• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Entropic force between biomembranes

    2016-11-04 08:53:57LongLiFanSong
    Acta Mechanica Sinica 2016年5期

    Long Li·Fan Song

    ?

    RESEARCH PAPER

    Entropic force between biomembranes

    Long Li1,2·Fan Song1,2

    Undulation force,an entropic force,stems from thermally excited fluctuations,and plays a key role in the essential interactions between neighboring surfaces of objects.Although the characteristics of the undulation force have been widely studied theoretically and experimentally,the distance dependence of the force,which constitutes its mostfundamentalcharacteristic,remains poorly understood. In this paper,first,we obtain a novelexpression forthe undulation force by employing elasticity and statisticalmechanics and prove it to be in good agreement with existing experimental results.Second,we clearly demonstrate that the two representative forms of the undulation force proposed by Helfrich and Freund were respectively the upper and lower bounds of the present expression when the separation between membranes is sufficiently small,which was intrinsically different from the existing results where Helfrich’s and Freund’s forms ofthe undulation force were only suitable for the intermediate and small separations.The investigations show that only in a sufficiently small separation does Helfrich’s result stand for the undulation force with a large wave number and Freund’s result express the force with a small wave number.Finally,a critical acting distance of the undulation force,beyond which the entropic force will rapidly decay approaching zero,is presented.

    ? Fan Song songf@lnm.imech.ac.cn

    1State Key Laboratory of Nonlinear Mechanics(LNM)and Beijing Key Laboratory of Engineered Construction and Mechanobiology,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China

    Undulation force·Flexible membrane·Entropic force·Confined fluctuations

    1 Introduction

    There always exist various attractive and repulsive forces that mediate between neighboring surfaces of objects,in which the van der Waals and undulation force are mainly responsible for the attractive and repulsive forces,respectively[1,2].Because the value of the undulation force is usually very small[2],its effect willefficiently emerge when the scales of objects are smaller than a micron.However,the undulation force usually plays a key role in the interactions between neighboring surfaces of microscale objects.Earlier studies showed that the undulation force governs the various cellular processes,for example,sperm-egg fusion and cell adhesion,binding-unbinding transition,and self-assembly[1-8];affects the structural stability of liquid crystals[9,10],surfactants[11],and DNA[12];regulates the mechanical behaviors of polymers[13],proteins[14],gels[15],and graphemes[16,17].In addition,the undulation force can affect the binding affinity of membrane-anchored proteins[18]and the self-assembly of polymers[19].

    The concept and quantitative nature of the undulation force were proposed by Helfrich[20]in his original and pioneering work nearly four decades ago.Helfrich approximately treated a biomembrane as lots of very small elements that fluctuated independently,like the molecules of an ideal gas.He asserted that the undulation force essentially varies with c-3,where c is the separation between neighboring membranes[20].Although some assumptions and simplifications were introduced in Helfrich’s investigations[20,21],his results were stillsupported by succeeding studies,including theoretical[1,22-25]and experimental work[11,26],aswellas computational simulations[27,28].Recently,Freund[29]reexamined the entropic force underconditions in which some of Helfrich’s assumptions[20]were abandoned.Based on the theories of elasticity and statistical mechanics,Freund obtained a set of equations where the undulation force was satisfied.Itwas regretfulthathe gave no integralexpression ofthe undulation force because he did notdetermine the bounds of the transverse deflection of biomembranes.However,employing the asymptotic properties of the equations,Freund[29]found that the undulation force varied with c-1over a large range of separations.This result was in stark contrast to Helfrich’s well-accepted result,immediately triggered a series of disputes[2,29-35].More recently,many studies have presented deep discussions on the difference between the two results and examined the distance dependence of the undulation force.Auth and Gompper[32]and Hanlumyuang et al.[33]divided the acting distance of the undulation force into three regions.Based on Monte Carlo simulations,they proposed that Helfrich’s result remained valid forintermediate separations,while the undulation force f roughly satisfied f~ 1/(ca2)for small separations. Therefore,the undulation force was deemed to have a c-1dependence in small separations.Clearly,the role of the lattice constant,a,which discretized a membrane in the Monte Carlo simulations,was neglected in the distance dependence of the force.The transition length between the two regions was given as dtran≈a(kBT/κ)1/2,which wasalso associated with the discretized length;here,κ is the bending rigidity of the membrane.This implied thatdetermining the value ofthe undulation force heavily relies on the presetparametersin the simulations.For larger separations,Auth and Gompper[32]treated the entire membrane as a soft particle and obtained a c-1force law forseparations largerthan the crossoverlength,0.4 L(kBT/κ)1/2,while Hanlumyuang et al.[33]showed a c-ηdependence for the force,in which both the power η and the transition length to c-ηdependence were not integrally given.This is an indication that the distance dependence of the undulation force remains poorly understood.

