• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    2016-11-04 08:53:47EhsanOmidiNimaMahmoodi
    Acta Mechanica Sinica 2016年5期

    Ehsan Omidi·S.Nima Mahmoodi

    ?

    RESEARCH PAPER

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    Ehsan Omidi1·S.Nima Mahmoodi1

    A new nonlinear integral resonant controller(NIRC)is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures.The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency.The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation.Finally,the effectsofdifferent controlsystemparameters are illustrated and an approximate solution response is verified via numericalsimulation results. The advantages and disadvantages ofthe proposed controller are presented and extensively discussed in the results.The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.

    Active vibration control·Cantilever·High

    amplitude oscillation·Method ofmultiple scales·Nonlinear vibration·Piezoelectric actuator·Smart structure

    ? S.Nima Mahmoodi nmahmoodi@eng.ua.edu

    1Nonlinear Intelligent Structures Laboratory,Department of Mechanical Engineering,The University of Alabama,Tuscaloosa,AL 35487-0276,USA

    1 Introduction

    Flexible structures are susceptible to linear and nonlinear vibrations,which are undesirable in most cases,and their suppression is of the utmost importance.A system under vibration can be enhanced by actuation/sensing elements and a controlunit,so thatithas a smartstructure thatcan actively rejectvibrations.The performance ofthe resulting smartflexible structure is highly affected by the controller designed for the system,which works as a bridge between sensors and actuators.Essentially,the designed controller must consider the vibrational behavior of the system,the available actuators/sensors,and possible types of excitation disturbance. Piezoelectric actuators and sensors have been investigated in various studies and successfully applied to various systems[1,2].These elements are the most frequently used sources forapplying actuation powerto flexible systemsorproviding vibration position feedback.

    Various controllers have been designed for the purpose of vibration control in smart structures.Linear controllers can be used suppress low-amplitude linear vibrations;some approaches are described and investigated in Refs.[3-7]. However,proportionate controllersmustbe designed fornonlinear oscillatory smart structures that are compatible with the nonlinear frequency responses of these systems.Additionally,controlled system response and behavior cannot be obtained using typical linear methods for nonlinear systems. In many cases where exact solutions are not readily available,approximate methods are used to provide a solution for these systems,such as the method of multiple scales[8,9].The problem of nonlinear vibration and approximate solutions for these systems have been addressed in various studies[10-12].Different linear and nonlinear controllers have also been designed for such systems:cubic velocityfeedback[13],fuzzy sliding mode control[14],nonlinear positive position feedback(PPF)-based methods[15-17],a nonlinear energy sink approach[18],and delayed feedback control[19].The nonlinear dynamic response and control of fiber-metal laminated plates were studied in Ref.[20],and the active vibration isolation problem fora microelectromechanicalsystem(MEMS)device is addressed in Ref.[21].

    Many ofthe previously proposed controllers fornonlinear vibration suppression of the primary resonant frequency are second-order compensators[15-17].Although these compensators can effectively suppress the resonant frequency at its exact value,vibration amplitude in the neighboring frequency regions may even exceed the initial resonant amplitude.Because the excitation disturbance may not necessarily remain at the resonant frequency,vibrations in neighboring frequencies become a challenge,too.Additionally,these controllers have relatively complicated structures,which makes the solution preparation and controller implementation difficult.

    To avoid the complexity of second-order compensators and their high-amplitude peaks in the neighboring frequencies of resonance,a new nonlinear integral resonant controller(NIRC)is introduced in this paper.In the NIRC,a first-order nonlinear vibration compensator fed by a positive linear and a negative nonlinear position term is implemented to target the primary resonant frequency.A solution of the closed-loop system is obtained using the method of multiple scales in a multilayer fashion.A modulation equation is obtained and a stability analysis performed.The solution of the approximate method is then verified using numerical simulation results,and the influences of different control parameters on closed-loop system response are extensively investigated.The structure ofthiscontrollermakes itsuitable for nonlinear vibratory structures,such as beams and plates,in addition to MEMS systems and devices.

    2 Dynamics of the nonlinear system and NIRC

    High-amplitude oscillations are one of the primary causes of nonlinearity in responses of flexible structures.Cantilevers are prone to these vibrations more than structures with other boundary conditions because of their free end.Of the differentapproaches to applying the controlmomenton a structure to suppress these vibrations,one should use a collocated patch of piezoelectric actuators and sensors.The primary resonant mode for the model of a nonlinear vibrating system can be obtained using the geometrical deflections of the structure.This has been fully addressed in Ref.[15],and the governing equation is obtained as

    Fig.1 Time-domain block diagram representation of closed-loop system

    where u(t)is the time-dependent variable of the main system;overdot denotes differentiation with respect to t;Fc(t)is the control input;Fd=f cos(Ωt),where f is the amplitude and Ω the frequency of the external excitation;μ and ωmare the damping ratio and resonant frequency of the main system,respectively;α and β are curvature and inertia nonlinearity coefficients,respectively.Note that positive and negative values can be assigned to β based on the system characteristics.

