• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    2016-11-04 08:53:47EhsanOmidiNimaMahmoodi
    Acta Mechanica Sinica 2016年5期

    Ehsan Omidi·S.Nima Mahmoodi

    ?

    RESEARCH PAPER

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    Ehsan Omidi1·S.Nima Mahmoodi1

    A new nonlinear integral resonant controller(NIRC)is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures.The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency.The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation.Finally,the effectsofdifferent controlsystemparameters are illustrated and an approximate solution response is verified via numericalsimulation results. The advantages and disadvantages ofthe proposed controller are presented and extensively discussed in the results.The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.

    Active vibration control·Cantilever·High

    amplitude oscillation·Method ofmultiple scales·Nonlinear vibration·Piezoelectric actuator·Smart structure

    ? S.Nima Mahmoodi nmahmoodi@eng.ua.edu

    1Nonlinear Intelligent Structures Laboratory,Department of Mechanical Engineering,The University of Alabama,Tuscaloosa,AL 35487-0276,USA

    1 Introduction

    Flexible structures are susceptible to linear and nonlinear vibrations,which are undesirable in most cases,and their suppression is of the utmost importance.A system under vibration can be enhanced by actuation/sensing elements and a controlunit,so thatithas a smartstructure thatcan actively rejectvibrations.The performance ofthe resulting smartflexible structure is highly affected by the controller designed for the system,which works as a bridge between sensors and actuators.Essentially,the designed controller must consider the vibrational behavior of the system,the available actuators/sensors,and possible types of excitation disturbance. Piezoelectric actuators and sensors have been investigated in various studies and successfully applied to various systems[1,2].These elements are the most frequently used sources forapplying actuation powerto flexible systemsorproviding vibration position feedback.

    Various controllers have been designed for the purpose of vibration control in smart structures.Linear controllers can be used suppress low-amplitude linear vibrations;some approaches are described and investigated in Refs.[3-7]. However,proportionate controllersmustbe designed fornonlinear oscillatory smart structures that are compatible with the nonlinear frequency responses of these systems.Additionally,controlled system response and behavior cannot be obtained using typical linear methods for nonlinear systems. In many cases where exact solutions are not readily available,approximate methods are used to provide a solution for these systems,such as the method of multiple scales[8,9].The problem of nonlinear vibration and approximate solutions for these systems have been addressed in various studies[10-12].Different linear and nonlinear controllers have also been designed for such systems:cubic velocityfeedback[13],fuzzy sliding mode control[14],nonlinear positive position feedback(PPF)-based methods[15-17],a nonlinear energy sink approach[18],and delayed feedback control[19].The nonlinear dynamic response and control of fiber-metal laminated plates were studied in Ref.[20],and the active vibration isolation problem fora microelectromechanicalsystem(MEMS)device is addressed in Ref.[21].

    Many ofthe previously proposed controllers fornonlinear vibration suppression of the primary resonant frequency are second-order compensators[15-17].Although these compensators can effectively suppress the resonant frequency at its exact value,vibration amplitude in the neighboring frequency regions may even exceed the initial resonant amplitude.Because the excitation disturbance may not necessarily remain at the resonant frequency,vibrations in neighboring frequencies become a challenge,too.Additionally,these controllers have relatively complicated structures,which makes the solution preparation and controller implementation difficult.

    To avoid the complexity of second-order compensators and their high-amplitude peaks in the neighboring frequencies of resonance,a new nonlinear integral resonant controller(NIRC)is introduced in this paper.In the NIRC,a first-order nonlinear vibration compensator fed by a positive linear and a negative nonlinear position term is implemented to target the primary resonant frequency.A solution of the closed-loop system is obtained using the method of multiple scales in a multilayer fashion.A modulation equation is obtained and a stability analysis performed.The solution of the approximate method is then verified using numerical simulation results,and the influences of different control parameters on closed-loop system response are extensively investigated.The structure ofthiscontrollermakes itsuitable for nonlinear vibratory structures,such as beams and plates,in addition to MEMS systems and devices.

