• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    2016-11-04 08:53:31RezaAnsariJalalTorabi
    Acta Mechanica Sinica 2016年5期

    Reza Ansari·Jalal Torabi

    ?

    RESEARCH PAPER

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    Reza Ansari1·Jalal Torabi1

    Based on the nonlocal elasticity theory,the vibration behavior of circular double-layered graphene sheets(DLGSs)resting on the Winkler-and Pasternak-type elastic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen’s nonlocal elasticity and the classical plate theory(CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direction.Using the generalized differential quadrature(GDQ)method and periodic differential operators in radial and circumferentialdirections,respectively,the governing equation is discretized.DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals(vdW)interaction forces is taken into account. In the numerical results,the effects of various parameters such aselastic mediumcoefficients,radius-to-thicknessratio,thermal loading and nonlocal parameter are examined on both in-phase and anti-phase naturalfrequencies.The results show that the thermal load and elastic foundation respectively decreases and increases the fundamental frequencies of DLGSs.

    Circular DLGS·Vibration·Nonlocal theory· Thermal environment·Numerical solution

    ? Jalal Torabi jalal.torabii@gmail.com

    1Department of Mechanical Engineering,University of Guilan,P.O.Box 3756,Rasht,Iran

    1 Introduction

    Nanostructures are widely used in various micro-and nano-scale devices such as gas detectors,biosensors,microelectro-mechanical systems(MEMS)and nano-electromechanical systems(NEMS)due to their superior mechanical,thermal,and electrical properties[1].Among the nanostructures,carbon nanotubes(CNTs)and graphene sheets(GSs)have found a wide range ofapplications in engineering and medicine.

    There exist three main categories for the theoretical modeling of nanomaterials.One category is atomistic modeling including some methods such as classical molecular dynamics(MD),tight-binding MDand the ab initio techniques.The other category is hybrid atomistic-continuum mechanics by which one can directly incorporate the continuum treatment into the interatomic potential[2].The third approach is continuum modeling widely used in the analysis of materials at nano-scales.While conducting experiments at nanoscale is difficult,and the atomistic simulations are computationally expensive formodeling large scale nanostructures,the analysis ofnanomaterials based on the continuum mechanics is an interesting topic for researchers since the continuum models are computationally efficient and provide a reasonable accuracy.

    Classic continuum models including the beam,plate,and shellmodelshave been used to simulate CNTsand GSs[3-5]. Atvery smallsizes,lattice spacing between individualatoms becomes significantly important,and the nanostructure cannot be considered as a continuous medium.In other words,the mechanicalbehaviorofnanostructures is size-dependent. Since the classic continuum models cannot capture the size effect,some higher-order continuum theories such as the modified couple stress theory[6,7],the strain gradient the-ory[8,9],the surface stress theory[10-13],and the nonlocal elasticity theory[14-17]can be employed for the analysis of small-scale systems.In addition,Peddieson et al.[18]indicated that the nonlocal elasticity theory can be appropriately applied to nanotechnology applications.An important issue related to nonlocal models is the appropriate value of nonlocal parameters.The suitable value of the nonlocal parameter can be determined by matching the results obtained from experiments or atomistic methods such as MD simulations to those of nonlocal models.In this regard,some attempts have been made for calibrating the nonlocal parameter in some nonlocal models[19-22].

    In addition to the direct applications of GSs in different fields,they are the basic structural elements for carbon nanotubes,fullerenes,and nanorings Thus,understanding the mechanicalbehaviorof GSs is ofgreatimportance in designing MEMS and NEMS.Application of nonlocal elasticity theory has been reported by many researchers in the static and dynamic analyses of GSs.

    To be noted is that Gibson et al.[23]indicated employing the nonlocal elasticity theory results in accurate prediction of vibration behavior of nanostructures.Bending,vibration,and buckling ofrectangularand circular GSs have been studied by differentresearchers[24-34].Forexample,Arash and Wang[35]investigated the vibration of single-and doublelayered graphene sheets(SLGSs and DLGSs)using the nonlocal elasticity theory and molecular dynamics simulations.The nonlocal parameter was calibrated through the verification of natural frequency obtained by the nonlocal elasticity theory and molecular dynamics simulations. Employing the differential quadrature method and the nonlocal elasticity theory,Pradhan and Kumar[36]studied the vibration of orthotropic rectangular graphene sheets. The effects of nonlocal parameters,material properties,and boundary conditions on the non-dimensional frequency of GSs were presented.In addition,Jomehzadeh and his coworkers[37,38]investigated the large amplitude vibration of DLGSs resting on a nonlinear polymer matrix.Using Hamilton’s principle and von-Karman’s nonlinear geometricalmodel,the governing equations of DLGSs were obtained. The influences of nonlocal parameters and nonlinear behavior of a polymer matrix on the nonlinear vibration analysis of DLGSs were considered.

    Using the nonlocal continuum model,the effects of small scale on the vibration of quadrilateral nanoplates were studied by Babaei and Shahidi[39].The Galerkin method is employed to obtain the non-dimensional natural frequencies of skew,rhombic,trapezoidal,and rectangular nanoplates. Moreover,considering the nonlocalelasticity theory,Murmu et al.[40]studied the effects of a magnetic field on the vibration of rectangular SLGSs resting on elastic foundations. The results reveal that the in-plane magnetic field increases the natural frequencies of the SLGSs.Also,Mohammadi et al.[41]examined the free vibration of embedded circular and annular SLGSs employing the nonlocal continuum model.Furthermore,Mohammadi and his co-workers investigated the influence of thermo-mechanical pre-load on the vibration behavior of embedded SLGSs[42].

