲中文av在线| 午夜两性在线视频| 大型av网站在线播放| or卡值多少钱| 美女免费视频网站| 欧美日韩黄片免| 亚洲成a人片在线一区二区| 成人手机av| aaaaa片日本免费| 国产精品久久电影中文字幕| 一级毛片高清免费大全| 99久久99久久久精品蜜桃| 国产免费男女视频| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美三级三区| 人成视频在线观看免费观看| 精品无人区乱码1区二区| 亚洲国产中文字幕在线视频| 亚洲中文日韩欧美视频| 欧美精品啪啪一区二区三区| 亚洲午夜精品一区,二区,三区| 欧美 亚洲 国产 日韩一| 日韩精品中文字幕看吧| 久久久久久免费高清国产稀缺| 午夜福利18| 婷婷六月久久综合丁香| 老汉色∧v一级毛片| 18禁黄网站禁片免费观看直播| 久久久久久久久久黄片| 免费女性裸体啪啪无遮挡网站| 一夜夜www| 国产高清激情床上av| 一本一本综合久久| 琪琪午夜伦伦电影理论片6080| 曰老女人黄片| 91国产中文字幕| 久热爱精品视频在线9| 三级毛片av免费| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦 在线观看视频| 91麻豆精品激情在线观看国产| 波多野结衣av一区二区av| 老汉色∧v一级毛片| 亚洲av五月六月丁香网| 天天一区二区日本电影三级| 91老司机精品| 两人在一起打扑克的视频| 欧美日韩亚洲国产一区二区在线观看| 人人澡人人妻人| 精品高清国产在线一区| 久久久久免费精品人妻一区二区 | 国产蜜桃级精品一区二区三区| 一个人免费在线观看的高清视频| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| 午夜福利在线观看吧| 成年免费大片在线观看| 午夜久久久久精精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲电影在线观看av| 国产又爽黄色视频| 久久中文字幕一级| 国产色视频综合| 一卡2卡三卡四卡精品乱码亚洲| 午夜老司机福利片| 日韩大尺度精品在线看网址| 女同久久另类99精品国产91| 精品久久久久久,| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 午夜福利成人在线免费观看| 欧美成狂野欧美在线观看| 99riav亚洲国产免费| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 我的亚洲天堂| 少妇 在线观看| 午夜福利18| 国产一区二区三区在线臀色熟女| 中文字幕人妻熟女乱码| 免费在线观看成人毛片| 久久久久国产一级毛片高清牌| 热re99久久国产66热| 久久香蕉精品热| 看片在线看免费视频| 亚洲国产精品久久男人天堂| 国产成人av激情在线播放| 麻豆成人av在线观看| 黄色 视频免费看| 白带黄色成豆腐渣| 一级作爱视频免费观看| 亚洲狠狠婷婷综合久久图片| 国产免费av片在线观看野外av| 自线自在国产av| 亚洲色图av天堂| www日本在线高清视频| www国产在线视频色| 日韩大码丰满熟妇| 夜夜爽天天搞| 午夜福利在线在线| 国产成人欧美| 999久久久精品免费观看国产| 国产精品 欧美亚洲| 无人区码免费观看不卡| 淫妇啪啪啪对白视频| 精品福利观看| 日本 av在线| 妹子高潮喷水视频| 国产av一区二区精品久久| 日本免费a在线| 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 色婷婷久久久亚洲欧美| 91成人精品电影| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀| 免费看美女性在线毛片视频| 亚洲一区高清亚洲精品| 国产精品亚洲美女久久久| 日韩免费av在线播放| 哪里可以看免费的av片| 美女高潮喷水抽搐中文字幕| 大香蕉久久成人网| 久久性视频一级片| 国产真实乱freesex| 丝袜人妻中文字幕| xxxwww97欧美| 亚洲欧美精品综合久久99| 人人澡人人妻人| 亚洲三区欧美一区| 宅男免费午夜| 久久国产精品男人的天堂亚洲| 亚洲国产精品999在线| av在线播放免费不卡| a级毛片a级免费在线| 欧美人与性动交α欧美精品济南到| 最新美女视频免费是黄的| 国产精品国产高清国产av| 亚洲自拍偷在线| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 少妇粗大呻吟视频| av有码第一页| aaaaa片日本免费| 欧美一级a爱片免费观看看 | 天堂影院成人在线观看| 国产精品国产高清国产av| 亚洲第一av免费看| 大香蕉久久成人网| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| av在线播放免费不卡| 亚洲七黄色美女视频| 亚洲欧美精品综合久久99| 日本熟妇午夜| 丰满的人妻完整版| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看| 黄色 视频免费看| 亚洲成人精品中文字幕电影| 亚洲,欧美精品.| 18禁裸乳无遮挡免费网站照片 | 国产野战对白在线观看| 婷婷六月久久综合丁香| 国产又爽黄色视频| 欧美成人性av电影在线观看| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久久毛片微露脸| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 欧美激情久久久久久爽电影| 日韩精品免费视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美中文日本在线观看视频| 欧美日本视频| 欧美 亚洲 国产 日韩一| 黄网站色视频无遮挡免费观看| 国产爱豆传媒在线观看 | 波多野结衣巨乳人妻| 超碰成人久久| 好男人电影高清在线观看| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| 少妇被粗大的猛进出69影院| 91av网站免费观看| 国产日本99.