    The NIRC consists of a first-order resonant integrator,with a combination of a positive linear and a negative nonlinear vibration displacement amplitude input.The NIRC is expressed as

    where v(t)is the variable of NIRC,ωNis the first-orderintegrator’s frequency,andλandδ are controllerinputgains.The control law is defined as Fc(t)=τv(t)for τ>0.Figure 1 shows a time-domain block diagram of a closed-loop system consisting of a main system and the NIRC;the figure also shows how different elements are connected to one another. The overalldamping ofthe systemincreaseswhen the control loop of the system is closed in accordance with the defined law.As a result,we would expect to see a significant reduction in the vibration amplitude in the frequency domain.To verify the expectations and provide a more detailed analysis of the system response,an approximate frequency domain solution is obtained in the following section.

    3 Controlled system response using method of multiple scales

    The method of multiple scales is applied to the closedloop dynamics of a system to provide a uniform nonlinear approximate solution near the fundamental resonant mode[9].Initially,two time scales are considered,T0=t and T1=εt,and the corresponding time derivatives are

    where Dn=?/?Tn,andεisa bookkeeping parameter.Equation(3)is substituted into the equations of the main system and controller,which yields

    The variables of Eqs.(4)and(5)are expanded using

    The order of Eq.(7)is chosen to be one order higher than the main systemto keep the first-orderdynamicsofthe controller at the same pace with the second-order nonlinear system model and to have all the necessary variables appear in the correct equations.The main system and controller parameters need to be scaled as follows:Separation in orders of ε yields three layers that are required for the analysis

    The solution of the homogeneous ordinary differential equation(ODE)of Eq.(8)is assumed to be in the form

    where A(T1)is a complex-valued function and cc is the complex conjugate.The solution considered for Eq.(12)is substituted into Eq.(10),and the resulting ODE is solved. The solution is then obtained as

    where the overbar denotes the complex conjugate function,and the variable C(T1)will be determined in subsequent stages of the solution.Equations(12)and(13)are substituted into Eq.(9),which yields

    Equation(14)can be solved by neglecting the secular terms that will subsequently be set equal to zero.The result is expressed as

    The solutions expressed by Eqs.(13)and(15)are used to obtain the solution of Eq.(11).The substitution yields Eq.(11)

    The solution of Eq.(16)is expressed in the form

    where the coefficients V1to V14are presented in the appendix.The secular terms in Eq.(16)should be set equal to zero,which also facilitates calculation of the term C(T1). The obtained equation is

    The solution for the ODE of Eq.(18)is obtained as

    where cvisa constant.The nextobjective isto obtain the modulation equation.To this end,the secular terms in Eq.(14)are set equal to zero,

    where σfis a small detuning parameter,defined using the detuning equation Ω=ωm+εσf.It is necessary to have this variable defined owing to the fact that the excitation frequency is close to the primary frequency of the main system. The solution of Eq.(20)is expressed in polar form using

    Equation(21)is substituted into Eq.(20)for real and imaginary parts to be separated.This yields

    A variable transformation is applied to Eqs.(22)and(23)by considering ?(t)=σft-θ(t),and the scaled parameters are restored to their original form.This yields

    4 Steady-state response and stability analysis

    To obtain the amplitude-frequency steady-state response of the controller system via the NIRC,steady-state conditions are considered as being˙a=˙?=0,which yields

    Equations(26)and(27)are squared and the two sides are summed together,which yields the final modulation equation:

    Next,a stability analysis is performed.Linearization around the equilibrium point is considered using Eqs.(24) and(25)and considering the variable vectorThe Jacobian matrix is then expressed by

    The Routh-Hurwitz stability criterion is used here to examine the stability of the closed-loop system controlled by the NIRC.The characteristic equation of the matrix is obtained first using

    for γ as an eigenvalue variable of the Jacobian matrix.Equation(30)is expressed in the form

    where the aiare the coefficients of the characteristic equation obtained from Eqs.(29)and(30).In orderforthe system to be stable,the real parts of all eigenvalues must be negative,which is satisfied by having ai>0 for i=0,1,2.To constructa stable closed-loop controlsystem,the considered gainsmustbe verified according to the obtained stability condition.Controller gain variables complying with the stability condition guarantee a stable system.