    In the present study,based on the theories of elasticity and statisticalmechanics,we obtain an exactintegralexpression of the undulation force with respect to the separation between membranes and show it to be in good agreement with existing experimentaldata.Analyzing the expression of the undulation force,we demonstrate thatthe two representative forms of the undulation force proposed by Helfrich and Freund are not in contradiction to each other.When the separation between membranes is sufficiently small,Helfrich’s result shows the undulation force on the membrane with a large wave number,while Freund’s result gives the undulation force on the membrane with a small wave number.The two forms of undulation force correspond respectively to the upper and lower bounds of the present result when the separation is sufficiently small.Finally,a critical acting distance ofthe undulation force,beyond which the entropic force will rapidly decay as it approaches zero,is presented.

    2 Model of undulation force

    To investigate the undulation force and its properties,we focus on a single flexible membrane confined between two parallel rigid planes of spacing 2c,as done by Helfrich and Servuss[20,21]and Freund[29].This is an appropriate model that can be used to study the interactions between membranes in a stack;in terms of a stack with a large number of membranes,the behavior of any single membrane far from eitherend ofthe stack exhibits reflective symmetry with respectto itsreference plane,and the behaviorofneighboring membranes also exhibits reflective symmetry with respect to a plane midway between the reference planes of the two membranes[20,21,29].We assume that the membrane satisfies the periodic boundary conditions on the edges and its reference plane occupies the portion 0≤x≤L,0≤y≤L of the xy-plane(Fig.1).

    The transverse deflection of the membrane related to the reference plane is assumed to be h(x,y),which obviously satisfies the confined condition:

    We write the transverse deflection as a complex wave[20,36]:

    where i is the imaginary unit,q=(π/L)(m,n)and r=(x,y)are the wave and coordinate vectors of the membrane,respectively,and the amplitude of the wave satisfies h-q= h?q,in which the star denotes complex conjugation.Here m and n are integral numbers,and physically,|m|=L/λxand |n|=L/λyrespectively correspond to the wave numbers of the thermal fluctuation modes of the membrane in the x-and y-directions,and λxand λyare the wavelengths in the xand y-directions,respectively.Further,we extend h(r)to the domain of-L≤x,y≤L such that h(r)satisfies Eq.(2)in0≤x≤L,0≤y≤L,and h(r)=0 otherwise.Thus,the amplitude of the wave is given by the Fourier integral and substituting Eq.(1) into Eq.(3)yields the bounds of the amplitudes

    Fig.1 Schematic diagram showing a thermally fluctuating square biomembrane with dimension of L×L confined between two rigid planes of separation 2c.h(x,y)is the transverse deflection of the membrane related to the reference plane positioned in xy-plane of coordinates

    The total elastic bending energy of the membrane is written

    where ε=(κ/2)(?2h/?x2+?2h/?y2)2denotes the elastic bending energy per unit area of the membrane[20].

    According to the theory of statistical mechanics,the thermodynamic partition function of a membrane is

    where β=1/(kBT),kBis the Boltzmann constant,T is the absolute temperature,is the error function,and ωmnis a dimensionless factor

    Based on Eq.(6),the free energy of the membrane is expressed as

    Thus,the entropic force acting on the membrane is obtained as

    where

    Obviously,Eq.(9)gives an integral expression of the undulation force exerted on a membrane and shows that the distance dependence of the force is strongly nonlinear and very complex,which is intrinsically different from existing theoretical and computational results.This is because ωmnin Eq.(9)explicitly includes the separation between membranes,c,as indicated in Eq.(7).Simultaneously,Eq.(9)is also dependent strongly on the wave numbers of the membrane,m and n.

    In fact,the thermally excited membrane fluctuation stems intrinsically from the stimulation of Brownian motion of solvent molecules,which results in there being no preferential orientation of the undulation force acting in the plane of the membrane with the thermally excited fluctuation.Therefore,the wavelength of the waves generated by thermal excited fluctuation in the x-and y-directions in the plane of the membrane itself should be equal statistically to one another.In terms of the square membrane studied here,the wave numbers of the membrane in the x-and y-directions,m and n,should be equal statistically to one another.

    According to Eq.(7),when m=n,ωmnis written as

    Substituting Eq.(11)into Eq.(9),the undulation force is written as

    where k is associated with the wave number of the membrane and m=n=2k-1.With an increase in k,the undulation force in Eq.(12)also increases monotonically. This is an indication thatthe wave numberyielded in a membrane plays a key role in the undulation force generated on the membrane.In addition,because Φ(ωmn)is a monotonically decreasing function with respect to ωmnfrom Eq.(10),Eq.(12)in fact stands for the minimum curve of Eq.(9)and appropriately expresses the undulation force exerted on a square membrane.