免费观看| 少妇的丰满在线观看| 熟妇人妻久久中文字幕3abv| 午夜福利18| 哪里可以看免费的av片| 久久香蕉激情| 高潮久久久久久久久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| 脱女人内裤的视频| 一区二区三区激情视频| 亚洲真实伦在线观看| 琪琪午夜伦伦电影理论片6080| 欧美黑人欧美精品刺激| 久久香蕉国产精品| 国产成人av教育| 国产亚洲精品av在线| 日本五十路高清| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 精品第一国产精品| 亚洲免费av在线视频| 免费高清在线观看日韩| 成人免费观看视频高清| 性色av乱码一区二区三区2| 琪琪午夜伦伦电影理论片6080| 亚洲精品一区av在线观看| 亚洲 欧美 日韩 在线 免费| 国产成人欧美在线观看| 国产精品av久久久久免费| 听说在线观看完整版免费高清| 久久天躁狠狠躁夜夜2o2o| 亚洲全国av大片| 亚洲成人久久性| 不卡一级毛片| 人人妻,人人澡人人爽秒播| 欧美成人午夜精品| 美国免费a级毛片| 欧美日韩瑟瑟在线播放| 精品电影一区二区在线| 草草在线视频免费看| 欧美大码av| 我的亚洲天堂| 一进一出抽搐动态| 女人被狂操c到高潮| 熟女少妇亚洲综合色aaa.| 一个人免费在线观看的高清视频| 丝袜美腿诱惑在线| 久久狼人影院| 亚洲片人在线观看| 长腿黑丝高跟| 国产精品,欧美在线| 国产又爽黄色视频| 日本五十路高清| 宅男免费午夜| 久久久精品欧美日韩精品| 日韩欧美 国产精品| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 无限看片的www在线观看| 午夜激情av网站| 岛国视频午夜一区免费看| 国产极品粉嫩免费观看在线| 国产黄片美女视频| 欧美激情 高清一区二区三区| 两性夫妻黄色片| 久久精品成人免费网站| 日韩大尺度精品在线看网址| 亚洲国产欧美日韩在线播放| 国产欧美日韩精品亚洲av| 好男人电影高清在线观看| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 国产熟女午夜一区二区三区| 亚洲最大成人中文| 视频区欧美日本亚洲| 国产久久久一区二区三区| 国产精品亚洲一级av第二区| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 草草在线视频免费看| 男人操女人黄网站| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 中文字幕久久专区| 99热只有精品国产| 十分钟在线观看高清视频www| 婷婷精品国产亚洲av| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 女人高潮潮喷娇喘18禁视频| www.www免费av| 亚洲av成人一区二区三| 国产精品,欧美在线| 久久久国产成人精品二区| 不卡一级毛片| 欧美黑人巨大hd| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 免费搜索国产男女视频| 精品午夜福利视频在线观看一区| 欧美一级毛片孕妇| 啦啦啦观看免费观看视频高清| 亚洲三区欧美一区| 老熟妇仑乱视频hdxx| 亚洲男人天堂网一区| 色播亚洲综合网| 99久久国产精品久久久| 国内精品久久久久精免费| 欧美日韩瑟瑟在线播放| 美女免费视频网站| 欧美zozozo另类| 欧美成狂野欧美在线观看| 欧美色视频一区免费| 国产亚洲欧美98| 可以在线观看的亚洲视频| 国产激情欧美一区二区| 亚洲精品中文字幕在线视频| 亚洲男人天堂网一区| 亚洲五月婷婷丁香| 91大片在线观看| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 精品国产国语对白av| 亚洲男人天堂网一区| 午夜福利成人在线免费观看| 欧美日本亚洲视频在线播放| 久久草成人影院| 国产在线观看jvid| 欧美国产日韩亚洲一区| 久久中文看片网| 淫妇啪啪啪对白视频| 老汉色av国产亚洲站长工具| 真人做人爱边吃奶动态| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 亚洲精品中文字幕在线视频| 精品无人区乱码1区二区| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 欧美在线黄色| 正在播放国产对白刺激| АⅤ资源中文在线天堂| 精品久久久久久久人妻蜜臀av| 1024香蕉在线观看| 亚洲第一电影网av| 精品久久久久久,| 夜夜爽天天搞| 在线观看免费午夜福利视频| 国产精品国产高清国产av| 91成年电影在线观看| 在线av久久热| 国产精品99久久99久久久不卡| 999久久久国产精品视频| 琪琪午夜伦伦电影理论片6080| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 国产伦人伦偷精品视频| 成年女人毛片免费观看观看9| 久久热在线av| 国产99白浆流出| АⅤ资源中文在线天堂| 好男人在线观看高清免费视频 | svipshipincom国产片| 变态另类成人亚洲欧美熟女| 精品国产乱码久久久久久男人| 成人精品一区二区免费| 99热只有精品国产| 国产激情久久老熟女| 日韩免费av在线播放| 免费看十八禁软件| 免费在线观看视频国产中文字幕亚洲| 欧美激情极品国产一区二区三区| 天堂影院成人在线观看| 中文字幕人成人乱码亚洲影| 