    5 NIRC controlled system results and discussions

    Finally,in this section,the performance of the proposed NIRC method is illustrated and discussed.The obtained amplitude-frequency equation is used to graphically show the effects ofdifferentcontrolsystemvariables,and the solution is subsequently verified using the numerical simulation result,followed by additional numerical results of system performance.

    In this section,the main variables of the closed-loop system will be as follows:ωm=12,μ=0.005,α=20,β=-10,ωN=12,and Ω=12.Gain values are noted for each graph separately.To choose stable gains,the equations presented in Sect.4 are used.It should be noted that stability is dependent on the control gains,amplitude,and frequency shift.Therefore,for every case based on the bandwidth of the amplitude and phase,the gain conditions are calculated. For all the cases presented in this section,the bandwidths of λ and τ gains are very large since the amplitude and phase are reasonably small.Thus the system is stable for almost all values ofgains.Forthe firstresult,the responses ofthe openand closed-loop systems are illustrated.Figure 2 shows the steady-state vibration amplitude versus changes in excitation frequency and amplitude.Two separate surfaces are depicted in Fig.2,showing the uncontrolled and NIRCcontrolled system response for controller gain values of λ=τ=15.A jump phenomenon is observed when the vibration amplitude exceeds f=0.22 in the uncontrolled system,and,owing to the selected numerical values for the nonlinear system,the graph bends toward the negative side of the frequency axis.According to the results,the NIRC is able to suppress the vibration amplitude in the neighborhood of the primary resonant frequency.Unlike conventional methods,such as positive position feedback(PPF)and nonlinear modified positive position feedback(NMPPF),discussed in Ref.[22],the NIRC controlled system shows no high-amplitude peak on eitherside ofthe fundamentalmode in the frequency domain.

    Fig.2 NIRC controlled and uncontrolled system responses

    To better analyze the suppression performance of the NIRC,F(xiàn)ig.3 isextracted from the depicted surfaces in Fig.2. Figure 3 shows the vibration amplitude and frequency of peak values for variations in the excitation amplitude,f. According to the obtained results,higher suppression levels are achieved for lower excitation amplitudes,as the suppression level reaches as high as 87.6%for f=0.5 and 62.7% for f=4.Deviation from the resonant frequency,σf,tends to grow much slower in the closed-loop NIRC system;σfincreases by 5.3 times from f=0.5 to f=4 in the uncontrolled mode,whereas it increases in the NIRC controlled system by just 2.2 times.

    Next,the effects of two control variables on system response are examined.Figure 4 shows the vibration amplitude for changes in controller gain λ(for τ=3 and f=2)and integrator frequency ωN(for λ=τ=14 and f=2)versus changes in the excitation frequency.According to Fig.4a,vibration suppression improves exponentially as this gain value moves away from zero in both the positive and negative directions.Note that the result obtained for positive gain values is slightly betterthan when using negative values. Figure 4b shows that a higher suppression level is obtained for ωN=0.This graph also shows that the peak in the suppressed graph ison the negative side ofthe frequency axis for positive values of integrator frequency,and vice versa.This is because the sign of the integrator frequency,in addition to its amplitude,changes the magnitude of the second term onthe left-hand side of Eq.(28).However,the inclination of the graph is to the negative direction in both cases.

    Fig.3 Vibration amplitudes.a Deviations from resonant frequency of peak values.b Changes in excitation amplitude in uncontrolled and NIRC controlled systems

    Fig.4 NIRC controlled system response for changes in excitation frequency(σf)versus.a Controller gain λ.b Integrator frequency ωN

    Figure 5 illustrates the effects of changes in the excitation amplitude and variations in λ(for τ=22 and σf=0.5)and ωN(for λ=τ=14 and σf=0.5)on the system response. According to Fig.5a,positive values of λ better reduce the vibration amplitude.The results presented in Fig.5b confirm the conclusion drawn from Fig.4b that the highest suppression level is achieved for ωN=0,and positive values for ωNare more effective.

    According to Eq.(28),two gain values of λ and τ are multiplied by each other where present.To investigate the effects ofchanges in both these variables on closed-loop system response,F(xiàn)ig.6 is used(for f=0.2 and σf=0.1). Based on the surface obtained,both gain values have similar effects,as expected.However,better suppression is achieved when both gains have the same signs.

    Next,the effect of the controller input term δ on system response is studied.As shown by Eq.(28),this term do not presentin the obtained approximate solution.This is because this term appears in a much higher-order layer of ε in perturbation expansion.In addition,even if the perturbation order is increased,the term will not appear in the secular terms of Eq.(14)since its frequency would be different from iωm. Hence,the effect of this controller variable is numerically investigated.MATLAB software is implemented to solve the coupled Eqs.(1)and(2)under the positive control law for different values of δ and for other control variables of λ=τ=7,f=0.1.According to the result illustrated in Fig.7,an increase in the selected value of δ provides a higher level of suppression.When the vibration amplitude is reduced to a lower level by increasing δ,the peak of the suppressed curve moves toward the negative σfaxis.Notethatany arbitrary value can be assigned to thiscontrollergain as long as the closed-loop system remains stable.