    2 Dynamics of the nonlinear system and NIRC

    High-amplitude oscillations are one of the primary causes of nonlinearity in responses of flexible structures.Cantilevers are prone to these vibrations more than structures with other boundary conditions because of their free end.Of the differentapproaches to applying the controlmomenton a structure to suppress these vibrations,one should use a collocated patch of piezoelectric actuators and sensors.The primary resonant mode for the model of a nonlinear vibrating system can be obtained using the geometrical deflections of the structure.This has been fully addressed in Ref.[15],and the governing equation is obtained as

    Fig.1 Time-domain block diagram representation of closed-loop system

    where u(t)is the time-dependent variable of the main system;overdot denotes differentiation with respect to t;Fc(t)is the control input;Fd=f cos(Ωt),where f is the amplitude and Ω the frequency of the external excitation;μ and ωmare the damping ratio and resonant frequency of the main system,respectively;α and β are curvature and inertia nonlinearity coefficients,respectively.Note that positive and negative values can be assigned to β based on the system characteristics.

    The NIRC consists of a first-order resonant integrator,with a combination of a positive linear and a negative nonlinear vibration displacement amplitude input.The NIRC is expressed as

    where v(t)is the variable of NIRC,ωNis the first-orderintegrator’s frequency,andλandδ are controllerinputgains.The control law is defined as Fc(t)=τv(t)for τ>0.Figure 1 shows a time-domain block diagram of a closed-loop system consisting of a main system and the NIRC;the figure also shows how different elements are connected to one another. The overalldamping ofthe systemincreaseswhen the control loop of the system is closed in accordance with the defined law.As a result,we would expect to see a significant reduction in the vibration amplitude in the frequency domain.To verify the expectations and provide a more detailed analysis of the system response,an approximate frequency domain solution is obtained in the following section.

    3 Controlled system response using method of multiple scales

    The method of multiple scales is applied to the closedloop dynamics of a system to provide a uniform nonlinear approximate solution near the fundamental resonant mode[9].Initially,two time scales are considered,T0=t and T1=εt,and the corresponding time derivatives are

    where Dn=?/?Tn,andεisa bookkeeping parameter.Equation(3)is substituted into the equations of the main system and controller,which yields

    The variables of Eqs.(4)and(5)are expanded using

    The order of Eq.(7)is chosen to be one order higher than the main systemto keep the first-orderdynamicsofthe controller at the same pace with the second-order nonlinear system model and to have all the necessary variables appear in the correct equations.The main system and controller parameters need to be scaled as follows:Separation in orders of ε yields three layers that are required for the analysis

    The solution of the homogeneous ordinary differential equation(ODE)of Eq.(8)is assumed to be in the form

    where A(T1)is a complex-valued function and cc is the complex conjugate.The solution considered for Eq.(12)is substituted into Eq.(10),and the resulting ODE is solved. The solution is then obtained as

    where the overbar denotes the complex conjugate function,and the variable C(T1)will be determined in subsequent stages of the solution.Equations(12)and(13)are substituted into Eq.(9),which yields

    Equation(14)can be solved by neglecting the secular terms that will subsequently be set equal to zero.The result is expressed as

    The solutions expressed by Eqs.(13)and(15)are used to obtain the solution of Eq.(11).The substitution yields Eq.(11)

    The solution of Eq.(16)is expressed in the form

    where the coefficients V1to V14are presented in the appendix.The secular terms in Eq.(16)should be set equal to zero,which also facilitates calculation of the term C(T1). The obtained equation is

    The solution for the ODE of Eq.(18)is obtained as

    where cvisa constant.The nextobjective isto obtain the modulation equation.To this end,the secular terms in Eq.(14)are set equal to zero,

    where σfis a small detuning parameter,defined using the detuning equation Ω=ωm+εσf.It is necessary to have this variable defined owing to the fact that the excitation frequency is close to the primary frequency of the main system. The solution of Eq.(20)is expressed in polar form using

    Equation(21)is substituted into Eq.(20)for real and imaginary parts to be separated.This yields

    A variable transformation is applied to Eqs.(22)and(23)by considering ?(t)=σft-θ(t),and the scaled parameters are restored to their original form.This yields

    4 Steady-state response and stability analysis

    To obtain the amplitude-frequency steady-state response of the controller system via the NIRC,steady-state conditions are considered as being˙a=˙?=0,which yields

    Equations(26)and(27)are squared and the two sides are summed together,which yields the final modulation equation:

    Next,a stability analysis is performed.Linearization around the equilibrium point is considered using Eqs.(24) and(25)and considering the variable vectorThe Jacobian matrix is then expressed by

    The Routh-Hurwitz stability criterion is used here to examine the stability of the closed-loop system controlled by the NIRC.The characteristic equation of the matrix is obtained first using

    for γ as an eigenvalue variable of the Jacobian matrix.Equation(30)is expressed in the form

    where the aiare the coefficients of the characteristic equation obtained from Eqs.(29)and(30).In orderforthe system to be stable,the real parts of all eigenvalues must be negative,which is satisfied by having ai>0 for i=0,1,2.To constructa stable closed-loop controlsystem,the considered gainsmustbe verified according to the obtained stability condition.Controller gain variables complying with the stability condition guarantee a stable system.