    The free vibration behaviorofrectangularGSs undershear in-plane loads was studied by Mohammadi et al.[43]based on the nonlocalelasticity theory.They employed the differentialquadrature method to solve the problem.In thatwork,the influences ofsurrounding elastic medium and boundary conditions were studied on the vibrations of orthotropic SLGSs. Asemi et al.[44]investigated the axisymmetric buckling of circular SLGS by decoupling the nonlocal equations of Eringen theory.The governing equations were derived using equilibrium equations of the circular plate in polar coordinates,and the Galerkin method wasimplemented to compute the buckling loads.

    Then Shen et al.[45]presented the nonlinear vibration analysis of rectangular DLGSs in thermal environments using MDsimulationsand the nonlocalelasticity.The nonlinear von-Karman relations were considered and the nonlocal parameterwas calibrated by equating the naturalfrequencies of GSs obtained from the MD simulations and those from the nonlocal plate model.In addition,the nonlocal vibration of DLGSs-based resonators was studied by Shi et al.[46]. By utilizing the nonlocal thin plate theory,both the in-phase mode(IPM)and the anti-phase mode(APM)of vibrational behavior of DLGSs with simply-supported boundary conditions were investigated.Employing the finite strip method and considering the van der Waals(vdW)effect,Sarrami-Foroushani and Azhari[47]analyzed the nonlocal vibration and stability behaviors of single-and multi-layered rectangular GSs.

    In the present study,the nonlocal vibration behavior of embedded circular DLGSs subjected to thermal load is studied.Based on the nonlocalelasticity theory,the classicalplate theory(CLPT),and the governing equation is derived.Both Winkler-and Pasternak-type elastic foundations are taken into account.A uniform temperature rise throughout the thickness direction is considered as a thermal loading.An efficient numerical method is employed to solve the governing equation and obtain the naturalfrequencies ofthe DLGSs. Using the generalized differential quadrature method and periodic differential operators in radial and circumferential directions,respectively,the governing equation is discretized in two directions.Employing the generalized differential quadrature(GDQ)method in the circumferential direction one should satisfy the periodicity condition on the boundary. While applying the periodic differential operators in the circumferentialdirection,the periodicity condition willbe satisfied by itself.DLGSswith clamped(C)and simply-supported(S)boundary conditions are studied.Furthermore,considering the vdW interaction forces between layers of DLGSs,the effects of elastic medium and thermal loadings on both in-phase and anti-phase natural frequencies were examined.

    2 Governing equations

    Unlike the classical continuum mechanics,which states that the stress tensor at a reference point x can be defined by the strain tensor at that point,based on the nonlocal elasticity theory proposed by Eringen[14],the stress at a reference point x of a body is a function of the strain field at every point in the medium.According to the nonlocal elasticity theory,the nonlocal stress tensor can be defined as

    where σij,?ij,and Cijklare elements of the stress,strain,and fourth-order elasticity tensor,respectively.Kernel functionis the nonlocal modulus which depends on the Euclidean distance,and a material constant α=e0a/l,where e0,a,and l are the material constant,internal characteristic lengths,and external characteristic lengths,respectively.The parameter e0a is the nonlocalparameter which captures the size effect in the behavior of the nanoscale structures.Eringen defined the kernel functionas

    where K0is the modified Bessel function and x·x presents the neighborhood distance[14].Considering Eqs.(1)and(2),the differential form of the constitutive relation could be obtained as

    where is the Laplacian operator.On the basis of Eq.(3)and considering the CLPT,the plane stress condition and thermal effects,the stress-strain relations are written as

    Fig.1 A continuum plate model of the circular graphene sheet

    where E,G,ν,and α are Young’s modulus,shear modulus,Poisson’s ratio,and the coefficient of thermal expansion,respectively.A continuum plate model of the circular graphene sheet and associated coordinates are shown in Fig.1.Based on the classical plate theory,the threedimensional displacement components U,V,and W are assumed as

    where u,v,and w are the displacement components of the middle surface of the graphene sheet,and t denotes time. Since neglecting the displacements of the middle surface along the radial and circumferential directions,i.e.,u=0,v=0,does not affect the transverse vibration behavior of GSs,the strain fields can be expressed as

    where z denotes the distance from the middle surface.The stress resultants can be given as

    Substituting Eqs.(4)-(6)into Eq.(7)gives

    From Eqs.(3)-(7),the governing equation of vibration of a pre-loaded circular plate resting on a Pasternak-type elastic foundation can be derived as

    where h,P,ρ,Kw,and Kgare thickness,distributed transverse pressure,density,Winklermodulus,and shearmodulus of the surrounding elastic medium,respectively.In addition,are stress resultants due to initial thermal loading.Assuming uniform temperature rise throughout the thickness direction and considering the linear equilibrium equation of the plate,the thermal stress resultants on the basis of the theory of thermal elasticity,can be written as

    Using Eqs.(8),(10),and(11),the equation ofmotion in terms of lateral deflection can be obtained as

    Since a DLGS is composed of two layers of GS,Eq.(13)can be extended into two equations for the upper and lower layers as

    where the superscripts 1 and 2 indicate the upper and lower layers of the circular DLGSs,respectively.In addition,P1and P2are the applied pressure on the GSs through the vdW interaction forces,which can be given as

    where c is the vdW interaction coefficient between two layers,which can be obtained from the Lennard-Jones pair potential as[46]

    where a is the characteristic internal length of the C-C bond. ζ=2.968 MeV and δ=0.3407 nm are parameters chosen to fit the physical properties of GSs and(j= 1,2).