    Fig.5 NIRC controlled system response for changes in excitation amplitude(f)versus.a Controller gain λ.b Integrator frequency ωN

    Next,the obtained perturbation solution is verified using the results of numerical simulation.Figure 8 shows the controlled system response for gain values of λ= τ=1,f=0.02,for both the perturbation solution and a numerically simulated system.As shown,both graphs are in close agreement with one another,which confirms that the perturbation solution is in close agreement with a real system response.

    Finally,a numerical simulation is employed to obtain phase portraits ofthe systemfordifferentvalues ofexcitation frequency.In all illustrated results of Fig.9,the controller is switched on 45 s after the start of the process,when the system has reached steady-state.The control variables are set at λ=τ=7,δ=15,f=0.8,and nonzero initial conditions are selected.For σf=-1.5,the system is not excited at itsresonance,and the vibration amplitude is significantly lower than the maximum values ofothercases.When the controller is switched on,no significant change is observed.For other excitation frequencies,inner limit cycles are the steady-state controlled values.

    Fig.6 Closed-loop system response to changes in λ and τ

    Fig.7 Effectofcontrollerinputgain,δ,on suppressed vibration amplitude

    Fig.8 Perturbation solution verification using numerical simulation results

    Fig.9 Phase portraits of suppression process for different values of excitation frequency

    6 Conclusion

    In this paper,an NIRC was proposed for nonlinear vibration suppression in flexible structures.The NIRC,with its first-order design,provides additional damping for a closedloop systemin the neighborhood ofthe resonantfrequency.Alinear positive and a negative quadratic term of the vibration position are used asthe inputs ofthe controller,which provide more flexibility in the controller design process.A nonlinear model of a high-amplitude vibrating cantilever beam was considered,and an approximate steady-state solution was obtained via the method of multiple scales.Following an examination of the closed-loop system’s stability,results were illustrated and extensively discussed.Numerical simulation results were used to verify the analytical solution.In addition,the effects ofdifferentcontrolparameters on system response were analyzed.The NIRC has a relatively simple structure and provides a smooth closed-loop response in the neighborhood of the excitation frequency.The NIRC can be considered an effective and applicable candidate for nonlinear vibration controllers for flexible structures.

    Appendix

    The coefficients of the time-domain response of Eq.(17)are as follows

    1.Seigler,T.,Ghasemi,A.H.,Salehian,A.:Distributed actuation requirements of piezoelectric structures under servoconstraints.J. Intell.Mater.Syst.Struct.22,1227-1238(2011).doi:10.1177/ 1045389X11411222

    2.Seigler,T.,Ghasemi,A.:Specified motion ofpiezoelectrically actuated structures.J.Vib.Acoust.134,021002(2012)

    3.Daraji,A.H.,Hale,J.M.:Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams.Smart Mater.Struct.23,115018(2014)

    4.Li,S.,Li,J.,Mo,Y.etal.:Composite multi-modalvibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator.Smart Mater.Struct.23,015006(2014)

    5.Omidi,E.,Mahmoodi,S.N.:Multiple mode spatialvibration reduction in flexible beamsusing H2-and H∞-modified positive position feedback.J.Vib.Acoust.137,011004(2015)

    6.Omidi,E.,Mahmoodi,S.N.:Hybrid positive feedback control for active vibration attenuation of flexible structures.IEEE/ASME Trans.Mechatron.(2014).doi:10.1109/TMECH.2014.2354599

    7.Omidi,E.,Mahmoodi,S.N.:Consensuspositive position feedback control for vibration attenuation of smart structures.Smart Mater. Struct.24,045016(2015)

    8.Marinca,V.,Herisanu,N.:Nonlinear Dynamical Systems in Engineering:Some Approximate Approaches.Springer,New York(2012)

    9.Nayfeh,A.H.:Problems in Perturbation.Wiley,New York(1985)

    10.Hosseini,S.M.,Shooshtari,A.,Kalhori,H.:Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn.78,571-583(2014)

    11.Lazarus,A.,Thomas,O.,Deü,J.:Finite element reduced order modelsfornonlinearvibrationsofpiezoelectric layered beamswith applications to NEMS.Finite Elem.Anal.Des.49,35-51(2012)

    12.Mahmoodi,S.N.,Jalili,N.,Khadem,S.E.:An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams.J.Sound and Vib.311,1409-1419(2008)