    Comparing the results of Eq.(12)with the existing experimental data[26],we find that the present results are in good agreement with the experimental results(Fig.2).

    Fig.2 Computational plots showing distance dependence of undulation force;solid lines:results ofEq.(12)for T=300 Kand L=1.0μm;points are derived from the experimental data from Ref.[24];inset displays detail of comparison between present and experimental results

    Fig.3 Computational plots showing lower and upper bounds of undulation force when separation is sufficiently small(here the separation is coarsely three orders of magnitude smaller than the side length of the membrane)for a membrane with κ=5.0 kBT and L=1.0μm.The lower(slop=-1)and upper(slop=-3)lines correspond respectively to Freund’s and Helfrich’s results

    3 Properties of undulation force

    We now investigate the two extreme cases of the undulation force in Eq.(12).First,when a membrane only generates a single wave underthe undulation force,the wavelength ofthe wave will be at the maximum value,λx=λy=λmax=L. Thus,the wave number of the membrane is at its minimum value,mmin=nmin=kmin=L/λmax=1.At this time,the undulation force stands for the minimum value of Eq.(12),which is expressed as

    In particular,if the variation ω is sufficiently small,ω?1,i.e.,the separation between the membranes is very small,c?L,then Eq.(13)is reduced to

    Equation(14)shows that the undulation force varies with c-1when c? L,which is identical to the result given by Freund[29]and is in agreement with the results of Auth and Gompper[32]and Hanlumyuang et al.[33]for small separations.Obviously,Eq.(14)forms the lower bound of Eq.(12)when the separation is sufficiently small(Fig.3).

    Note thatifthe membrane is perfectly rigid,its wave number is equal to one.Equation(13)obviously includes the undulation force exerted on the rigid membrane.

    Second,we considerthatthe dimensions ofthe membrane approach a single molecularscale.In this case,the membrane is similar to a single molecule that keeps random thermal vibrations in the direction normal to the reference plane of the membrane.Atthis time,both the wavelength ofthe membrane in the x-and y-directions are at their minimum values, λx=λy=λmin,and the energy of the thermal motion in a single direction is roughly 1/(2β).Therefore,the maximum value of the wave number is mmax=nmax=L/λmin. According to Eqs.(4)and(5),the value of the wave vector is and the maximum amplitude of the wave satisfies,and the elastic bending energy of the membrane is calculated asBy equating the elastic bending energy to the energy of thermal motion,we obtain the minimum wavelength of the thermal fluctuation of the membrane:

    In termsofthe membrane withthe given edgesof L×L,we note that its maximum wave numbers are mmax=nmax= L/λmin=2kmax-1.Substituting Eq.(15)into Eq.(12)yields the maximum value of the undulation force,

    where kmax?1 is used in Eq.(16).

    If the separation is sufficiently small,ω?1 or c? L,Eq.(16)is written

    Over the separation range of c? L,Eq.(17)clearly indicates that the undulation force varies with c-3.Equation(17)can readily be written in the form of entropic pressure,pmax=fmax/L2=1/(16κβ2c3),which is in agreementwith the resultgiven by Helfrich and Servuss[21]. Obviously,Eq.(17)forms the upper bound of the undulation force in Eq.(12),as shown in Fig.3.

    Fig.4 Computational plots showing critical acting distance of undulation force,ccrit.The curves stand for the undulation forces of the membrane with the same wave number and different bending rigidity for T=300K,L=1.0μm,wherecorrespond to the different critical distances with the different bending rigidities of membranes.Insert:same data in a double logarithmic coordinate

    As stated earlier,the two forms of the undulation force proposed separately by Helfrich[20]and Freund[29]are not contradictory to each other and respectively stand for the upper and lower bounds of the presented result under the condition that the separation is sufficiently small.In fact,Helfrichshowedtheundulationforceaffectingthemembrane with the large wave number,while Freund gave the undulationforceactingonthemembranewithasmallwavenumber. Obviously,the result here is intrinsically different from the explanations of the two undulation forces given by Auth and Gompper[32]and Hanlumyuang et al.[33].

    Finally,if the separation between membranes is sufficiently large,i.e.,ω?1,then the value of the undulation force,from Eq.(12),will approach zero.In fact,according to the nature of the error function,when ω≥2.0,the error functionwillrapidlyapproach1,theerrorofwhichis<0.5%. Because Φ(ωmn)in Eq.(10)is a monotonically decreasing functionwithrespecttoωmn,theundulationforceinEq.(12)will rapidly approach zero.According to Eq.(11),we obtain the distance

    Equation(18)shows that there exists a critical separation on the undulation force.Once the separation between membranes is larger than the critical length,the undulation force generated between the membranes will decay and rapidly approach zero(Fig.4).