    3 Solution procedure

    The equationsofmotion ofDLGSs resting on an elastic foundation and subjected to initial thermal loading are obtained based on the nonlocal CLPT.Using the GDQ method in radial direction and periodic differential matrix operators in the circumferential direction,the governing equation(14)will be discretized in two dimensions to find the natural frequency of DLGSs.In this regard,the GDQ method and periodic differential operators will be presented in the next section.

    3.1GDQ method

    On the basis of the GDQ method[48],the n-th derivative of f(r)can be obtained as a linear sum of the function,i.e.,

    in which Nris the numberoftotaldiscrete grid pointsused in the process of approximation in the r direction andthe weighting coefficients. A column vector F can be defined as shows

    where frjdenotes the nodal value of f(r)at r=rj.A differential matrix operator based on Eq.(17)can be written in the form

    In Eq.(20),n is the orderofdifferentiation andis obtained by[49]

    in which Iris an Nr×Nridentity matrix and

    Previous studies revealed thatthe Chebyshev-Gauss-Lobatto grid point distribution has the most convergence and stability among the other grid distributions.Thus,using this grid distribution,the mesh in the radialdirection can be generated as

    where R is the radius of the circular GSs.

    3.2Periodic differential operators

    To find out the periodic response of circular GSs in the circumferential direction,the general governing equation is discretized overthe circumferentialdirection via periodic differentialmatrix operators.Using this method,the periodicity condition will be naturally satisfied,and one does not need to impose the periodicity condition on differential operators. Considering an unbounded grid with periodic grid points between 0 and 2π and employing the derivatives of periodic sinc function,as a base function in a collocation method,the spectral differentiation matrix operators are obtained.The periodic differential matrix operators are defined as[49]

    where the coefficients ai,jand bi,jare given as

    where Nθis the number of grid points in the circumferential direction.

    3.3Discretization of governing equation

    The equation of motion of DLGSs will be discretized using the GDQ method and periodic differential matrix operator. The nodal values of lateral deflection of each GS layers are given as

    where Iθis an Nθ×Nθidentity matrix and?denotes the Kronecker product.Using Eqs.(27)and(28)and assuming

    harmonic solution in time domain,i.e.and,the governing equation(14)can be written as

    in which?0=Iθ?Irand

    Substituting the boundary conditions into the stiffness and inertia matrices and solving the set of linear Eq.(29),the two kinds of natural frequencies of DLGSs ωIPMand ωAPMare obtained.The subscripts IPM and APM denote the inphase mode and anti-phase mode,respectively.Considering Eq.(29),two sets of linear algebraic equations for IPM and APM natural frequencies can be written as

    4 Results and discussion

    On the basis of Eringen’s nonlocal elasticity and the classical plate theory,the vibration analysis of embedded circular DLGSs was carried out in a thermal environment. The mechanical properties of GSs are assumed as follows: Young’s modulus E=1 TPa,the mass density ρ= 2300 kg/m3,Poisson’s ratio ν=0.3,the thermal expansion coefficient for high temperature case α=1.1×10-6?C-1,and the thickness of GSs h=0.34 nm[42].The effects of Winkler and Pasternak coefficients of elastic foundation are taken into account.In this regard,non-dimensional coefficients of elastic medium are defined as

    Since the vibrational behavior of GSs is studied under initial thermal loading,the natural frequency of the structure becomes zero when the thermal loading meets its critical value.Both the IPM and the APM of natural frequency are assessed according to Eq.(33).

    The accuracy of the present work is verified by the given results for the non-dimensional natural frequency of SLGSs by Mohammadi et al.[41].Comparison of dimensionlessfrequencies for various nonlocal parameters is presented in Table 1.Moreover,the influences of various elastic foundation coefficients on the dimensionless frequency of SLGS are compared in Table 2.The results of both tables are in good agreement.

    Table 1 Comparison of dimensionless frequency parameters for two different boundary conditions and nonlocal parameters(R=10 nm)

    Table 2 Comparison of dimensionless frequency parameters for variouselastic foundation coefficientsand nonlocalparametersforclamped boundary condition(R=20 nm)

    Table 4 Changes of IPM natural frequencies(THz)of clamped DLGS forvariousthermalloadingsand nonlocalparameters(R/h=50,kw= 0,kg=0)

    The effects of elastic foundation coefficients and nonlocal parameter on IPM and APM natural frequencies of simply-supported DLGSs for different mode numbers are presented in Table 3.The values of nonlocal parameter are assumed to be 0(corresponding to the classical/local continuum model)and 2nm.The results show that the increase of the nonlocalparameterconsiderably reduces the IPMnatural frequencies.For APM,however,the effect of nonlocal parameter on the fundamental frequency is almost negligible due to the influential effect of the vdW interaction forces.The nonlocality continues to affect APM frequencies at higher mode numbers.In addition,itcan be seen thatthe increase of the elastic foundation coefficients increases the natural fre-quencies,whereas,these changes decrease at higher mode numbers.

    Table 3 Changes of IPM and APM natural frequencies(THz)of simply-supported DLGS for various elastic foundation coefficients and nonlocal parameters(R/h=10)

    Table 5 Changes of IPM natural frequencies(THz)of DLGS for different thermal loadings and boundary conditions(R/h=10)

    Fig.2 IPM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Variations ofIPMnaturalfrequency ofclamped DLGSsin respect to increase of the temperature differences and nonlocal parameters are given in Table 4.The results indicate that the natural frequencies decrease by increasing the temperature difference.At higher mode numbers,the influences of thermal loading are weakened.