    13.Oueini,S.S.,Nayfeh,A.H.:Single-mode control of a cantilever beam under principal parametric excitation.J.Sound Vib.224,33-47(1999)

    14.Dai,L.,Sun,L.:Vibration control of a translating beam with an active control strategy on the basis of the fuzzy sliding mode control.In:Proceedings of ASME International Mechanical Engineering Congressand Exposition(IMECE),Anonymous4B(2013)

    15.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach.Nonlinear Dyn.79,835-849(2015)

    16.El-Ganaini,W.,Saeed,N.,Eissa,M.:Positive position feedback(PPF)controller for suppression of nonlinear system vibration. Nonlinear Dyn.72,517-537(2013)

    17.Omidi,E.,Mahmoodi,S.N.:Sensitivity analysis of the nonlinear integralpositive position feedback and integralresonantcontrollers on vibration suppression of nonlinear oscillatory systems.Commun.Nonlinear Sci.Numer.Simul.22,149-166(2015)

    18.Ahmadabadi,Z.N.,Khadem,S.E.:Nonlinearvibration controlofa cantilever beam by a nonlinear energy sink.Mech.Mach.Theory. 50,134-149(2012)

    19.Zhao,Y.,Xu,J.:Effects of delayed feedback control on nonlinear vibration absorber system.J.Sound Vib.308,212-230(2007)

    20.Shao,X.,F(xiàn)u,Y.,Chen,Y.:Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field.Smart Mater.Struct.24,055023(2015)

    21.Meyer,Y.,Cumunel,G.:Active vibration Isolation with a MEMS device.Effectsofnonlinearitieson controlefficiency.SmartMater. Struct.24,085004(2015)

    22.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration control of flexible structures using nonlinear modified positive position feedback approach.In:Proceedings of ASME Dynamic Systems and Control Conference,San Antonio,TX,USA,Anonymous pp. V003T52A002(2014)