99久久国产精品久久久| 国内少妇人妻偷人精品xxx网站 | 2021天堂中文幕一二区在线观 | 日本成人三级电影网站| tocl精华| 国产精品影院久久| 美女扒开内裤让男人捅视频| 岛国视频午夜一区免费看| 麻豆一二三区av精品| 制服丝袜大香蕉在线| 国语自产精品视频在线第100页| 大香蕉久久成人网| 午夜福利在线在线| 国产激情久久老熟女| 精品乱码久久久久久99久播| 国产1区2区3区精品| 午夜亚洲福利在线播放| 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| 成年人黄色毛片网站| 啦啦啦韩国在线观看视频| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| 波多野结衣高清无吗| 后天国语完整版免费观看| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 99国产精品99久久久久| 国产一区二区在线av高清观看| 成年免费大片在线观看| 97碰自拍视频| 久久香蕉激情| 啦啦啦观看免费观看视频高清| 亚洲成av片中文字幕在线观看| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 亚洲男人的天堂狠狠| 2021天堂中文幕一二区在线观 | 一级毛片精品| 亚洲av熟女| 欧美乱码精品一区二区三区| 天天添夜夜摸| 色综合婷婷激情| 色综合站精品国产| 一级毛片女人18水好多| 亚洲成av片中文字幕在线观看| 国内久久婷婷六月综合欲色啪| 欧美av亚洲av综合av国产av| 国内精品久久久久久久电影| 久久精品人妻少妇| 欧美日韩一级在线毛片| 久久久久久人人人人人| 男女视频在线观看网站免费 | 日韩欧美在线二视频| 婷婷精品国产亚洲av在线| 国产熟女午夜一区二区三区| 不卡一级毛片| 一区二区三区精品91| 国语自产精品视频在线第100页| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 免费在线观看黄色视频的| 久久精品91蜜桃| 男女视频在线观看网站免费 | 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| 成人一区二区视频在线观看| 国产欧美日韩精品亚洲av| 精品国产乱子伦一区二区三区| 国产精品二区激情视频| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 久久伊人香网站| 一级a爱片免费观看的视频| 欧美中文日本在线观看视频| 成人三级黄色视频| 十分钟在线观看高清视频www| 国产精品影院久久| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 国产精华一区二区三区| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 欧美不卡视频在线免费观看 | 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久久久免费视频| 亚洲第一青青草原| 国产精品 欧美亚洲| 他把我摸到了高潮在线观看| 国产又黄又爽又无遮挡在线| 欧美激情 高清一区二区三区| 黄色丝袜av网址大全| 国产精品久久久久久精品电影 | 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 麻豆成人av在线观看| 一区二区三区精品91| 一区二区三区激情视频| 制服诱惑二区| 亚洲成人免费电影在线观看| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 国产视频一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 婷婷亚洲欧美| 夜夜爽天天搞| 欧美日韩精品网址| 国产精品 国内视频| 国产精品1区2区在线观看.| 中亚洲国语对白在线视频| 国产精品98久久久久久宅男小说| 1024视频免费在线观看| 国产视频一区二区在线看| 午夜精品在线福利| 丝袜在线中文字幕| 久久久国产成人免费| www.自偷自拍.com| 久久久国产成人精品二区| 精品国产一区二区三区四区第35| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 最新美女视频免费是黄的| 十八禁网站免费在线| 一级毛片女人18水好多| 久久香蕉国产精品| 国产亚洲精品av在线| 欧美激情高清一区二区三区| 激情在线观看视频在线高清| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 国产真实乱freesex| 18禁观看日本| 国产成人av教育| 国产av在哪里看| 99久久精品国产亚洲精品| 午夜福利18| 色综合欧美亚洲国产小说| www日本黄色视频网| 国产精品亚洲av一区麻豆| ponron亚洲| 99久久无色码亚洲精品果冻| 亚洲午夜理论影院| 久久精品影院6| aaaaa片日本免费| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 久热爱精品视频在线9| a级毛片a级免费在线| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 欧美在线一区亚洲| 久久热在线av| 久久国产精品男人的天堂亚洲| 禁无遮挡网站| 国产精品国产高清国产av| 淫秽高清视频在线观看| 天堂影院成人在线观看| 美女大奶头视频| 一本久久中文字幕| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| xxx96com| 丁香欧美五月| 在线观看免费午夜福利视频| 欧美又色又爽又黄视频| 首页视频小说图片口味搜索| avwww免费|