    IPM natural frequencies of DLGSs for different nonlocal parameters,boundary conditions,elastic foundation coefficients and thermal loadings are presented in Table 5.In addition to whatwas mentioned above,itisseen thatthe presence of elastic foundation decreases the effects of thermal loading on the fundamental frequency of the simply supported GSs.

    The variations of IPM and APM natural frequencies of clamped and simply-supported GSs versus mode numbers for various nonlocal parameters are shown in Figs. 2 and 3,respectively.It is observed that the natural frequencies of the DLGSs are more sensitive to nonlocal parameter at higher mode numbers.Furthermore,considering the clamped boundary condition makes the GSs stiffer and results in higher natural frequency in comparison with simply-supported one.

    Fig.3 APM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Fig.4 IPM fundamental frequencies versus radius-to-thickness ratio(kw=0,kg=0)

    The changes of IPM and APM natural frequencies of clamped and simply-supported GSs versus the radius-tothickness ratios for various nonlocal parameters are demonstrated in Figs.4 and 5.The results reveal that the effects of nonlocal parameter at higher R/h ratios can be neglected,which is in agreement with nonlocal elasticity theory.Moreover,the vdW interaction forces play an important role on size dependency of APM natural frequencies and decrease the effects of nonlocal parameter.

    Figure 6 depicts the variations of IPM fundamental frequencies of GSs versus the radius-to-thickness ratios forvarious elastic foundation coefficients.It is found that at higher R/h ratios,the influences of elastic medium coefficients diminish.

    Fig.5 APM third natural frequency versus radius-to-thickness ratio(kw=0,kg=0)

    Fig.6 IPM natural frequencies versus radius-to-thickness ratio(e0α=1 nm)

    The variations of APM fundamental frequencies versus vdW interaction coefficients for various nonlocal parameters are plotted in Fig.7.It is observed that the quantities of vdW interaction coefficients play an important role on the size-dependency of the APM natural frequency.In addition,the higher vdW interaction coefficients lead to the higher values of natural frequency of DLGSs,as it is expected.

    Figure 8 presents the variations of IPM natural frequencies of clamped and simply-supported GSs versus the temperature differences through the thickness direction for various nonlocal parameters.The results obviously indicate that the fundamental natural frequencies of GS are size-dependent.Additionally,the fundamental frequencies decrease with the increase of thermal loading and tend to zero when the thermal loadings meet their critical values.

    Fig.7 APM natural frequencies versus vdW interaction coefficients(R/h=10,kw=0,kg=0)

    Fig.8 IPM natural frequencies versus Temperature rise(R/h=50,kw=0,kg=0)

    5 Conclusion

    The size-dependent vibration of circular DLGSs resting on an elastic foundation and subjected to thermal loading was investigated.Employing the nonlocal elasticity theory,the governing equations of DLGSs were derived.The Pasternaktype elastic foundation was considered.In addition,the thermal loading was considered to be due to a uniform temperature rise throughout the thickness direction.

    Using the generalized differential quadrature method in the radial direction and periodic differential operators in the circumferential direction,the governing equations were discretized.Considering the vdW interaction forces,both inphase and anti-phase natural frequencies were examined.

    Itwas observed thatthe nonlocalparameterhas significant effects on the natural frequencies of circular DLGSs.The higher mode numbers of IPM and APM natural frequencies are more sensitive to size-dependency.The results showed that the increase of elastic foundation coefficients increases the natural frequencies of DLGSs.Also,increase in R/h ratiosmakesthe naturalfrequency lesssensitive to increase of the elastic medium coefficients.In addition,itwas figured out that thermal loadings play an important role on the vibration analysis of DLGSs,as increase of the temperature difference yieldsto reduction offundamentalfrequency.Moreover,in the presence of an elastic foundation,considering the simply-supported boundary conditions decreases the effects of thermal loading on the fundamental frequency of the GSs.

    1.Li,X.,Bhushan,B.,Takashima,K.,etal.:Mechanicalcharacterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques.Ultramicroscopy 97,481-494(2003)

    2.Belytschko,T.,Xiao,S.P.,Schatz,G.C.,et al.:Atomistic simulations of nanotube fracture.Phys.Rev.B 65,235430(2002)

    3.Natsuki,T.,Matsuyama,N.,Shi,J.X.,et al.:Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads.Appl.Phys.A 116,1001-1007(2014)

    4.Natsuki,T.,Shi,J.X.,Ni,Q.Q.:Vibration analysis of circular double-layered graphene sheets.J.Appl.Phys.111,044310(2012)

    5.Wang,J.,He,X.,Kitipornchai,S.,et al.:Geometrical nonlinear free vibration of multi-layered graphene sheets.J.Phys.D Appl. Phys.44,135401(2011)

    6.Yang,F(xiàn).A.C.M.,Chong,A.C.M.,Lam,D.C.C.,etal.:Couple stress based strain gradient theory for elasticity.Int.J.Solids Struct.39,2731-2743(2002)

    7.Park,S.K.,Gao,X.L.:Bernoulli-Euler beam model based on a modified couple stress theory.J.Micromech.Microeng.16,2355(2006)

    8.Mindlin,R.D.,Eshel,N.N.:On first strain-gradient theories in linear elasticity.Int.J.Solids Struct.4,109-124(1968)

    9.Ansari,R.,Gholami,R.,Shojaei,M.F.,etal.:Size-dependentbending,buckling and free vibration offunctionally graded Timoshenko microbeamsbased on the mostgeneralstrain gradienttheory.Compos.Struct.100,385-397(2013)