    5 NIRC controlled system results and discussions

    Finally,in this section,the performance of the proposed NIRC method is illustrated and discussed.The obtained amplitude-frequency equation is used to graphically show the effects ofdifferentcontrolsystemvariables,and the solution is subsequently verified using the numerical simulation result,followed by additional numerical results of system performance.

    In this section,the main variables of the closed-loop system will be as follows:ωm=12,μ=0.005,α=20,β=-10,ωN=12,and Ω=12.Gain values are noted for each graph separately.To choose stable gains,the equations presented in Sect.4 are used.It should be noted that stability is dependent on the control gains,amplitude,and frequency shift.Therefore,for every case based on the bandwidth of the amplitude and phase,the gain conditions are calculated. For all the cases presented in this section,the bandwidths of λ and τ gains are very large since the amplitude and phase are reasonably small.Thus the system is stable for almost all values ofgains.Forthe firstresult,the responses ofthe openand closed-loop systems are illustrated.Figure 2 shows the steady-state vibration amplitude versus changes in excitation frequency and amplitude.Two separate surfaces are depicted in Fig.2,showing the uncontrolled and NIRCcontrolled system response for controller gain values of λ=τ=15.A jump phenomenon is observed when the vibration amplitude exceeds f=0.22 in the uncontrolled system,and,owing to the selected numerical values for the nonlinear system,the graph bends toward the negative side of the frequency axis.According to the results,the NIRC is able to suppress the vibration amplitude in the neighborhood of the primary resonant frequency.Unlike conventional methods,such as positive position feedback(PPF)and nonlinear modified positive position feedback(NMPPF),discussed in Ref.[22],the NIRC controlled system shows no high-amplitude peak on eitherside ofthe fundamentalmode in the frequency domain.

    Fig.2 NIRC controlled and uncontrolled system responses

    To better analyze the suppression performance of the NIRC,F(xiàn)ig.3 isextracted from the depicted surfaces in Fig.2. Figure 3 shows the vibration amplitude and frequency of peak values for variations in the excitation amplitude,f. According to the obtained results,higher suppression levels are achieved for lower excitation amplitudes,as the suppression level reaches as high as 87.6%for f=0.5 and 62.7% for f=4.Deviation from the resonant frequency,σf,tends to grow much slower in the closed-loop NIRC system;σfincreases by 5.3 times from f=0.5 to f=4 in the uncontrolled mode,whereas it increases in the NIRC controlled system by just 2.2 times.

    Next,the effects of two control variables on system response are examined.Figure 4 shows the vibration amplitude for changes in controller gain λ(for τ=3 and f=2)and integrator frequency ωN(for λ=τ=14 and f=2)versus changes in the excitation frequency.According to Fig.4a,vibration suppression improves exponentially as this gain value moves away from zero in both the positive and negative directions.Note that the result obtained for positive gain values is slightly betterthan when using negative values. Figure 4b shows that a higher suppression level is obtained for ωN=0.This graph also shows that the peak in the suppressed graph ison the negative side ofthe frequency axis for positive values of integrator frequency,and vice versa.This is because the sign of the integrator frequency,in addition to its amplitude,changes the magnitude of the second term onthe left-hand side of Eq.(28).However,the inclination of the graph is to the negative direction in both cases.

    Fig.3 Vibration amplitudes.a Deviations from resonant frequency of peak values.b Changes in excitation amplitude in uncontrolled and NIRC controlled systems

    Fig.4 NIRC controlled system response for changes in excitation frequency(σf)versus.a Controller gain λ.b Integrator frequency ωN

    Figure 5 illustrates the effects of changes in the excitation amplitude and variations in λ(for τ=22 and σf=0.5)and ωN(for λ=τ=14 and σf=0.5)on the system response. According to Fig.5a,positive values of λ better reduce the vibration amplitude.The results presented in Fig.5b confirm the conclusion drawn from Fig.4b that the highest suppression level is achieved for ωN=0,and positive values for ωNare more effective.

    According to Eq.(28),two gain values of λ and τ are multiplied by each other where present.To investigate the effects ofchanges in both these variables on closed-loop system response,F(xiàn)ig.6 is used(for f=0.2 and σf=0.1). Based on the surface obtained,both gain values have similar effects,as expected.However,better suppression is achieved when both gains have the same signs.