    4 Conclusions

    Based on the theories of elasticity and statistical mechanics,an exact integral expression of the undulation force is given in this study.The present result is proved to be in good agreement with existing experiments.Based on the expression of the undulation force,we demonstrate that Helfrich’s and Freund’s results stand respectively for undulation forces on membranes with large and small wave numbers and correspond respectively to the upper and lower bounds of the presented result when the separation between membranes is sufficientlysmall.Acriticaldistancebetweenmembraneson which the undulation force effectively acts is presented.

    Acknowledgments The project was supported by the programs in the National Natural Science Foundation of China(Grants 11232013 and 11472285).L.LithanksL.B.FreundandR.Lipowskyforinsightfuldiscussions.F.SongisverygratefultoY.L.BaiofStateKeyLaboratoryof Nonlinear Mechanics and F.J.Ke of Beijing University of Aeronautics and Astronautics for helpful discussions.

    1.Israelachvili,J.N.,Wennerstr?m,H.J.:Entropic forces between amphiphilic surfaces in liquids.Chem.Phys.96,520-531(1992)

    2.Sharma,P.:Entropic force between membranes reexamined.Proc. Natl.Acad.Sci.USA 110,1976-1977(2013)

    3.Lin,Y.,Freund,L.B.:Anlowerboundonreceptordensityforstable cell adhesion due to thermal undulations.J.Mater.Sci.42,8904-8910(2007)

    4.Yin,Y.J.,Chen,Y.Q.,Ni,D.,et al.:Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes.J.Biomech.38,1433-1440(2005)

    5.Xu,G.K.,Feng,X.Q.,Zhao,H.P.,et al.:Theoretical study on the competition between cell-cell and cell-matrix adhesions.Phys. Rev.E 80,011921(2009)

    6.Zhong,Y.,Ji,B.H.:How do cells produce and regulate the driving force in the process of migration?Eur.Phys.J.Spec.Top.223,1373-1390(2014)

    7.Lindahl,E.,Edholm,O.:Mesoscopic undulations and thickness fluctuationsinlipidbilayersfrommoleculardynamicssimulations. Biophys.J.79,426-433(2000)

    8.Merath,R.J.,Seifert,U.:Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate.Phys.Rev. E 73,010401(R)(2006)

    9.Ho,I.L.:Fluctuation-induced non-equilibrium transition in a liquid-crystal metastable system.Phys.A 391,1952-1962(2012)

    10.Loudet,J.C.,Dolganov,P.V.,Patrício,P.,et al.:Undulation instabilities in the meniscus of smectic membranes.Phys.Rev.Lett. 106,117802(2011)

    11.Safinya,C.R.,Roux,D.,Smith,G.S.,et al.:Steric interactions in a model multimembrane system:a synchrotron X-ray study.Phys. Rev.Lett.57,2718-2721(1986)

    12.Beales,P.A.,Vanderlick,T.K.:DNA as membrane-bound ligandreceptor pairs:duplex stability is tuned by intermembrane forces. Biophys.J.96,1554-1565(2009)

    13.Bouglet,G.,Ligoure,C.:Polymer-mediated interactions of fluid membranes in a lyotropic lamellar phase:a small angle X-ray and neutron scattering study.Eur.Phys.J.B 9,137-147(1999)

    14.Giahi,A.,Faris,M.E.A.,Bassereau,P.,et al.:Active membranes studied by X-ray scattering.Eur.Phys.J.E 23,431-437(2007)

    15.West,B.,Schmid,F.:Fluctuations and elastic properties of lipid membranes in the gel Lβ′,state:a coarse-grained Monte Carlo study.Soft Matter.6,1275-1280(2010)

    16.Wei,Y.J.,Wang,B.L.,Wu,J.T.,etal.:Bending rigidity and gaussian bending stiffnessofsingle-layered grapheme.Nano Lett.13,26-30(2013)

    17.Du,F.,Duan,H.L.,Xiong,C.Y.,etal.:Substrate wettability requirement for the direct transfer of graphene.Appl.Phys.Lett.107,143109(2015)

    18.Xu,G.K.,Hu,J.L.,Lipowsky,R.,et al.:Binding constants of membrane-anchored receptors and ligands:A general theory corroborated by Monte Carlo simulations.J.Chem.Phys.143,243136(2015)