    10.Gurtin,M.E.,Weissmüller,J.,Larche,F(xiàn).:A general theory of curved deformable interfacesin solidsatequilibrium.Philos.Mag. A 78,1093-1109(1998)

    11.Dingreville,R.,Qu,J.,Cherkaoui,M.:Surface free energy and its effect on the elastic behavior of nano-sized particles,wires and films.J.Mech.Phys.Solids 53,1827-1854(2005)

    12.Farajpour,A.,Rastgoo,A.,Mohammadi,M.:Surface effects on the mechanical characteristics of microtubule networks in living cells.Mech.Res.Commun.57,18-26(2014)

    13.Asemi,S.R.,F(xiàn)arajpour,A.:Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheetsincluding surface effects.Phys.ELow Dimens.Syst.Nanostruct.60,80-90(2014)

    14.Eringen,A.C.:On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J.Appl.Phys. 54,4703-4710(1983)

    15.Rahmani,O.,Jandaghian,A.A.:Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory.Appl.Phys.A 119,1019-1032(2015)

    16.Moosavi,H.,Mohammadi,M.,F(xiàn)arajpour,A.,et al.:Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory.Phys.E Low Dimens.Syst.Nanostruct.44,135-140(2011)

    17.Mohammadi,M.,F(xiàn)arajpour,A.,Moradi,A.,et al.:Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermalenvironment.Compos.PartBEng.56,629-637(2014)

    18.Peddieson,J.,Buchanan,G.R.,McNitt,R.P.:Application of nonlocal continuum models to nanotechnology.Int.J.Eng.Sci.41,305-312(2003)

    19.Duan,W.H.,Wang,C.M.,Zhang,Y.Y.:Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics.J.Appl.Phys.101,24305-24305(2007)

    20.Ansari,R.,Rouhi,H.:Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocalFlugge shell theory.J.Eng.Mater.Technol.134,011008(2012)

    21.Ansari,R.,Rouhi,H.,Sahmani,S.:Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics.Int.J.Mech.Sci.53,786-792(2011)

    22.Aydogdu,M.:Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics.Int.J.Eng.Sci.56,17-28(2012)

    23.Gibson,R.F.,Ayorinde,E.O.,Wen,Y.F.:Vibrations of carbon nanotubes and their composites:a review.Compos.Sci.Technol.67,1-28(2007)

    24.Pradhan,S.C.,Phadikar,J.K.:Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models.Phys.Lett.A 373,1062-1069(2009)

    25.Mohammadi,M.,Moradi,A.,Ghayour,M.,et al.:Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct.11,437-458(2014)

    26.Shen,L.E.,Shen,H.S.,Zhang,C.L.:Nonlocal plate model for nonlinearvibration ofsingle layergraphene sheetsin thermalenvironments.Comput.Mater.Sci.48,680-685(2010)

    27.Ansari,R.,Rajabiehfard,R.,Arash,B.:Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput.Mater.Sci.49,831-838(2010)

    28.Ansari,R.,Sahmani,S.,Arash,B.:Nonlocal plate model for free vibrations of single-layered graphene sheets.Phys.Lett.A 375,53-62(2010)

    29.Shen,H.S.,Shen,L.,Zhang,C.L.:Nonlocalplatemodelfornonlinearbending ofsingle-layergraphene sheetssubjected to transverse loads in thermalenvironments.Appl.Phys.A 103,103-112(2011)

    30.Pradhan,S.C.,Murmu,T.:Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics.Comput.Mater.Sci.47,268-274(2009)

    31.Pradhan,S.C.,Phadikar,J.K.:Scale effect and buckling analysis of multilayered graphene sheets based on nonlocal continuum mechanics.J.Comput.Theor.Nanosci.7,1948-1954(2010)

    32.Farajpour,A.,Mohammadi,M.,Shahidi,A.R.,et al.:Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model.Phys.E Low Dimens.Syst.Nanostruct. 43,1820-1825(2011)

    33.Mohammadi,M.,Goodarzi,M.,Ghayour,M.,et al.:Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory.Compos.Part B Eng.51,121-129(2013)

    34.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Temperature effect on vibration analysis of annular graphene sheet embedded on visco-pasternak foundation.J.Solid Mech.5,305-323(2013)

    35.Arash,B.,Wang,Q.:Vibration of single-and double-layered graphene sheets.J.Nanotechnol.Eng.Med.2,011012(2011)

    36.Pradhan,S.C.,Kumar,A.:Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method.Compos.Struct.93,774-779(2011)

    37.Jomehzadeh,E.,Saidi,A.R.:A study on large amplitude vibration of multilayered graphene sheets.Comput.Mater.Sci.50,1043-1051(2011)

    38.Jomehzadeh,E.,Saidi,A.R.,Pugno,N.M.:Large amplitude vibration ofa bilayergraphene embedded in anonlinearpolymermatrix. Phys.E Low Dimens.Syst.Nanostruct.44,1973-1982(2012)

    39.Babaei,H.,Shahidi,A.R.:Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocalcontinuum models using the Galerkin method.Acta Mech.Sin.27,967-976(2011)

    40.Murmu,T.,McCarthy,M.A.,Adhikari,S.:In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach.Compos. Struct.96,57-63(2013)

    41.Mohammadi,M.,Ghayour,M.,F(xiàn)arajpour,A.:Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model.Compos.Part B Eng.45,32-42(2013)

    42.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Thermomechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct. 11,659-682(2014)

    43.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.:Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium.Comput.Mater. Sci.82,510-520(2014)

