• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    2016-10-20 02:27:38LuYangChunmingZhangMeijunLiJingZhaoXueningQiJinxiuDu
    Acta Geochimica 2016年2期

    Lu Yang·Chunming Zhang·Meijun Li·Jing Zhao· Xuening Qi·Jinxiu Du

    ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    Lu Yang1·Chunming Zhang2·Meijun Li1·Jing Zhao1· Xuening Qi3·Jinxiu Du4

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,and carry much information regarding the genetic origin and alteration of crude oils.But secondary alterations-especially biodegradation-have a significant effect on the composition of LHs in crude oils.Because most of the LHs affected in oils underwent only slight biodegradation(rank 1 on the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,23 crude oils from the Dawanqi Oilfield in the Tarim Basin,NW China,eleven of which have been biodegraded to different extents,were analyzed in order to investigate the effect of slight to minor biodegradation on C6-C7LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.For branched C6-C7alkanes,generally,monomethylalkanesarebiodegradedearlierthan dimethylalkanes and trimethylalkanes,which indicates that branched alkanes are more resistant to biodegradation,with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-C7LHs.There is a particular case:although 2,2,3-trimethylbutane has a relative higher alkylation degree,2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane.2,2-Dimethylpentane is the most resistant to biodegradation in branched C6-C7alkanes.Furthermore,the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation,which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation.With increasing biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of n-heptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils.Because biodegraded samples belong to slight or minor biodegraded oils,the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the‘‘Biodegraded’’zone.When the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil in Dawanqi Oilfield is defined as the‘‘Biodegraded’’zone.

    Crude oils·Light hydrocarbons· Biodegradation·Dawanqi Oilfield·Tarim Basin

    This contribution has been accepted as a poster presentation in the 27th International Meeting on Organic Geochemistry.

    ? Chunming Zhang zhangcm@126.com

    1State Key Laboratory of Petroleum Resources and Prospecting,College of Geosciences,China University of Petroleum,Beijing 102249,China

    2Key Laboratory of Exploration Technologies for Oil and Gas Resources,College of Earth Environment and Water Resource,Yangtze University,Wuhan 430100,China

    3Langfang Branch,Research Institute of Petroleum Exploration and Development,PetroChina,Langfang 065000,China

    4Huabei Oilfield Company,PetroChina,Renqiu 062552,China

    1 Introduction

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,especially for light oils in which commonly used biomarkers are usually present in extremely low concentrations or even under the detection limit of routine gas chromatography-mass spectrometry analyses(Peters et al.2005).

    Benchmark research has suggested that LHs carry much information regarding the genetic associations and alteration of crude oils.It has been documented that LHs can be applied to oil-oil correlation studies,distinguishing genetic types of crude oils,and determining their thermal maturation levels(Williams 1974;Philippi 1975;Thompson 1983;Halpern 1995;Haven 1996;Chung et al.1998;Zhang et al.2005).However,secondary alteration-especially biodegradation-has a significant effect on the composition of LHs in crude oils.Based on the differing resistance of compound classes to biodegradation,Peters et al.(2005)developed a scale of 1-10 to assess the degree of biodegradation.Much work has been done on the effect of biodegradation on the molecular composition of crude oils(Volkman et al.1983;Connan 1984;Palmer 1993;Fisher et al.1998),whilst relatively little work has been done on the effect of biodegradation on the behavior of LHs.

    Welte et al.(1982)demonstrated the preferential depletion of straight-chain alkanes relative to branched and cyclic alkanes during biodegradation and proposed two parameters(iso-pentane/n-pentane,3-methylpentane/nhexane)that could be used to indicate biodegradation. BeMent et al.(1994)suggested that 2,3-dimethylpentane is more subject to bacterial attack than 2,4-dimethylpentane. Masterson et al.(2001)showed that n-heptane,3-methylhexane,cyclohexanel and methylcyclohexane were more easily removed by biodegradation than benzene or toluene. George et al.(2002)suggested three main controls on the susceptibility to biodegradation(carbon skeleton,degree of alkylation,and position of alkylation).

    Up to the present,details have been limited on the relative susceptibility of LHs to biodegradation.Because most of the LHs in oils underwent only slight biodegradation(rank 1 of the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,a total of 23 light oils from the Dawanqi Oilfield in the Tarim Basin(NW China)were analyzed to investigate the effect of slight to minor biodegradation on the distribution of C6-C7LHs.The resultscanbroadenthecurrentunderstandingof biodegradation effects on these low molecular weight hydrocarbons in crude oils.

