劉越
一位哲人說(shuō)過(guò):“一個(gè)蘋(píng)果跟一個(gè)蘋(píng)果交換,得到的是一個(gè);一個(gè)思想跟一個(gè)思想交換,得到的是兩個(gè),甚至更多?!?授人以魚(yú),管一日三餐之用;授人以漁,促進(jìn)終身受益。我們教師不但要授人以魚(yú),更要授人以漁。因此,我在教學(xué)時(shí)力求創(chuàng)設(shè)豐盈的教學(xué)過(guò)程,追求效果的多維度達(dá)成,注重在教學(xué)中滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí),提升數(shù)學(xué)素養(yǎng)。哪怕僅僅是一道題的教學(xué)過(guò)程,都講究教學(xué)的機(jī)智策略,追求實(shí)效性和長(zhǎng)遠(yuǎn)性。在教學(xué)中,我們應(yīng)結(jié)合教學(xué)內(nèi)容和數(shù)學(xué)內(nèi)部的聯(lián)系,逐步滲透和介紹一些數(shù)學(xué)思想方法,讓學(xué)生感受到數(shù)學(xué)的魅力。應(yīng)尋找數(shù)學(xué)思想方法的滲透點(diǎn),讓數(shù)學(xué)思想燭照我們的課堂,讓學(xué)生在經(jīng)歷知識(shí)的形成、概括、抽象的過(guò)程中體驗(yàn)、領(lǐng)悟、運(yùn)用數(shù)學(xué)思想方法,逐步提升數(shù)學(xué)素養(yǎng)。下面談?wù)勎业膸c(diǎn)做法。
一、找數(shù)學(xué)思想方法的滲透點(diǎn)
教材中的數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,并且不成體系地散見(jiàn)于教材各章節(jié)中。因此,備課時(shí),我們應(yīng)該把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目標(biāo),要考慮結(jié)合具體內(nèi)容滲透哪些數(shù)學(xué)思想方法。要認(rèn)真解讀教材,讀例題中的每一句話,讀每一道習(xí)題,深入挖掘教材中隱含的數(shù)學(xué)思想方法,應(yīng)有高瞻遠(yuǎn)矚的眼光,用上位的數(shù)學(xué)思想方法指導(dǎo)自己的教學(xué),這樣的教學(xué)才更有價(jià)值。如,平面圖形面積的計(jì)算、小數(shù)乘除法的計(jì)算、分?jǐn)?shù)除法、圓的周長(zhǎng)與面積、圓柱的表面積和體積等滲透了轉(zhuǎn)化的數(shù)學(xué)思想方法;運(yùn)算律的教學(xué)中滲透了不完全歸納的數(shù)學(xué)思想方法;找規(guī)律教學(xué)中滲透了列舉、類推的數(shù)學(xué)思想方法。這些蘊(yùn)含在教材中的數(shù)學(xué)思想方法,需要我們對(duì)教材深度研讀。正如蘇步青教授所說(shuō):“看書(shū)要看到底,書(shū)要看透,要看到書(shū)背面的東西?!敝挥薪陶呙靼字R(shí)背后的數(shù)學(xué)思想方法,才能在課堂中有效滲透。
二、引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)思想方法
美國(guó)心理學(xué)家布魯納指出:“掌握基本的數(shù)學(xué)思想方法,能使學(xué)生更易于理解和記憶,領(lǐng)會(huì)基本的數(shù)學(xué)思想和方法是通過(guò)知識(shí)正遷移達(dá)到的‘光明之路?!痹谛W(xué)數(shù)學(xué)教學(xué)中,重視過(guò)程與重視結(jié)果同樣重要,應(yīng)注重引導(dǎo)學(xué)生對(duì)知識(shí)形成過(guò)程的理解,并且讓學(xué)生在此過(guò)程中感悟蘊(yùn)涵在其中的數(shù)學(xué)思想方法。教學(xué)時(shí),對(duì)數(shù)學(xué)思想方法怎樣滲透?滲透到什么程度?要結(jié)合學(xué)生的實(shí)際情況,做到心中有度。有的可以顯性地介紹,有的可以不露痕跡地滲透。例如,教學(xué)《解決問(wèn)題的策略——轉(zhuǎn)化》時(shí),開(kāi)始課件出示圖片(圖略),讓學(xué)生思考:
1.請(qǐng)同學(xué)們看屏幕,老師這兒有兩個(gè)平面圖形,請(qǐng)你仔細(xì)觀察,它們的面積相等嗎?
2.你能一下子就看出來(lái)嗎?有的同學(xué)看出來(lái)了,有的同學(xué)還在思考,確實(shí)不容易看出來(lái)。沒(méi)關(guān)系,同學(xué)們之間可以交流交流,相互啟發(fā)一下。
3. 討論好了嗎?哪位同學(xué)來(lái)說(shuō)說(shuō)你的想法?