    Next,the effect of the controller input term δ on system response is studied.As shown by Eq.(28),this term do not presentin the obtained approximate solution.This is because this term appears in a much higher-order layer of ε in perturbation expansion.In addition,even if the perturbation order is increased,the term will not appear in the secular terms of Eq.(14)since its frequency would be different from iωm. Hence,the effect of this controller variable is numerically investigated.MATLAB software is implemented to solve the coupled Eqs.(1)and(2)under the positive control law for different values of δ and for other control variables of λ=τ=7,f=0.1.According to the result illustrated in Fig.7,an increase in the selected value of δ provides a higher level of suppression.When the vibration amplitude is reduced to a lower level by increasing δ,the peak of the suppressed curve moves toward the negative σfaxis.Notethatany arbitrary value can be assigned to thiscontrollergain as long as the closed-loop system remains stable.

    Fig.5 NIRC controlled system response for changes in excitation amplitude(f)versus.a Controller gain λ.b Integrator frequency ωN

    Next,the obtained perturbation solution is verified using the results of numerical simulation.Figure 8 shows the controlled system response for gain values of λ= τ=1,f=0.02,for both the perturbation solution and a numerically simulated system.As shown,both graphs are in close agreement with one another,which confirms that the perturbation solution is in close agreement with a real system response.

    Finally,a numerical simulation is employed to obtain phase portraits ofthe systemfordifferentvalues ofexcitation frequency.In all illustrated results of Fig.9,the controller is switched on 45 s after the start of the process,when the system has reached steady-state.The control variables are set at λ=τ=7,δ=15,f=0.8,and nonzero initial conditions are selected.For σf=-1.5,the system is not excited at itsresonance,and the vibration amplitude is significantly lower than the maximum values ofothercases.When the controller is switched on,no significant change is observed.For other excitation frequencies,inner limit cycles are the steady-state controlled values.

    Fig.6 Closed-loop system response to changes in λ and τ

    Fig.7 Effectofcontrollerinputgain,δ,on suppressed vibration amplitude

    Fig.8 Perturbation solution verification using numerical simulation results

    Fig.9 Phase portraits of suppression process for different values of excitation frequency

    6 Conclusion

    In this paper,an NIRC was proposed for nonlinear vibration suppression in flexible structures.The NIRC,with its first-order design,provides additional damping for a closedloop systemin the neighborhood ofthe resonantfrequency.Alinear positive and a negative quadratic term of the vibration position are used asthe inputs ofthe controller,which provide more flexibility in the controller design process.A nonlinear model of a high-amplitude vibrating cantilever beam was considered,and an approximate steady-state solution was obtained via the method of multiple scales.Following an examination of the closed-loop system’s stability,results were illustrated and extensively discussed.Numerical simulation results were used to verify the analytical solution.In addition,the effects ofdifferentcontrolparameters on system response were analyzed.The NIRC has a relatively simple structure and provides a smooth closed-loop response in the neighborhood of the excitation frequency.The NIRC can be considered an effective and applicable candidate for nonlinear vibration controllers for flexible structures.

    Appendix

    The coefficients of the time-domain response of Eq.(17)are as follows

    1.Seigler,T.,Ghasemi,A.H.,Salehian,A.:Distributed actuation requirements of piezoelectric structures under servoconstraints.J. Intell.Mater.Syst.Struct.22,1227-1238(2011).doi:10.1177/ 1045389X11411222

    2.Seigler,T.,Ghasemi,A.:Specified motion ofpiezoelectrically actuated structures.J.Vib.Acoust.134,021002(2012)

    3.Daraji,A.H.,Hale,J.M.:Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams.Smart Mater.Struct.23,115018(2014)

    4.Li,S.,Li,J.,Mo,Y.etal.:Composite multi-modalvibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator.Smart Mater.Struct.23,015006(2014)

    5.Omidi,E.,Mahmoodi,S.N.:Multiple mode spatialvibration reduction in flexible beamsusing H2-and H∞-modified positive position feedback.J.Vib.Acoust.137,011004(2015)

    6.Omidi,E.,Mahmoodi,S.N.:Hybrid positive feedback control for active vibration attenuation of flexible structures.IEEE/ASME Trans.Mechatron.(2014).doi:10.1109/TMECH.2014.2354599

    7.Omidi,E.,Mahmoodi,S.N.:Consensuspositive position feedback control for vibration attenuation of smart structures.Smart Mater. Struct.24,045016(2015)