    12 December 2015/Revised:31 March 2016/Accepted:21 April 2016/Published online:25 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    日本a在线网址| 亚洲 国产 在线| 久久热在线av| 99热6这里只有精品| 国产精品av久久久久免费| 小说图片视频综合网站| 久久午夜综合久久蜜桃| 免费看日本二区| 午夜免费激情av| 欧美黑人巨大hd| 午夜老司机福利片| 特大巨黑吊av在线直播| 精品第一国产精品| 精品无人区乱码1区二区| 国内精品久久久久久久电影| 99热这里只有精品一区 | 亚洲av第一区精品v没综合| 国产黄色小视频在线观看| 国产不卡一卡二| 国产精品九九99| 国产欧美日韩一区二区三| 视频区欧美日本亚洲| 亚洲性夜色夜夜综合| 嫁个100分男人电影在线观看| 日韩有码中文字幕| 国产区一区二久久| 欧美日韩亚洲国产一区二区在线观看| 中文字幕久久专区| 国产又黄又爽又无遮挡在线| 精品久久久久久成人av| 成人三级做爰电影| 伦理电影免费视频| 国产成人精品久久二区二区免费| 亚洲色图av天堂| 欧美三级亚洲精品| 一a级毛片在线观看| 日韩欧美一区二区三区在线观看| АⅤ资源中文在线天堂| 亚洲狠狠婷婷综合久久图片| 国产精品av久久久久免费| 俄罗斯特黄特色一大片| 久久精品影院6| 丰满人妻一区二区三区视频av | 又爽又黄无遮挡网站| 午夜成年电影在线免费观看| 欧美一级a爱片免费观看看 | 丝袜美腿诱惑在线| 最近最新免费中文字幕在线| 黄色片一级片一级黄色片| 91大片在线观看| 啦啦啦观看免费观看视频高清| 欧美一级a爱片免费观看看 | 亚洲国产欧洲综合997久久,| 午夜福利在线观看吧| 免费看日本二区| 精品久久久久久久人妻蜜臀av| 欧美成人午夜精品| 日韩欧美国产一区二区入口| 久久中文看片网| 亚洲av成人av| 天堂√8在线中文| 国产av不卡久久| АⅤ资源中文在线天堂| avwww免费| 草草在线视频免费看| 久久中文字幕一级| 好男人在线观看高清免费视频| 老司机福利观看| 亚洲国产日韩欧美精品在线观看 | 久久天躁狠狠躁夜夜2o2o| 麻豆国产av国片精品| 成人国语在线视频| xxx96com| 女人爽到高潮嗷嗷叫在线视频| 精品一区二区三区视频在线观看免费| 精华霜和精华液先用哪个| 天堂动漫精品| 老鸭窝网址在线观看| 国产亚洲欧美98| 国产aⅴ精品一区二区三区波| 欧美大码av| 一本精品99久久精品77| 久久热在线av| 成人欧美大片| 免费观看精品视频网站| 国产乱人伦免费视频| 国产野战对白在线观看| 欧美性猛交黑人性爽| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 亚洲国产精品久久男人天堂| 日本在线视频免费播放| 最新美女视频免费是黄的| 国内精品久久久久精免费| 精品国产亚洲在线| 啦啦啦免费观看视频1| 国产精品综合久久久久久久免费| 熟女电影av网| 午夜视频精品福利| 欧美黑人精品巨大| 国产一区二区激情短视频| 极品教师在线免费播放| 99国产综合亚洲精品| 精品免费久久久久久久清纯| 亚洲欧美一区二区三区黑人| 久久久久久久精品吃奶| 夜夜爽天天搞| 亚洲精华国产精华精| 国产成人影院久久av| av福利片在线| 免费看日本二区| 国产人伦9x9x在线观看| 一级毛片精品| 欧美日本视频| 亚洲五月天丁香| 嫩草影院精品99| 大型av网站在线播放| 日韩大码丰满熟妇| 亚洲五月婷婷丁香| 美女 人体艺术 gogo| xxxwww97欧美| 精品午夜福利视频在线观看一区| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 村上凉子中文字幕在线| 欧美av亚洲av综合av国产av| 欧美日本亚洲视频在线播放| 久久久国产欧美日韩av| 村上凉子中文字幕在线| 亚洲国产精品999在线| 婷婷亚洲欧美| 精品欧美国产一区二区三| 免费搜索国产男女视频| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 99精品久久久久人妻精品| 国产真实乱freesex| 国产成人av教育| 精品久久蜜臀av无| 啦啦啦观看免费观看视频高清| 亚洲va日本ⅴa欧美va伊人久久| 变态另类成人亚洲欧美熟女| 一区二区三区激情视频| 亚洲 国产 在线| 嫩草影院精品99| 色播亚洲综合网| 日韩有码中文字幕| 成人欧美大片| 亚洲电影在线观看av| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| 狂野欧美激情性xxxx| 91在线观看av| ponron亚洲| 国产精品久久久人人做人人爽| 嫩草影院精品99| 午夜老司机福利片| 窝窝影院91人妻| 精品不卡国产一区二区三区| 国产av在哪里看| 男人舔女人下体高潮全视频| 日韩中文字幕欧美一区二区| 国产成+人综合+亚洲专区| 波多野结衣巨乳人妻| 欧美乱码精品一区二区三区| 精品久久久久久久人妻蜜臀av| 欧美高清成人免费视频www| 欧美乱色亚洲激情| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 亚洲成人国产一区在线观看| 美女高潮喷水抽搐中文字幕| 视频区欧美日本亚洲| 黄频高清免费视频| 亚洲av熟女| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 欧美色视频一区免费| 在线观看日韩欧美| 欧美色欧美亚洲另类二区| 熟女少妇亚洲综合色aaa.