生:把左邊圖形上面的半圓往下移,拼成(變成)一個(gè)長(zhǎng)方形。(師電腦演示:先分割出半圓。怎么移?(學(xué)生回答后再演示:向下平移)平移了幾格?師:對(duì),把這個(gè)半圓向下平移5格,就把這個(gè)圖形變成了長(zhǎng)方形。右邊圖形的左右兩個(gè)半圓往上移,也拼成(變成)一個(gè)長(zhǎng)方形。(師電腦演示:先分割出兩個(gè)半圓)怎么移的?(學(xué)生回答后再演示:旋轉(zhuǎn))師:對(duì),把兩個(gè)半圓分別旋轉(zhuǎn)180度,也把這個(gè)圖形變成了長(zhǎng)方形。
4.現(xiàn)在你能判斷這兩個(gè)圖形的面積相等嗎?生:相等
5.對(duì),這兩個(gè)圖形的面積相等。下面,我們來(lái)回顧一下這個(gè)問(wèn)題的解決過(guò)程,為什么剛開(kāi)始看不出兩個(gè)圖形的面積相等,后來(lái)一下子就看出來(lái)呢?
6.師小結(jié):對(duì)。正是由于面積沒(méi)有變,從這兩個(gè)長(zhǎng)方形面積相等,我們可以推斷,原來(lái)兩個(gè)圖形的面積相等。像這樣,把不規(guī)則圖形變成規(guī)則圖形來(lái)解決問(wèn)題,這就是一種非常重要的解題策略——轉(zhuǎn)化。 “轉(zhuǎn)化”的思想很重要,轉(zhuǎn)化的形式有多種,希望你們能靈活運(yùn)用。
事實(shí)上,設(shè)計(jì)豐富的數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生經(jīng)歷知識(shí)的形成過(guò)程,既有利于學(xué)生學(xué)好知識(shí)、提高能力,又能讓學(xué)生體驗(yàn)蘊(yùn)含在其中的數(shù)學(xué)思想方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。所以,教師要用上位的數(shù)學(xué)思想引導(dǎo)學(xué)生經(jīng)歷學(xué)習(xí)過(guò)程,使學(xué)生對(duì)知識(shí)的理解更深刻,對(duì)方法的掌握更牢固。
三、激勵(lì)學(xué)生運(yùn)用數(shù)學(xué)思想方法
數(shù)學(xué)思想方法的獲得是一個(gè)循序漸進(jìn)的過(guò)程,只有經(jīng)過(guò)反復(fù)訓(xùn)練才能使學(xué)生真正領(lǐng)會(huì)并得到提升。練習(xí)是數(shù)學(xué)教學(xué)的重要環(huán)節(jié),不僅對(duì)已掌握的數(shù)學(xué)知識(shí)和數(shù)學(xué)思想方法起到鞏固和深化作用,有時(shí)還能從中歸納和提煉出新的數(shù)學(xué)思想方法。比如,在上述案例中,最后又出了幾道練習(xí)題,讓學(xué)生運(yùn)用轉(zhuǎn)化的方法計(jì)算,促使他們達(dá)到會(huì)一題而通一類的效果。讓學(xué)生不但會(huì)用轉(zhuǎn)化的方法計(jì)算乘法,還能觸類旁通,用轉(zhuǎn)化的方法計(jì)算除法,學(xué)會(huì)在計(jì)算中靈活運(yùn)用轉(zhuǎn)化的方法,深刻體會(huì)轉(zhuǎn)化的作用。
運(yùn)用了轉(zhuǎn)化的數(shù)學(xué)思想方法,不僅可以加快和優(yōu)化問(wèn)題解決的過(guò)程,還可以達(dá)到會(huì)一題而通一類的效果。教師設(shè)計(jì)題目時(shí),能考慮設(shè)計(jì)帶有數(shù)學(xué)思想方法的題目,促進(jìn)學(xué)生利用一些數(shù)學(xué)思想方法解決問(wèn)題,讓學(xué)生在自我運(yùn)用中形成了解決問(wèn)題的策略,長(zhǎng)期訓(xùn)練,有利于提升學(xué)生的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)的思想方法是數(shù)學(xué)的靈魂和精髓。日本著名教育家米山國(guó)藏指出“作為知識(shí)的數(shù)學(xué),出校門不到兩年可能就被遺忘了,唯有深深銘記在頭腦中的數(shù)學(xué)精神、數(shù)學(xué)思想、研究方法和著眼點(diǎn)等,這些隨時(shí)隨地發(fā)生作用,使他們終身受益?!蔽覀兘虒W(xué)時(shí),要有意識(shí)地滲透數(shù)學(xué)思想方法,引導(dǎo)學(xué)生積累一些數(shù)學(xué)思想方法,這是以后學(xué)習(xí)中解決問(wèn)題的一把鑰匙,能讓后續(xù)學(xué)習(xí)不斷升值。
(作者單位:江蘇省濱海縣天場(chǎng)鎮(zhèn)中心小學(xué))