    44.Asemi,S.R.,F(xiàn)arajpour,A.,Borghei,M.,et al.:Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics.Lat.Am.J.Solids Struct.11,704-724(2014)

    45.Shen,H.S.,Xu,Y.M.,Zhang,C.L.:Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity.Comput. Methods Appl.Mech.Eng.267,458-470(2013)

    46.Shi,J.X.,Ni,Q.Q.,Lei,X.W.,et al.:Nonlocal vibration analysis of nanomechanical systems resonators using circular double-layer graphene sheets.Appl.Phys.A 115,213-219(2014)

    47.Sarrami-Foroushani,S.,Azhari,M.:Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects.Phys.E Low Dimens.Syst.Nanostruct.57,83-95(2014)

    48.Shu,C.:DifferentialQuadratureand itsApplication in Engineering. Springer,London(2000)

    49.Ansari,R.,Mohammadi,V.,Shojaei,M.F.,et al.:Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory.Eur.J.Mech.A Solids 45,143-152(2014)

    2 December 2015/Revised:9 February 2016/Accepted:12 April 2016/Published online:20 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    亚洲人成网站高清观看| 免费看a级黄色片| 午夜视频精品福利| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| av免费在线观看网站| 国产三级中文精品| 国产一区二区激情短视频| 在线观看免费日韩欧美大片| 久久久久国产一级毛片高清牌| 波多野结衣巨乳人妻| 国产精品一区二区精品视频观看| 日本 av在线| 国产亚洲精品久久久久5区| 无人区码免费观看不卡| 成人精品一区二区免费| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 免费在线观看成人毛片| 国产激情偷乱视频一区二区| 男人舔女人的私密视频| 露出奶头的视频| 别揉我奶头~嗯~啊~动态视频| 中文在线观看免费www的网站 | 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| www.自偷自拍.com| 叶爱在线成人免费视频播放| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 不卡一级毛片| 久久久久久国产a免费观看| 午夜精品在线福利| 脱女人内裤的视频| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站| 1024手机看黄色片| 天堂av国产一区二区熟女人妻 | 久久亚洲真实| 亚洲天堂国产精品一区在线| 国产午夜福利久久久久久| 久久精品国产清高在天天线| 成年人黄色毛片网站| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区免费观看 | 国产精品 欧美亚洲| 亚洲av成人一区二区三| 少妇人妻一区二区三区视频| 久久中文字幕人妻熟女| 在线看三级毛片| 男男h啪啪无遮挡| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| a级毛片在线看网站| 欧美中文综合在线视频| 亚洲av五月六月丁香网| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 国产成人啪精品午夜网站| 日韩精品中文字幕看吧| 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看 | 久久性视频一级片| 一级毛片女人18水好多| 精品电影一区二区在线| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 久久久久免费精品人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品吃奶| √禁漫天堂资源中文www| 婷婷亚洲欧美| 日本 av在线| 久久天躁狠狠躁夜夜2o2o| 蜜桃久久精品国产亚洲av| 免费无遮挡裸体视频| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 国产99白浆流出| 亚洲av成人av| 久久久久性生活片| 又黄又爽又免费观看的视频| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 成人一区二区视频在线观看| 婷婷精品国产亚洲av在线| 久久久久久大精品| 国产v大片淫在线免费观看| 欧美性长视频在线观看| 黄片小视频在线播放| tocl精华| 99久久99久久久精品蜜桃| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| e午夜精品久久久久久久| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 国产视频一区二区在线看| 日韩欧美三级三区| 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 精品无人区乱码1区二区| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| 亚洲,欧美精品.| 国产精品免费一区二区三区在线| 欧美一区二区国产精品久久精品 | www.