    8.Marinca,V.,Herisanu,N.:Nonlinear Dynamical Systems in Engineering:Some Approximate Approaches.Springer,New York(2012)

    9.Nayfeh,A.H.:Problems in Perturbation.Wiley,New York(1985)

    10.Hosseini,S.M.,Shooshtari,A.,Kalhori,H.:Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn.78,571-583(2014)

    11.Lazarus,A.,Thomas,O.,Deü,J.:Finite element reduced order modelsfornonlinearvibrationsofpiezoelectric layered beamswith applications to NEMS.Finite Elem.Anal.Des.49,35-51(2012)

    12.Mahmoodi,S.N.,Jalili,N.,Khadem,S.E.:An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams.J.Sound and Vib.311,1409-1419(2008)

    13.Oueini,S.S.,Nayfeh,A.H.:Single-mode control of a cantilever beam under principal parametric excitation.J.Sound Vib.224,33-47(1999)

    14.Dai,L.,Sun,L.:Vibration control of a translating beam with an active control strategy on the basis of the fuzzy sliding mode control.In:Proceedings of ASME International Mechanical Engineering Congressand Exposition(IMECE),Anonymous4B(2013)

    15.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach.Nonlinear Dyn.79,835-849(2015)

    16.El-Ganaini,W.,Saeed,N.,Eissa,M.:Positive position feedback(PPF)controller for suppression of nonlinear system vibration. Nonlinear Dyn.72,517-537(2013)

    17.Omidi,E.,Mahmoodi,S.N.:Sensitivity analysis of the nonlinear integralpositive position feedback and integralresonantcontrollers on vibration suppression of nonlinear oscillatory systems.Commun.Nonlinear Sci.Numer.Simul.22,149-166(2015)

    18.Ahmadabadi,Z.N.,Khadem,S.E.:Nonlinearvibration controlofa cantilever beam by a nonlinear energy sink.Mech.Mach.Theory. 50,134-149(2012)

    19.Zhao,Y.,Xu,J.:Effects of delayed feedback control on nonlinear vibration absorber system.J.Sound Vib.308,212-230(2007)

    20.Shao,X.,F(xiàn)u,Y.,Chen,Y.:Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field.Smart Mater.Struct.24,055023(2015)

    21.Meyer,Y.,Cumunel,G.:Active vibration Isolation with a MEMS device.Effectsofnonlinearitieson controlefficiency.SmartMater. Struct.24,085004(2015)

    22.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration control of flexible structures using nonlinear modified positive position feedback approach.In:Proceedings of ASME Dynamic Systems and Control Conference,San Antonio,TX,USA,Anonymous pp. V003T52A002(2014)