    2 Geologic setting

    The Dawanqi Oilfield is located in the western margin of the Kuqa Depression,north of the Tarim Basin,NW China(Fig.1).The oil field covers an area of 5.4 km2with a proved oil reserve of 48.35×106bbl,with 13.64×109scf of dissolved gas(Zhao et al.2003).The Kuqa Depression is situated in the southern foot of the Tianshan orogenic Belt and is dominated by Mesozoic and Cenozoic deposits.This east-west trending depression,450 km long and 50-80 km wide and covering an area of about 2.8×104km2,is one of the most productive gas depressions in China.It contains the North and South Slopes,Baicheng and Yangxia Sags,and Yiqikelike,Kelasu and Qiulitage structural Belts(Graham et al.1993;Jiang et al.2010).The Dawanqi Anticline,situated in the western part of the Baicheng Sag,is composed of several normal fault blocks or broken anticlines separated by a number of normal faults(Zhang et al.2011).These faults,as pathways for oil migration,lead to the accumulation of oil and gas in traps under the gypsum salt(Tang et al. 2014).

    Based on seismic,drilling and logging data,the sequence stratigraphic framework of Dawanqi Oilfield is:Paleogene Suweiyi Formation,Neogene Jidike,Kangcun and Kuqa Formations,and the Quaternary(Liu et al.2005).The Neogene Kuqa Formation is the most important prolific payzone in Dawanqi Oilfield.The Upper Triassic lacustrine shales/mudstones,thin coal seams formed in fluvial-deltaic and lacustrine environments,and the Lower-Middle Jurassic coal beds deposited in a swamp-lacustrine system were considered to be the main potential source rocks in the Kuqa Depression(Liang et al.2003;Zou et al.2006).

    3 Samples and experimental procedures

    Twenty-three light oil samples were carefully selected at wellheads from the Dawanqi Oilfield in the Tarim Basin. These samples were collected at temperatures between 25 and 30°,but were quickly refrigerated at below-6°(Canipa-Morales et al.2003).The production zones of these samples are 69.5-662.5 m deep.

    Gas chromatography(GC)of the whole oil samples was performed on an Agilent 6890 gas chromatograph,equipped with two sets of electronic pressure controllers and a flame ionization detector(300°).A 50 m PONY capillary column was used with Helium as the carrier gas and a split ratio of approximately 50:1.The oven was programmed to an initial temperature of 35°for 5 min,followed by a heating ramp at 4°/min to 300°for 20 min.LHs were identified based on the GC analysis technique and byrelative retention times.The whole oil GC of C6-C7LHs in well DW126-8 and their qualitative analyses are shown in Fig.2 and Table 1,respectively.

    Fig.1 Location map of the Dawanqi Oilfield in the Tarim Basin

    Fig.2 Partial whole oil gas chromatograms of well DW126-8,showing the C6-C7region.Peak numbers are listed in Table 1

    These crude oil samples have MPR values ranging from 0.96 to 1.17(RO≈0.88%-0.92%)(Table 2).They have similar thermal maturity.Their densities are commonly lowerthan0.8000 g cm-3,withaminimumof 0.7801 g cm-3.The variations in the relative amounts of fluorenes,dibenzothiophenes,and dibenzofurans from the oil samples are plotted on a ternary diagram from Li et al.(2013).As shown in Fig.3,all the data points are distributed in Zone 4,which shows that Dawanqi oils may originatefrombrackish/salinelacustrineshales.All Dawanqi oil samples belong to the same oil family.

    Table 1 List of C6-C7light hydrocarbon in Dawanqi oils

    4 Results and discussion

    4.1 Gas chromatography of whole oils

    Whole oil gas chromatograms show that Dawanqi oils are characterized by the distribution of light oil,with a predominance of low molecular-weight normal alkanes.In general,the crude oils in the Dawanqi Oilfield have the following distribution types(Fig.4;Table 2).

    Type I The normal alkanes have a common range of carbonnumbersfromnC4to nC30,with a unimodalpattern maximizing at nC9or nC10,are observed.The values of nC21-/nC22+and nC13-/nC14+have a higher relative abundance(9.43-11.68 and 1.33-1.79).They are dominated by low molecular-weight normal alkanes.Most of crudeoilsinDawanqiOilfieldbelongtothistype(Fig.4a). Type II The normal alkane series of this type exhibit a common carbon number range of nC4to nC30and a bimodal distribution pattern,predominated by nC9and nC17.The value of nC21-/nC22+ranges from 3.32 to 6.40 and the value of nC13-/nC14+ranges from 0.29 to 0.95(Fig.4b). Type III The carbon numbers of normal alkanes range from nC4to nC30maximizing at nC14.The samples have a nC21-/nC22+value ranging from 4.35 to 5.27 and a nC13-/nC14+value between 0.40 and 0.56(Fig.4c).

    Type IV There is no obvious n-alkane distribution in this type.Pristine and phytane have been depleted(Fig.4d).

    Except Type IV,the values of pristane/phytane(Pr/Ph)values range from 1.90 to 3.06.Twenty-two crude oil samples have Pr/nC17values ranging from 0.10 to 0.18 and Ph/nC18values between 0.05 and 0.08.These two ratios show slight changes(Table 2).