| 看免费av毛片| 欧美三级亚洲精品| 国产高清激情床上av| 亚洲欧美一区二区三区黑人| 少妇的丰满在线观看| 国产精品亚洲美女久久久| 久久久久亚洲av毛片大全| 国产精品精品国产色婷婷| 两人在一起打扑克的视频| 91九色精品人成在线观看| 国产av在哪里看| 俄罗斯特黄特色一大片| 久99久视频精品免费| 脱女人内裤的视频| 国产一区二区三区视频了| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 精品久久蜜臀av无| 亚洲午夜理论影院| 成人国产一区最新在线观看| 亚洲av美国av| 69av精品久久久久久| 国产精华一区二区三区| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久久免费视频| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 亚洲色图 男人天堂 中文字幕| 久久久精品大字幕| 黑人巨大精品欧美一区二区mp4| 少妇粗大呻吟视频| 国产不卡一卡二| 在线观看美女被高潮喷水网站 | av在线播放免费不卡| 中文字幕人妻丝袜一区二区| 男人的好看免费观看在线视频 | 欧美av亚洲av综合av国产av| 久久中文字幕一级| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 51午夜福利影视在线观看| 国产亚洲精品久久久久5区| bbb黄色大片| 啦啦啦观看免费观看视频高清| 一边摸一边做爽爽视频免费| 黄色女人牲交| 99久久无色码亚洲精品果冻| www国产在线视频色| 在线国产一区二区在线| 悠悠久久av| 精品乱码久久久久久99久播| 国产成人精品久久二区二区91| 成人国语在线视频| 又黄又粗又硬又大视频| 男人舔女人的私密视频| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 成人国语在线视频| 日日爽夜夜爽网站| 久久精品人妻少妇| 久久精品影院6| 久久午夜亚洲精品久久| 午夜精品一区二区三区免费看| 亚洲精品中文字幕在线视频| 精品久久久久久久毛片微露脸| 成人亚洲精品av一区二区| 亚洲中文字幕一区二区三区有码在线看 | 制服诱惑二区| 久久 成人 亚洲| 人人妻,人人澡人人爽秒播| 亚洲国产欧美人成| 丝袜人妻中文字幕| 国产精品野战在线观看| 国产一级毛片七仙女欲春2| avwww免费| 美女黄网站色视频| 舔av片在线| 欧美日韩乱码在线| 禁无遮挡网站| 两人在一起打扑克的视频| 国产片内射在线| 男男h啪啪无遮挡| 欧美日韩精品网址| 老司机在亚洲福利影院| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲av香蕉五月| 色噜噜av男人的天堂激情| 亚洲熟妇熟女久久| 性色av乱码一区二区三区2| 中亚洲国语对白在线视频| 好男人在线观看高清免费视频| 欧美中文日本在线观看视频| 中文字幕高清在线视频| 国产成人系列免费观看| 日日干狠狠操夜夜爽| 91麻豆av在线| 天天一区二区日本电影三级| 美女大奶头视频| videosex国产| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播| 中文字幕久久专区| 成人国产综合亚洲| 男人舔女人的私密视频| 精品国产美女av久久久久小说| 亚洲九九香蕉| 香蕉丝袜av| 1024手机看黄色片| 亚洲国产中文字幕在线视频| 波多野结衣巨乳人妻| 亚洲熟女毛片儿| 久久亚洲精品不卡| 亚洲黑人精品在线| 精品熟女少妇八av免费久了| 成人三级做爰电影| 精品高清国产在线一区| 午夜两性在线视频| 搡老岳熟女国产| 久久精品综合一区二区三区| 一边摸一边抽搐一进一小说| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久亚洲av鲁大| 两个人免费观看高清视频| 变态另类丝袜制服| 免费看十八禁软件| √禁漫天堂资源中文www| 日本成人三级电影网站| 国产午夜精品久久久久久| 午夜激情福利司机影院| 成人精品一区二区免费| 999久久久精品免费观看国产| 久久中文看片网| 色播亚洲综合网| 国产区一区二久久| 9191精品国产免费久久| 亚洲一区二区三区色噜噜| 国产免费av片在线观看野外av| 最近视频中文字幕2019在线8| 亚洲欧美日韩高清专用| 高清在线国产一区| 妹子高潮喷水视频| 宅男免费午夜| 亚洲一码二码三码区别大吗| 国产成人av教育| 日韩大尺度精品在线看网址| 老司机在亚洲福利影院| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清专用| 最新美女视频免费是黄的| 国产精品一区二区精品视频观看| 美女大奶头视频| 最近视频中文字幕2019在线8| 在线观看免费午夜福利视频| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 色av中文字幕| 老司机在亚洲福利影院| 亚洲国产看品久久| АⅤ资源中文在线天堂| 亚洲第一欧美日韩一区二区三区| 夜夜看夜夜爽夜夜摸| 国产黄a三级三级三级人| 午夜激情福利司机影院| 国产乱人伦免费视频| or卡值多少钱| 欧美大码av| 久久人人精品亚洲av| 国模一区二区三区四区视频 | 在线观看午夜福利视频| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 久久这里只有精品中国| 舔av片在线| 久久伊人香网站| 欧美日韩黄片免| 欧美日韩亚洲综合一区二区三区_| 99热这里只有精品一区 | 一级毛片精品| 久久这里只有精品中国| 午夜激情福利司机影院| 亚洲精品在线美女| 一夜夜www| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 女警被强在线播放| 国产成人精品久久二区二区免费| 久久久久亚洲av毛片大全| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| 欧美日韩中文字幕国产精品一区二区三区| bbb黄色大片| 欧美绝顶高潮抽搐喷水| 日本 av在线| 免费看十八禁软件| 一级毛片女人18水好多| 午夜福利高清视频| 日韩av在线大香蕉| 91大片在线观看| 99国产极品粉嫩在线观看| 香蕉丝袜av| 国产久久久一区二区三区| 日韩免费av在线播放| 国产精品九九99| 久久久精品国产亚洲av高清涩受| 中文资源天堂在线| 国产高清激情床上av| 制服诱惑二区| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 1024视频免费在线观看| 两个人看的免费小视频| 亚洲专区中文字幕在线| 少妇裸体淫交视频免费看高清 | 50天的宝宝边吃奶边哭怎么回事| 成人国产一区最新在线观看| 在线观看美女被高潮喷水网站 | 这个男人来自地球电影免费观看| 黄色a级毛片大全视频| 国产亚洲精品第一综合不卡| cao死你这个sao货| 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 伦理电影免费视频| 精品电影一区二区在线| 免费看美女性在线毛片视频| 午夜成年电影在线免费观看| 三级国产精品欧美在线观看 | 国产精品一区二区三区四区久久| 夜夜夜夜夜久久久久| 久久香蕉精品热| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 日韩成人在线观看一区二区三区| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 国产精品影院久久| 岛国在线免费视频观看| 最新美女视频免费是黄的| 999精品在线视频| 亚洲性夜色夜夜综合| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 欧美乱妇无乱码| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| 俺也久久电影网| 久久 成人 亚洲| 欧美黑人精品巨大| x7x7x7水蜜桃| www.