精华液| 在线观看舔阴道视频| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 欧美成人午夜精品| 岛国视频午夜一区免费看| 好男人在线观看高清免费视频| 亚洲av成人精品一区久久| 久久久久久九九精品二区国产 | 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线乱码| 无遮挡黄片免费观看| 夜夜爽天天搞| 欧美久久黑人一区二区| 午夜视频精品福利| 久久中文字幕人妻熟女| 一卡2卡三卡四卡精品乱码亚洲| 黄色成人免费大全| 国产蜜桃级精品一区二区三区| 欧美乱妇无乱码| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 大型av网站在线播放| 一本精品99久久精品77| 欧美日韩黄片免| 亚洲无线在线观看| 久久久国产成人精品二区| 黄色成人免费大全| 国产欧美日韩精品亚洲av| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 免费电影在线观看免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久中文| 18禁黄网站禁片免费观看直播| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 国产av在哪里看| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 免费在线观看影片大全网站| 天天添夜夜摸| 特大巨黑吊av在线直播| 国产精品98久久久久久宅男小说| 国产高清视频在线观看网站| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 日本 欧美在线| 啦啦啦观看免费观看视频高清| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 国产人伦9x9x在线观看| 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 国产精品综合久久久久久久免费| 国产亚洲精品久久久久5区| 国产高清videossex| 12—13女人毛片做爰片一| 黄色视频,在线免费观看| 可以免费在线观看a视频的电影网站| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 日韩国内少妇激情av| 国产精品久久久人人做人人爽| 久9热在线精品视频| 国产免费男女视频| 在线永久观看黄色视频| 一进一出抽搐动态| 色老头精品视频在线观看| 亚洲熟妇中文字幕五十中出| 中文字幕精品亚洲无线码一区| 国产亚洲精品一区二区www| 草草在线视频免费看| 国产熟女午夜一区二区三区| 欧美乱色亚洲激情| 色综合亚洲欧美另类图片| 亚洲人成电影免费在线| 成人高潮视频无遮挡免费网站| 亚洲成人国产一区在线观看| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 日韩欧美三级三区| 两人在一起打扑克的视频| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 国产成人欧美在线观看| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 亚洲欧洲精品一区二区精品久久久| 国内少妇人妻偷人精品xxx网站 | 国产精品久久电影中文字幕| 每晚都被弄得嗷嗷叫到高潮| 午夜亚洲福利在线播放| 欧美久久黑人一区二区| 日韩欧美精品v在线| 久久性视频一级片| 又黄又粗又硬又大视频| 男女床上黄色一级片免费看| 国产97色在线日韩免费| 熟女电影av网| 俄罗斯特黄特色一大片| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 欧美在线一区亚洲| 啦啦啦韩国在线观看视频| 美女免费视频网站| 免费人成视频x8x8入口观看| 国产v大片淫在线免费观看| 亚洲av成人一区二区三| www.精华液| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| cao死你这个sao货| 久久草成人影院| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 亚洲精品国产精品久久久不卡| 别揉我奶头~嗯~啊~动态视频| netflix在线观看网站| 草草在线视频免费看| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看 | 成在线人永久免费视频| 99在线视频只有这里精品首页| 中文资源天堂在线| 国内精品一区二区在线观看| 日韩欧美精品v在线| 最近视频中文字幕2019在线8| 国内毛片毛片毛片毛片毛片| 色尼玛亚洲综合影院| 午夜视频精品福利| 亚洲av熟女| 国产av一区在线观看免费| 久久国产精品影院| 亚洲熟妇熟女久久| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 久久人人精品亚洲av| or卡值多少钱| 蜜桃久久精品国产亚洲av| 手机成人av网站| 在线免费观看的www视频| 男女下面进入的视频免费午夜| 久久午夜亚洲精品久久| 脱女人内裤的视频| 亚洲 国产 在线| 亚洲九九香蕉| 国产精品久久电影中文字幕| 99国产精品一区二区三区| 99re在线观看精品视频| 久久性视频一级片| 国产亚洲精品综合一区在线观看 | 美女 人体艺术 gogo| 超碰成人久久| 国产亚洲精品第一综合不卡| 久久久久久久精品吃奶| 日本在线视频免费播放| 国产精品一区二区三区四区免费观看 | 女同久久另类99精品国产91| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| av中文乱码字幕在线| 亚洲性夜色夜夜综合| 国产av又大| 成人一区二区视频在线观看| 免费看a级黄色片| av超薄肉色丝袜交足视频| 免费观看精品视频网站| 久久久国产欧美日韩av| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 日本黄大片高清| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 午夜两性在线视频| 波多野结衣高清作品| 久久草成人影院| 在线观看免费视频日本深夜| 丰满人妻一区二区三区视频av | 久久久久久人人人人人| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 法律面前人人平等表现在哪些方面| 欧美不卡视频在线免费观看 | 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清 | 国产精品亚洲美女久久久| 国产一区二区在线观看日韩 | 日本熟妇午夜| 日韩欧美三级三区| 青草久久国产| 国产亚洲精品综合一区在线观看 | 最新在线观看一区二区三区| 欧美乱码精品一区二区三区| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放 | 在线观看一区二区三区| 欧美乱妇无乱码| 丰满人妻熟妇乱又伦精品不卡| 国产黄片美女视频| 亚洲 国产 在线| 国产一区二区激情短视频| 成人av在线播放网站| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 88av欧美| 久久香蕉激情| 国产午夜精品论理片| 美女午夜性视频免费| 久久香蕉激情| 两性午夜刺激爽爽歪歪视频在线观看 | 国产三级中文精品| 日日干狠狠操夜夜爽| 国产99久久九九免费精品| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 午夜福利高清视频| 色综合亚洲欧美另类图片| 国产成人av教育| netflix在线观看网站| 男女午夜视频在线观看| a级毛片在线看网站| 看免费av毛片| 搡老岳熟女国产| 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 18禁国产床啪视频网站| 午夜激情福利司机影院| 又紧又爽又黄一区二区| 久久人妻福利社区极品人妻图片| 九色国产91popny在线| 男人舔女人的私密视频| 久久中文字幕一级| 中文字幕最新亚洲高清| 神马国产精品三级电影在线观看 | 亚洲国产日韩欧美精品在线观看 | 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 亚洲七黄色美女视频| 看片在线看免费视频| 