    12 December 2015/Revised:31 March 2016/Accepted:21 April 2016/Published online:25 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    香蕉丝袜av| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| ponron亚洲| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 久久精品91无色码中文字幕| 黄色片一级片一级黄色片| 免费看日本二区| 最近最新中文字幕大全电影3| 色综合婷婷激情| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 精品久久久久久久毛片微露脸| 嫩草影院入口| 午夜福利成人在线免费观看| netflix在线观看网站| 国产精品亚洲一级av第二区| 最新中文字幕久久久久| 观看美女的网站| 好男人在线观看高清免费视频| 老司机福利观看| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 亚洲成人久久性| 久久婷婷人人爽人人干人人爱| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕高清在线视频| 国产精品一区二区三区四区免费观看 | 国产毛片a区久久久久| 精品电影一区二区在线| 亚洲内射少妇av| www.www免费av| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 全区人妻精品视频| 国产高清激情床上av| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 午夜福利高清视频| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 高清在线国产一区| av天堂中文字幕网| 免费av毛片视频| 亚洲黑人精品在线| 亚洲人成网站在线播| 特级一级黄色大片| 美女大奶头视频| 国产一区二区三区在线臀色熟女| 非洲黑人性xxxx精品又粗又长| 亚洲在线自拍视频| av在线蜜桃| 日韩欧美三级三区| 成年人黄色毛片网站| 亚洲国产中文字幕在线视频| 亚洲色图av天堂| 丁香欧美五月| 日韩av在线大香蕉| 日本 av在线| 18禁美女被吸乳视频| 在线看三级毛片| 中文字幕高清在线视频| 免费看a级黄色片| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 午夜视频国产福利| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 久久久久久久久中文| 老熟妇仑乱视频hdxx| 99热只有精品国产| 亚洲国产色片| 成人欧美大片| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 成人三级黄色视频| 一个人免费在线观看电影| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩东京热| 婷婷亚洲欧美| 日韩人妻高清精品专区| 久久这里只有精品中国| 国产黄a三级三级三级人| 一个人免费在线观看的高清视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩卡通动漫| 麻豆成人午夜福利视频| 亚洲精品456在线播放app | 国产精品久久久人人做人人爽| 国产蜜桃级精品一区二区三区| 免费电影在线观看免费观看| av在线天堂中文字幕| 超碰av人人做人人爽久久 | 精品99又大又爽又粗少妇毛片 | 五月玫瑰六月丁香| 嫩草影院精品99| 狠狠狠狠99中文字幕| 亚洲五月天丁香| 男插女下体视频免费在线播放| 精品欧美国产一区二区三| 欧美日韩一级在线毛片| 国产av麻豆久久久久久久| 我的老师免费观看完整版| 亚洲熟妇中文字幕五十中出| 成人av在线播放网站| 一级毛片女人18水好多| 97碰自拍视频| 亚洲av第一区精品v没综合| 亚洲第一欧美日韩一区二区三区| 成年版毛片免费区| 岛国视频午夜一区免费看| 午夜福利视频1000在线观看| 国产色爽女视频免费观看| 在线观看免费视频日本深夜| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区成人 | 男人舔奶头视频| 欧美性猛交黑人性爽| 午夜激情欧美在线| 国产精品国产高清国产av| 男女下面进入的视频免费午夜| 丝袜美腿在线中文| 亚洲第一电影网av| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 免费看日本二区| 少妇高潮的动态图| 他把我摸到了高潮在线观看| 久9热在线精品视频| 欧美最黄视频在线播放免费| 午夜免费成人在线视频| 91久久精品国产一区二区成人 | 无遮挡黄片免费观看| 日本a在线网址| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 欧美性猛交黑人性爽| 97超级碰碰碰精品色视频在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲不卡免费看| 欧美日韩综合久久久久久 | 黄色成人免费大全| 99热只有精品国产| 成年免费大片在线观看| 波野结衣二区三区在线 | 老司机福利观看| 一个人看的www免费观看视频| 久久99热这里只有精品18| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 欧美大码av| 久久久久久人人人人人| 久久久久久大精品| 法律面前人人平等表现在哪些方面| 亚洲精品一卡2卡三卡4卡5卡| 香蕉av资源在线| 男人的好看免费观看在线视频| 免费在线观看日本一区| 最好的美女福利视频网| 午夜福利在线观看吧| 久久人妻av系列| 我的老师免费观看完整版| 亚洲无线在线观看| 日韩欧美在线二视频| 国产精品久久久久久久电影 | 欧美日韩国产亚洲二区| 欧美bdsm另类| 久9热在线精品视频| 国产亚洲精品综合一区在线观看| av欧美777| 桃红色精品国产亚洲av| 国产精品野战在线观看| 午夜a级毛片| 18禁裸乳无遮挡免费网站照片| 高潮久久久久久久久久久不卡| 12—13女人毛片做爰片一| 噜噜噜噜噜久久久久久91| 99久久综合精品五月天人人| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 欧美中文综合在线视频| 亚洲 欧美 日韩 在线 免费| 我要搜黄色片| 黄色丝袜av网址大全| 身体一侧抽搐| 