    19.Xu,G.K.,Feng,X.Q.,Li,Y.:Self-assembled nanostructures of homopolymerand diblock copolymerblends in a selective solvent. J.Phys.Chem.B 114,1257-1263(2010)

    20.Helfrich,W.:Steric interaction of fluid membranes in multilayer systems.Z.Naturforsch.Sect.A 33,305-315(1978)

    21.Helfrich,W.,Servuss,R.-M.:Undulation,steric interaction and cohesion of fluid membranes.Il.Nuovo.Cimento.D 3,137-151(1984)

    22.Kleinert,H.:Fluctuation pressure of membrane between walls. Phys.Lett.A 257,269-274(1999)

    23.Kastening,B.:Fluctuation pressure of a membrane between walls through five loops.Phys.Rev.E 66,061102(2002)

    24.Kastening,B.:Fluctuation pressure of a fluid membrane between walls through six loops.Phys.Rev.E 73,011101(2006)

    25.Bachmann,M.,Kleinert,H.,Pelster,A.:Strong-coupling calculation of fluctuation pressure of a membrane between walls.Phys. Lett.A 261,127-133(1999)

    26.Bulut,S.,?slund,I.,Topgaard,D.,etal.:Lamellarphase separation in a centrifugal field.A method for measuring interbilayer forces. Soft Matter.6,4520-4527(2010)

    27.Janke,W.,Kleinert,H.:Fluctuation pressure ofmembrane between walls.Phys.Lett.A 117,353-357(1986)

    28.Gompper,G.,Kroll,D.:Steric interactions in multimembrane systems:a Monte Carlo study.Europhys.Lett.9,59-64(1989)

    29.Freund,L.B.:Entropic pressure between biomembranes in a periodic stack due to thermal fluctuations.Proc.Natl.Acad.Sci.USA 110,2047-2051(2013)

    30.Wennerstr?m,H.,Olsson,U.,Israelachvili,J.N.:Entropic force between fluid layers.Proc.Natl.Acad.Sci.USA 110,E2944(2013)

    31.Freund,L.B.:Reply to Wennerstr?m et al.:Entropic forces on a confined membrane.Proc.Natl.Acad.Sci.USA 110,E2945(2013)

    32.Auth,T.,Gompper,G.:Fluctuation pressure of biomembranes in planar confinement.Phys.Rev.E 88,010701(R)(2013)

    33.Hanlumyuang,Y.,Liu,L.P.,Sharma,P.:Revisiting the entropic force between fluctuating biological membranes.J.Mech.Phys. Solids.63,179-186(2013)

    34.Wennerstr?m,H.,Olsson,U.:The undulation force;theoretical results versus experimental demonstrations.Adv.Colloid.Interface.Sci.208,10-13(2014)

    35.Freund,L.B.:Fluctuation pressure on a bio-membrane confined within a parabolic potential well.Acta Mech.Sin.28,1180-1185(2012)

    36.Gosselin,P.,Mohrbach,H.,Müller,M.M.:Interface-mediated interactions:entropic forces of curved membranes.Phys.Rev.E 83,051921(2011)