亚洲男人天堂网一区| 亚洲欧美精品综合久久99| 亚洲成人久久性| 亚洲黑人精品在线| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| 久久人妻av系列| 国产精品香港三级国产av潘金莲| 亚洲人成伊人成综合网2020| 亚洲成人免费电影在线观看| 大型av网站在线播放| 久久精品国产综合久久久| 久久久久久国产a免费观看| 精品久久久久久久久久久久久| 99re在线观看精品视频| 欧美中文日本在线观看视频| 此物有八面人人有两片| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 欧美日本视频| 长腿黑丝高跟| 人妻久久中文字幕网| 午夜福利18| 久久午夜亚洲精品久久| 一级黄色大片毛片| 国产黄色小视频在线观看| 欧美日本视频| 国产三级黄色录像| 制服人妻中文乱码| 亚洲美女黄片视频| bbb黄色大片| 日韩中文字幕欧美一区二区| 亚洲国产欧美一区二区综合| 欧美绝顶高潮抽搐喷水| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 一区福利在线观看| 国产区一区二久久| 亚洲精品中文字幕在线视频| 99国产精品一区二区蜜桃av| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 欧美成人一区二区免费高清观看 | 欧美日韩瑟瑟在线播放| 国产精品日韩av在线免费观看| www.熟女人妻精品国产| 在线视频色国产色| 无人区码免费观看不卡| 久久精品91蜜桃| 免费搜索国产男女视频| 国产午夜精品论理片| АⅤ资源中文在线天堂| 国产片内射在线| 久久国产乱子伦精品免费另类| 精品久久久久久,| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 日日干狠狠操夜夜爽| 亚洲专区字幕在线| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 听说在线观看完整版免费高清| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| cao死你这个sao货| 级片在线观看| 国产蜜桃级精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 男女午夜视频在线观看| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 国产99久久九九免费精品| 国产私拍福利视频在线观看| 亚洲男人的天堂狠狠| 亚洲乱码一区二区免费版| 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| 香蕉国产在线看| 黄色毛片三级朝国网站| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 久9热在线精品视频| 国产99白浆流出| 男人的好看免费观看在线视频 | 色av中文字幕| 国产精品久久久久久久电影 | 亚洲精品中文字幕一二三四区| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| 最好的美女福利视频网| 国产av一区在线观看免费| 99在线人妻在线中文字幕| 欧美日韩国产亚洲二区| 久久精品成人免费网站| 成人国产一区最新在线观看| 色综合欧美亚洲国产小说| 黄色女人牲交| 国产激情欧美一区二区| 免费观看人在逋| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| 2021天堂中文幕一二区在线观| 久久伊人香网站| 天堂√8在线中文| 99久久99久久久精品蜜桃| 大型av网站在线播放| 在线观看www视频免费| 免费在线观看成人毛片| 亚洲片人在线观看| 免费观看精品视频网站| 搡老妇女老女人老熟妇| av福利片在线观看| a在线观看视频网站| 日韩免费av在线播放| 特大巨黑吊av在线直播| 欧美午夜高清在线| 精品高清国产在线一区| 亚洲aⅴ乱码一区二区在线播放 | 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 中文字幕久久专区| 亚洲精品中文字幕一二三四区| 久久精品91蜜桃| 国产视频内射| 国产精品,欧美在线| 亚洲av成人一区二区三| 中亚洲国语对白在线视频| 少妇粗大呻吟视频| 欧美日韩亚洲国产一区二区在线观看| 五月玫瑰六月丁香| 欧美性长视频在线观看| 成年人黄色毛片网站| 色在线成人网| 亚洲人成网站高清观看| 宅男免费午夜| 这个男人来自地球电影免费观看| 欧美+亚洲+日韩+国产| 国产激情久久老熟女| 亚洲av成人av| 色老头精品视频在线观看| 久9热在线精品视频| 五月伊人婷婷丁香| 日韩大尺度精品在线看网址| 亚洲精品中文字幕一二三四区| 妹子高潮喷水视频| 中出人妻视频一区二区| 亚洲18禁久久av| 欧美 亚洲 国产 日韩一| 欧美乱妇无乱码| 亚洲国产精品999在线| 精品第一国产精品| 91av网站免费观看| 亚洲精品中文字幕在线视频| 91麻豆av在线| 亚洲精品粉嫩美女一区| 手机成人av网站| bbb黄色大片| 国产蜜桃级精品一区二区三区| 人人妻人人看人人澡| 一边摸一边抽搐一进一小说| 男女午夜视频在线观看| 91老司机精品| 亚洲精品中文字幕一二三四区| 免费在线观看影片大全网站| 熟女少妇亚洲综合色aaa.| 久久久久久久久久黄片| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 午夜福利18| 亚洲欧美日韩高清在线视频| 狠狠狠狠99中文字幕| 国产高清视频在线播放一区| √禁漫天堂资源中文www| 露出奶头的视频| 熟女电影av网| 成年女人毛片免费观看观看9| 国产成年人精品一区二区| 天天一区二区日本电影三级| 精品熟女少妇八av免费久了| 亚洲美女视频黄频| 人人妻人人看人人澡| a在线观看视频网站| 日韩成人在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 大型av网站在线播放| 成人国产一区最新在线观看| 中文在线观看免费www的网站 | 波多野结衣巨乳人妻| 中国美女看黄片| 久久人人精品亚洲av| 两个人看的免费小视频| 国产高清有码在线观看视频 | 给我免费播放毛片高清在线观看| av国产免费在线观看| 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 啦啦啦观看免费观看视频高清| 免费搜索国产男女视频| 精品人妻1区二区| 国产成人av激情在线播放| 69av精品久久久久久| 亚洲专区中文字幕在线| 中文在线观看免费www的网站 | 精品国产亚洲在线| 色av中文字幕| 国产一区二区三区在线臀色熟女| 精品国产亚洲在线| 99热这里只有精品一区 | 麻豆av在线久日| 精品久久久久久,| 日日摸夜夜添夜夜添小说| 亚洲五月天丁香| 亚洲乱码一区二区免费版| 国产99久久九九免费精品| 18美女黄网站色大片免费观看| 久久国产乱子伦精品免费另类| 窝窝影院91人妻| 日韩高清综合在线| 五月伊人婷婷丁香| 99久久99久久久精品蜜桃| 欧美乱妇无乱码| 国产精品av视频在线免费观看| 国产午夜精品论理片| 欧美日韩一级在线毛片| 91麻豆精品激情在线观看国产| 亚洲欧美日韩东京热| 18禁黄网站禁片午夜丰满| 99热只有精品国产| 精品福利观看| 国产69精品久久久久777片 | 非洲黑人性xxxx精品又粗又长|