欧美zozozo另类| 久久人妻av系列| 日韩免费av在线播放| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 午夜免费成人在线视频| 精品久久久久久久末码| 老司机午夜福利在线观看视频| 99国产精品一区二区三区| 国产精品av视频在线免费观看| 午夜福利视频1000在线观看| www日本在线高清视频| 看黄色毛片网站| 欧美丝袜亚洲另类 | 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 在线观看66精品国产| 久久精品影院6| 女人被狂操c到高潮| 一级黄色大片毛片| 久久久国产精品麻豆| 91麻豆av在线| 国产爱豆传媒在线观看| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 91字幕亚洲| 成人午夜高清在线视频| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播| 成人av一区二区三区在线看| 色播亚洲综合网| 中文在线观看免费www的网站| 伊人久久大香线蕉亚洲五| 性色av乱码一区二区三区2| 国产在线精品亚洲第一网站| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 亚洲色图av天堂| 麻豆国产97在线/欧美| 午夜激情福利司机影院| 国产99白浆流出| 香蕉丝袜av| 久久国产精品人妻蜜桃| 亚洲精品成人久久久久久| 国产欧美日韩一区二区精品| 久久国产精品影院| 日本a在线网址| 看免费av毛片| 亚洲精品日韩av片在线观看 | 成年版毛片免费区| 亚洲性夜色夜夜综合| 高清在线国产一区| av国产免费在线观看| 麻豆国产av国片精品| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 中国美女看黄片| netflix在线观看网站| 久久精品国产清高在天天线| 亚洲精品456在线播放app | 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 成人18禁在线播放| 91av网一区二区| 国产精品嫩草影院av在线观看 | 色综合欧美亚洲国产小说| 国产99白浆流出| 两个人视频免费观看高清| 可以在线观看毛片的网站| 精品国产三级普通话版| 狂野欧美激情性xxxx| 三级国产精品欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 宅男免费午夜| 国产久久久一区二区三区| 婷婷精品国产亚洲av在线| a在线观看视频网站| 国产精品99久久久久久久久| 天堂动漫精品| 中文在线观看免费www的网站| 欧美av亚洲av综合av国产av| 国产成人av教育| 又紧又爽又黄一区二区| 天美传媒精品一区二区| 91九色精品人成在线观看| 在线免费观看的www视频| 国产精品久久久久久久久免 | 五月伊人婷婷丁香| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 亚洲国产精品合色在线| 一个人免费在线观看的高清视频| 99精品在免费线老司机午夜| 国产成年人精品一区二区| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 精品久久久久久久末码| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 亚洲内射少妇av| 中文在线观看免费www的网站| 一级a爱片免费观看的视频| 国产真实乱freesex| 99视频精品全部免费 在线| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 亚洲av美国av| 亚洲天堂国产精品一区在线| www.色视频.com| 国产亚洲欧美98| 一区二区三区高清视频在线| 精品一区二区三区视频在线 | 1024手机看黄色片| 动漫黄色视频在线观看| 国模一区二区三区四区视频| 欧美日韩精品网址| 男女视频在线观看网站免费| 亚洲一区二区三区不卡视频| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 一夜夜www| 中文字幕av在线有码专区| 深夜精品福利| 国产高清三级在线| 久久久久久久久大av| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 三级毛片av免费| 12—13女人毛片做爰片一| 午夜免费激情av| 国产黄片美女视频| 老鸭窝网址在线观看| 757午夜福利合集在线观看| 18禁在线播放成人免费| 在线观看舔阴道视频| 国产国拍精品亚洲av在线观看 | 成人永久免费在线观看视频| 18禁在线播放成人免费| 窝窝影院91人妻| 国产真实伦视频高清在线观看 | 精品久久久久久久末码| 亚洲色图av天堂| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 在线观看美女被高潮喷水网站 | 国产亚洲精品av在线| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 久久久久国内视频| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 国产精品98久久久久久宅男小说| 久久精品91无色码中文字幕| 国产老妇女一区| 岛国在线免费视频观看| 婷婷亚洲欧美| 午夜福利在线观看吧| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 国产精品一区二区三区四区免费观看 | 国产精品亚洲av一区麻豆| 日本五十路高清| 热99re8久久精品国产| 国产爱豆传媒在线观看| 三级毛片av免费| 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| 精品人妻偷拍中文字幕| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线 | 久久久国产成人精品二区| 亚洲真实伦在线观看| 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网| 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 精品日产1卡2卡| 成人三级黄色视频| 国产精品久久电影中文字幕| 黄色女人牲交| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| 夜夜爽天天搞| 在线天堂最新版资源| 一本久久中文字幕| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 