    11 March 2016/Revised:5 May 2016/Accepted:12 May 2016/Published online:11 August 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    3wmmmm亚洲av在线观看| 国产aⅴ精品一区二区三区波| 免费观看精品视频网站| 熟女电影av网| 精品国产三级普通话版| 亚洲av第一区精品v没综合| 久久久久性生活片| 中国美白少妇内射xxxbb| 午夜福利高清视频| 久久久久久国产a免费观看| av卡一久久| 干丝袜人妻中文字幕| 亚洲人成网站在线观看播放| 寂寞人妻少妇视频99o| 色综合亚洲欧美另类图片| 狠狠狠狠99中文字幕| 国产人妻一区二区三区在| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在 | 欧美日韩一区二区视频在线观看视频在线 | 日本黄大片高清| 国产蜜桃级精品一区二区三区| 最近视频中文字幕2019在线8| 简卡轻食公司| 午夜免费男女啪啪视频观看 | 色视频www国产| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 中文字幕熟女人妻在线| 国产黄色视频一区二区在线观看 | 精品久久久久久久久久久久久| 搞女人的毛片| 搡老熟女国产l中国老女人| 在线观看66精品国产| 男人舔女人下体高潮全视频| 久久午夜福利片| 欧美高清性xxxxhd video| 日韩精品中文字幕看吧| 久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 亚洲欧美精品综合久久99| 国产免费男女视频| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| 特级一级黄色大片| 深夜a级毛片| 成人漫画全彩无遮挡| 中文字幕精品亚洲无线码一区| 亚洲丝袜综合中文字幕| 人人妻,人人澡人人爽秒播| 一级毛片电影观看 | 丰满人妻一区二区三区视频av| 成人漫画全彩无遮挡| 欧美性猛交╳xxx乱大交人| 两个人视频免费观看高清| 日日干狠狠操夜夜爽| 69av精品久久久久久| 毛片女人毛片| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添小说| 三级国产精品欧美在线观看| 久久久精品94久久精品| 简卡轻食公司| 成人永久免费在线观看视频| 日本 av在线| av卡一久久| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 99热只有精品国产| 少妇人妻精品综合一区二区 | 亚洲欧美日韩东京热| 美女大奶头视频| 精品免费久久久久久久清纯| 别揉我奶头 嗯啊视频| 亚洲专区国产一区二区| 亚洲av成人av| 精品无人区乱码1区二区| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线 | 91久久精品电影网| h日本视频在线播放| 寂寞人妻少妇视频99o| www日本黄色视频网| 久久久久久伊人网av| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 日韩强制内射视频| 中文资源天堂在线| 女同久久另类99精品国产91| 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| 国内精品宾馆在线| 亚洲久久久久久中文字幕| 天堂av国产一区二区熟女人妻| 我的老师免费观看完整版| 国产精品一区二区三区四区久久| 亚洲精品国产av成人精品 | 国产精品久久久久久亚洲av鲁大| 亚洲精品粉嫩美女一区| av卡一久久| 老司机福利观看| 欧美日韩国产亚洲二区| 亚洲精品一区av在线观看| 亚洲最大成人av| 男人的好看免费观看在线视频| 直男gayav资源| 黄色配什么色好看| 色噜噜av男人的天堂激情| 欧美性猛交黑人性爽| 春色校园在线视频观看| 亚洲av不卡在线观看| 亚洲无线观看免费| 又粗又爽又猛毛片免费看| 亚洲一级一片aⅴ在线观看| 色哟哟·www| 免费搜索国产男女视频| 久久久色成人| 中文字幕免费在线视频6| 国产精品永久免费网站| 天堂动漫精品| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 国产欧美日韩一区二区精品| 男人狂女人下面高潮的视频| 99热这里只有是精品50| 97碰自拍视频| 在线观看午夜福利视频| 亚洲欧美成人精品一区二区| 久久婷婷人人爽人人干人人爱| 99久国产av精品国产电影| 欧美潮喷喷水| 国产不卡一卡二| 一区二区三区免费毛片| 看黄色毛片网站| 亚洲自拍偷在线| 久久韩国三级中文字幕| 真人做人爱边吃奶动态| 在线观看一区二区三区| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 香蕉av资源在线| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 久久中文看片网| 最近2019中文字幕mv第一页| 天堂网av新在线| 全区人妻精品视频| 亚洲成人久久爱视频| 尾随美女入室| 91麻豆精品激情在线观看国产| 国产精品一区www在线观看| 搡老熟女国产l中国老女人| 亚洲欧美成人综合另类久久久 | 成人国产麻豆网| 99久久精品国产国产毛片| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 久久九九热精品免费| 人人妻人人看人人澡| 日本色播在线视频| 午夜老司机福利剧场| 日日摸夜夜添夜夜添小说| 搡老岳熟女国产| 国产成人影院久久av| 看黄色毛片网站| 日韩精品有码人妻一区| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 深爱激情五月婷婷| 亚洲va在线va天堂va国产| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕大全电影3| 三级经典国产精品| 一区福利在线观看| 精品久久国产蜜桃| 嫩草影院精品99| 国产片特级美女逼逼视频| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 一级毛片我不卡| 在线国产一区二区在线| 国产精品免费一区二区三区在线| 国产单亲对白刺激| 一区二区三区高清视频在线| 最后的刺客免费高清国语| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄 | 久久这里只有精品中国| 简卡轻食公司| 欧美最新免费一区二区三区| 乱人视频在线观看| 精品国内亚洲2022精品成人| 香蕉av资源在线| 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 亚洲欧美精品综合久久99| 日本黄大片高清| 日本爱情动作片www.