自偷自拍.com| 中文字幕精品亚洲无线码一区| 午夜福利高清视频| 久9热在线精品视频| 成人特级黄色片久久久久久久| 男女视频在线观看网站免费 | 免费高清视频大片| 国产激情久久老熟女| 色哟哟哟哟哟哟| 欧美成人一区二区免费高清观看 | 搞女人的毛片| 久久久精品欧美日韩精品| 免费在线观看日本一区| 他把我摸到了高潮在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品亚洲一区二区| 99热只有精品国产| 久久久久久亚洲精品国产蜜桃av| 精品少妇一区二区三区视频日本电影| 国产视频内射| 亚洲午夜理论影院| 草草在线视频免费看| 热99re8久久精品国产| 身体一侧抽搐| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 美女午夜性视频免费| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 免费看a级黄色片| 久久九九热精品免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久av网站| 成人三级做爰电影| ponron亚洲| www.www免费av| 超碰成人久久| 99在线人妻在线中文字幕| www.精华液| 国产野战对白在线观看| tocl精华| 国语自产精品视频在线第100页| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 成人三级黄色视频| 精品熟女少妇八av免费久了| 三级男女做爰猛烈吃奶摸视频| 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 成人一区二区视频在线观看| 亚洲精品色激情综合| 观看免费一级毛片| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 2021天堂中文幕一二区在线观| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 黄频高清免费视频| 男男h啪啪无遮挡| 亚洲av成人av| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 国产高清激情床上av| 欧美中文综合在线视频| 色噜噜av男人的天堂激情| 欧美中文综合在线视频| 一a级毛片在线观看| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 亚洲欧洲精品一区二区精品久久久| 国产一区二区在线观看日韩 | 久久热在线av| 国产av一区二区精品久久| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 国产精品美女特级片免费视频播放器 | xxx96com| 老汉色av国产亚洲站长工具| 午夜精品一区二区三区免费看| 亚洲精品国产精品久久久不卡| 看黄色毛片网站| 丝袜美腿诱惑在线| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 免费在线观看视频国产中文字幕亚洲| 变态另类丝袜制服| 精品第一国产精品| 久久精品国产亚洲av香蕉五月| 国产v大片淫在线免费观看| 国产三级在线视频| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 日本一二三区视频观看| 老司机靠b影院| 亚洲人成伊人成综合网2020| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 国产三级中文精品| e午夜精品久久久久久久| 午夜免费成人在线视频| 又爽又黄无遮挡网站| 国产在线观看jvid| 人妻久久中文字幕网| avwww免费| 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 国产精品美女特级片免费视频播放器 | 国产单亲对白刺激| 午夜免费成人在线视频| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 亚洲七黄色美女视频| 在线观看舔阴道视频| 国产精品日韩av在线免费观看| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 看黄色毛片网站| 国产伦人伦偷精品视频| 亚洲欧美日韩东京热| 午夜亚洲福利在线播放| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 女同久久另类99精品国产91| 在线观看日韩欧美| 精品久久久久久,| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 天堂影院成人在线观看| 久久精品综合一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲五月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 成年女人毛片免费观看观看9| 国产精品久久久人人做人人爽| 成人一区二区视频在线观看| 久久香蕉国产精品| 天堂av国产一区二区熟女人妻 | 午夜老司机福利片| 国产男靠女视频免费网站| 人妻久久中文字幕网| 黄色女人牲交| 久久午夜综合久久蜜桃| 岛国视频午夜一区免费看| 国产成人av激情在线播放| 长腿黑丝高跟| 看免费av毛片| av有码第一页| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 国产成人精品无人区| 欧美日韩精品网址| 香蕉国产在线看| 在线观看www视频免费| 一级作爱视频免费观看| 神马国产精品三级电影在线观看 | 99久久久亚洲精品蜜臀av|