欧美+亚洲+日韩+国产| 国产中年淑女户外野战色| 国产乱人视频| 两人在一起打扑克的视频| 波多野结衣高清无吗| 免费在线观看成人毛片| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 亚洲久久久久久中文字幕| 日本 av在线| 国产av一区在线观看免费| 精品乱码久久久久久99久播| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 午夜亚洲福利在线播放| 老熟妇乱子伦视频在线观看| 在线观看午夜福利视频| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 色在线成人网| 99久久综合精品五月天人人| 久久久久久久久大av| 久久久久久久亚洲中文字幕 | 别揉我奶头~嗯~啊~动态视频| 12—13女人毛片做爰片一| 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 日本与韩国留学比较| av片东京热男人的天堂| 国产成人系列免费观看| 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 看免费av毛片| 国产精品精品国产色婷婷| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看| 中国美女看黄片| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 一a级毛片在线观看| 亚洲第一电影网av| 天堂√8在线中文| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| av福利片在线观看| 久久久色成人| 精品人妻1区二区| 国产v大片淫在线免费观看| av欧美777| 九色国产91popny在线| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| 一区二区三区激情视频| 欧美日韩一级在线毛片| 在线视频色国产色| 日本三级黄在线观看| 五月玫瑰六月丁香| 99久久99久久久精品蜜桃| 日日干狠狠操夜夜爽| 九九在线视频观看精品| av女优亚洲男人天堂| 午夜免费成人在线视频| 亚洲精品乱码久久久v下载方式 | 一本综合久久免费| 亚洲av熟女| 在线天堂最新版资源| 一进一出抽搐动态| 亚洲国产精品999在线| www.熟女人妻精品国产| 少妇的逼好多水| 国产亚洲精品一区二区www| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 国产中年淑女户外野战色| 国产一区二区在线观看日韩 | 午夜福利欧美成人| 亚洲人成网站高清观看| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影| 一本一本综合久久| 国产三级在线视频| 国产高清videossex| 亚洲内射少妇av| 亚洲一区二区三区不卡视频| 亚洲精品久久国产高清桃花| 好男人电影高清在线观看| 色视频www国产| av欧美777| 午夜精品一区二区三区免费看| 一个人免费在线观看的高清视频| 国产黄片美女视频| 午夜精品久久久久久毛片777| 亚洲自拍偷在线| 欧美中文综合在线视频| 亚洲熟妇熟女久久| 两性午夜刺激爽爽歪歪视频在线观看| 十八禁人妻一区二区| 久久欧美精品欧美久久欧美| 亚洲欧美精品综合久久99| 美女黄网站色视频| 亚洲国产欧美网| 99久久无色码亚洲精品果冻| 人妻夜夜爽99麻豆av| 美女高潮的动态| 国产欧美日韩一区二区三| 国产激情偷乱视频一区二区| 久久6这里有精品| 999久久久精品免费观看国产| 国产日本99.免费观看| 久久99热这里只有精品18| av专区在线播放| 性色av乱码一区二区三区2| 成人特级黄色片久久久久久久| 日韩有码中文字幕| 在线观看一区二区三区| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 日本黄大片高清| 国产视频内射| 久久久成人免费电影| 看黄色毛片网站| 母亲3免费完整高清在线观看| 麻豆久久精品国产亚洲av| 女人被狂操c到高潮| 99热只有精品国产| 一本综合久久免费| 青草久久国产| 免费看a级黄色片| 中文在线观看免费www的网站| 露出奶头的视频| av福利片在线观看| 三级毛片av免费| 国产精品久久久人人做人人爽| a级一级毛片免费在线观看| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 国产单亲对白刺激| 一二三四社区在线视频社区8| 特级一级黄色大片| 欧美成狂野欧美在线观看| 亚洲精品日韩av片在线观看 | 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 免费人成视频x8x8入口观看| 亚洲 国产 在线| 色尼玛亚洲综合影院| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久久久久久久免 | 欧美一区二区亚洲| 熟女电影av网| 亚洲成a人片在线一区二区| 丰满人妻一区二区三区视频av | 天堂√8在线中文| 久久久久国产精品人妻aⅴ院| av女优亚洲男人天堂| 久久精品夜夜夜夜夜久久蜜豆| 国产av麻豆久久久久久久| 欧美成人a在线观看| 日韩精品青青久久久久久| 国产高清videossex| 欧美性猛交╳xxx乱大交人| 国产视频一区二区在线看| 欧美黄色淫秽网站| 亚洲av美国av| www日本在线高清视频| 在线观看日韩欧美| 国产伦精品一区二区三区视频9 | 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩东京热| 别揉我奶头~嗯~啊~动态视频| 久久亚洲精品不卡| 18+在线观看网站| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 国产精品 国内视频| 人人妻,人人澡人人爽秒播| 黑人欧美特级aaaaaa片| 免费观看人在逋| 91久久精品电影网| 亚洲国产精品久久男人天堂| 欧美性猛交╳xxx乱大交人| 成年女人看的毛片在线观看| 婷婷丁香在线五月| 国产一区二区亚洲精品在线观看| 精品不卡国产一区二区三区| 国产精品亚洲av一区麻豆| 国产欧美日韩精品亚洲av| 国产黄片美女视频| 欧美色欧美亚洲另类二区| 天堂动漫精品| 亚洲色图av天堂| e午夜精品久久久久久久| 十八禁网站免费在线| 亚洲av二区三区四区| 国产日本99.免费观看| 亚洲国产欧洲综合997久久,| 白带黄色成豆腐渣| 亚洲成a人片在线一区二区| www.999成人在线观看|