在线观看 | 中国国产av一级| 国产久久久一区二区三区| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国产不卡一卡二| 熟女人妻精品中文字幕| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 亚洲色图av天堂| 91久久精品国产一区二区三区| 在线播放国产精品三级| 日日啪夜夜撸| 99在线视频只有这里精品首页| 国内精品一区二区在线观看| 欧美性感艳星| 99热精品在线国产| 黄片wwwwww| 国产美女午夜福利| 日本成人三级电影网站| 久久久精品欧美日韩精品| 老女人水多毛片| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产成人久久av| 久久精品国产亚洲av天美| 男女啪啪激烈高潮av片| 99久国产av精品国产电影| 成人高潮视频无遮挡免费网站| 亚洲av成人av| 十八禁国产超污无遮挡网站| 99久久精品热视频| 亚洲av电影不卡..在线观看| 亚洲真实伦在线观看| 午夜免费激情av| 精品少妇黑人巨大在线播放 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av熟女| 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 日韩精品青青久久久久久| 性色avwww在线观看| 不卡视频在线观看欧美| 18禁在线播放成人免费| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 成年av动漫网址| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 少妇猛男粗大的猛烈进出视频 | 人人妻人人澡欧美一区二区| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 国产一区二区三区在线臀色熟女| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 免费看日本二区| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 精品久久久久久久久亚洲| 国产成人aa在线观看| 欧美日韩综合久久久久久| 亚洲av第一区精品v没综合| 波多野结衣巨乳人妻| 久久久久久久久大av| 国产精品伦人一区二区| 国内少妇人妻偷人精品xxx网站| 99riav亚洲国产免费| 成人高潮视频无遮挡免费网站| 亚洲精品国产成人久久av| 亚洲在线观看片| 国产高清激情床上av| 干丝袜人妻中文字幕| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 在线a可以看的网站| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 亚洲无线在线观看| 波多野结衣巨乳人妻| 精品午夜福利在线看| 亚洲不卡免费看| 搡老岳熟女国产| 九色成人免费人妻av| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| aaaaa片日本免费| 麻豆久久精品国产亚洲av| 久久午夜福利片| 亚洲国产精品合色在线| 天美传媒精品一区二区| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 美女被艹到高潮喷水动态| 黑人高潮一二区| 亚洲国产精品国产精品| 国产成人91sexporn| 午夜福利成人在线免费观看| 18禁黄网站禁片免费观看直播| 麻豆乱淫一区二区| 亚洲精品一区av在线观看| 一进一出抽搐动态| 亚洲激情五月婷婷啪啪| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 禁无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 少妇猛男粗大的猛烈进出视频 | 久久婷婷人人爽人人干人人爱| 欧美成人免费av一区二区三区| 欧美日本亚洲视频在线播放| 秋霞在线观看毛片| 大型黄色视频在线免费观看| 亚洲成人久久爱视频| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 午夜福利在线观看免费完整高清在 | 毛片女人毛片| 国产成人精品久久久久久| 国模一区二区三区四区视频| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 波野结衣二区三区在线| av在线播放精品| 黄色欧美视频在线观看| 美女免费视频网站| 一区二区三区免费毛片| av在线亚洲专区| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 人妻制服诱惑在线中文字幕| 久久久久久久久久黄片| 韩国av在线不卡| 欧美潮喷喷水| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 成人亚洲欧美一区二区av| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 插阴视频在线观看视频| 亚洲电影在线观看av| 性色avwww在线观看| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 国产视频一区二区在线看| 午夜老司机福利剧场| 小说图片视频综合网站| 国内精品宾馆在线| 欧美一区二区精品小视频在线| 老司机影院成人| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 色哟哟哟哟哟哟| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 国产高清视频在线播放一区| 最近2019中文字幕mv第一页| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 亚洲美女视频黄频| 久久人妻av系列| 国产精品久久久久久精品电影| 欧美国产日韩亚洲一区| 深夜精品福利| 麻豆一二三区av精品| 淫秽高清视频在线观看| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 少妇高潮的动态图| 午夜福利在线观看吧| 成人亚洲欧美一区二区av| 亚洲va在线va天堂va国产| 免费观看在线日韩| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| 国产高清激情床上av| 级片在线观看| 少妇的逼好多水| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| 一边摸一边抽搐一进一小说| 我的老师免费观看完整版| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 少妇丰满av| av黄色大香蕉| 九色成人免费人妻av| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 免费av不卡在线播放| 俺也久久电影网| 永久网站在线| 韩国av在线不卡| 深夜a级毛片| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站| 成人永久免费在线观看视频| 嫩草影院入口| 免费在线观看影片大全网站| 桃色一区二区三区在线观看| 少妇丰满av| 国产aⅴ精品一区二区三区波| АⅤ资源中文在线天堂| 欧美一区二区亚洲| 少妇高潮的动态图| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| aaaaa片日本免费| 欧美日韩精品成人综合77777| 成年av动漫网址| 亚洲一级一片aⅴ在线观看| 成人一区二区视频在线观看| 超碰av人人做人人爽久久| 国内精品一区二区在线观看| 日本一二三区视频观看| 久久精品人妻少妇| 国产v大片淫在线免费观看| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| 亚洲精品粉嫩美女一区| 亚洲精品456在线播放app| 亚洲真实伦在线观看| 乱系列少妇在线播放| 自拍偷自拍亚洲精品老妇| 成人亚洲精品av一区二区| 国产精品,欧美在线| 国产探花在线观看一区二区| 免费大片18禁| 人人妻人人澡人人爽人人夜夜 | 日韩精品中文字幕看吧| 亚洲四区av| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 天天躁日日操中文字幕| 91久久精品电影网| 老司机午夜福利在线观看视频| 日韩制服骚丝袜av| 99久久精品一区二区三区| 国产黄色小视频在线观看| 婷婷精品国产亚洲av| 精品一区二区三区视频在线| 人人妻人人澡欧美一区二区| 日本在线视频免费播放| 少妇人妻精品综合一区二区 | 天堂动漫精品| 国产成人一区二区在线| 国产精品久久视频播放| 国产精品综合久久久久久久免费| 国产v大片淫在线免费观看| 我的女老师完整版在线观看| 麻豆一二三区av精品| 嫩草影院新地址| 全区人妻精品视频| 一级黄片播放器| 一区福利在线观看| 99精品在免费线老司机午夜| 日本a在线网址| 欧美区成人在线视频| 国产麻豆成人av免费视频| 一级a爱片免费观看的视频| 又爽又黄a免费视频| 一级毛片电影观看 | 成年女人毛片免费观看观看9| 99久久中文字幕三级久久日本| 少妇的逼水好多| 色播亚洲综合网| 三级国产精品欧美在线观看| 老司机午夜福利在线观看视频| 国产精品,欧美在线| 免费av观看视频| 亚洲精品影视一区二区三区av| 色哟哟哟哟哟哟| 又爽又黄无遮挡网站| avwww免费| 天堂网av新在线| 综合色丁香网| 国产一级毛片七仙女欲春2| 日本黄色片子视频| 久久久久久伊人网av| 久久久久久久久中文| 嫩草影院入口| 此物有八面人人有两片| 内地一区二区视频在线| 国产成人福利小说| 亚洲av五月六月丁香网| 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 亚洲在线观看片| 天美传媒精品一区二区| 国产熟女欧美一区二区| 色视频www国产| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 免费观看的影片在线观看| 午夜福利18| 国产高清三级在线| 久久久精品欧美日韩精品| 一级黄色大片毛片| 老司机影院成人| 亚洲精品成人久久久久久| 精品久久久久久久久久免费视频| 欧美日韩乱码在线| 国产极品精品免费视频能看的| 久久久国产成人精品二区| 国产精品,欧美在线| 国产午夜精品论理片| 午夜福利视频1000在线观看| 午夜福利18| 十八禁国产超污无遮挡网站| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人久久小说 | videossex国产| 久久久午夜欧美精品| 一本精品99久久精品77| 免费大片18禁| 精品一区二区三区人妻视频| 亚洲av电影不卡..在线观看| 国产一区二区激情短视频| 黄色日韩在线| a级毛色黄片| 亚州av有码| 少妇熟女aⅴ在线视频| 成人性生交大片免费视频hd| 黄片wwwwww| 日韩欧美国产在线观看| 午夜福利18| a级毛片免费高清观看在线播放| 啦啦啦观看免费观看视频高清| 精品午夜福利在线看| 赤兔流量卡办理| 色哟哟·www| 午夜视频国产福利| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 免费av不卡在线播放| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 国产日本99.免费观看| av国产免费在线观看| 又爽又黄a免费视频| 99在线人妻在线中文字幕| 免费av观看视频| 国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 午夜老司机福利剧场| 国产精品综合久久久久久久免费| 国产视频内射| 婷婷色综合大香蕉| 日韩欧美国产在线观看| 有码 亚洲区| 久久久久免费精品人妻一区二区| 精品免费久久久久久久清纯| 欧美最新免费一区二区三区| 久久九九热精品免费| 日韩一本色道免费dvd| 亚洲精品456在线播放app| 久久久久久久久大av| 精品国内亚洲2022精品成人| 欧美zozozo另类| 神马国产精品三级电影在线观看| 国产aⅴ精品一区二区三区波| 91在线精品国自产拍蜜月| 又粗又爽又猛毛片免费看| 十八禁国产超污无遮挡网站| 欧美在线一区亚洲| 神马国产精品三级电影在线观看| 99热这里只有是精品50| 99久久无色码亚洲精品果冻| 日本与韩国留学比较| 联通29元200g的流量卡| 欧美成人一区二区免费高清观看| 亚洲国产精品sss在线观看| 亚洲av中文字字幕乱码综合| 午夜福利视频1000在线观看| 久久精品久久久久久噜噜老黄 | 午夜精品国产一区二区电影 | 欧美成人a在线观看| 欧美日韩在线观看h|