    Welte et al.(1982)proposed two LH ratios,3MC5/nC6and iso-pentane/n-pentane(iC5/nC5),to identify biodegradation.In the major crude oils(Type I),there are lower relative ratios of 3MC5/nC6and iC5/nC5(0.35-0.37 and 0.79-0.93).In contrast,from type II to type III,these two ratios increase gradually(0.48-2.86 and 0.95-2.51),which shows that crude oils from the Dawanqi Oilfield are characterized by obvious biodegradation.In type IV oils,nC5was totally depleted(Fig.5;Table 2).

    Based on the above analyses,as reported by Yang et al.(2015),the Dawanqi oils from shallower depth usually show biodegraded characteristics.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale)(Peters et al. 2005).From Type I to Type IV,the extent of biodegradation exhibits a marked tendency to increase.

    4.2 Effect of biodegradation on C6-C7light hydrocarbons

    A total of 23 homologues and isomers of C6-C7LHs,includingstraight-chainedalkanes,branchedalkanes,5-membered cycloalkanes,6-membered cycloalkanes,and aromatic hydrocarbons,were detected with the GC analysis technique(Fig.2;Table 1).Here,no significant systematic susceptibility to biodegradation was found within Benz and Tol,so we will not discuss these two compounds.Except aromatic hydrocarbons,C6-C7LHs are mainly controlled by biodegradation.

    4.2.1 Relative abundance of C6-C7homologues and isomers

    The relative abundance of C6-C7homologues and isomers in Dawanqioilsshowregulardistributionduringbiodegradation.

    In Type I oils,six-membered cycloalkanes have a relatively higher abundance(33.69%-36.70%),followed by straight-chained alkanes(27.00%-28.41%)and branched alkanes(24.90%-27.70%).The proportions of five-membered cycloalkanes range from 10.39%to 11.26%,with relatively lower values.With increasing biodegradation(from Type II to Type IV),the relative abundance of straight-chained alkanes and branched alkanes decreased gradually;five-membered cycloalkanes and six-membered cycloalkanesincreasedgradually(Fig.6; Table 3). Biodegradation resulted in the preferential depletion of straight-chained alkanes and branched alkanes.

    Table 2 General information for oils from Dawanqi Oilfield

    Fig.3 Ternary diagram showing the proportion of dibenzothiophenes(DBTs),fluorenes(FLs),and dibenzofurans(DBFs)from Dawanqi oils

    Fig.4 Whole oil gas chromatogram of different types oils from the Dawanqi Oilfield,Tarim Basin

    Fig.5 Plot of 3MC5/nC6vs iC5/nC5of crude oils from Dawanqi Oilfield

    Fig.6 Graph of the average relative content of C6-C7straightchained alkanes,branched alkanes,five-membered cycloalkanes and six-membered cycloalkanes for Dawanqi oils(filled diamond straightchained alkane;open diamond branched alkane;open circle fivemembered cycloalkane;filled square six-membered cycloalkane)

    4.2.2 Branched alkanes

    A total of four methyl-,six dimethyl-and one trimethylsubstituted C6-C7alkanes were detected in oils from the Dawanqi Oilfield(Fig.2;Table 1).The relative abundance of these branched C6-C7alkanes exhibited regular distribution during biodegradation.

    As shown in Fig.7,with increasing biodegradation,the relative abundance of 2MC6decreases gradually.The relative amounts of 2MC5and 3MC6almost remained unchanged in type I and type II,while decreasing in type III and type IV.3MC5show a marked increasing trend with greater biodegradation until type IV oils.Dimethylalkanes and trimethylalkanes exhibit a steadily increasing trend,especially2,3DMC5.InbranchedC6-C7alkanes,biodegradation resulted in the prior depletion of 2MC6,whereas 2,3DMC5is the most resistant to biodegradation.

    The ternary diagram of C6-C7monomethylalkanes,dimethylalkanes,and trimethylalkanes also shows a similar distribution(Fig.8).With increasing biodegradation,the relative contents of monomethylalkanes decrease and dimethylalkanes increase.For trimethylalkanes,because only 2,2,3TMC4was detected in Dawanqi oils by GC analysis technique,the proportions of the trimethylalkanes range from 1.06%to 4.42%,with relatively lower values. The relative contents of trimethylalkanes also show a slight increasing trend.As already mentioned by George et al.(2002)and Yang et al.(2015),the degree of alkylation isone of the primary controlling factors for the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated. There is,however,a particular case:although 2,2,3TMC4has a relative higher alkylation degree,2,3DMC5is more resistant to biodegradation than 2,2,3TMC4.

    The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation,which is mainly reflected in the variation of the 2MC5/ 3MC5and 2MC6/3MC6ratios in Dawanqi oils(Fig.9;Table 3).In non-degraded oils(type I oils),there are higher relative ratios of 2MC5/3MC5and 2MC6/3MC6(1.26-1.32 and 0.90-0.92).With increasing biodegradation,these two ratios show a remarkable decreasing trend(0.16-1.28 and 0.26-0.74),which indicates that the 2MC5and 2MC6are more susceptible to biodegradation than the 3MC5and 3MC6.Isomers of the bilateral methyl groups are more prone to bacterial attack relative to the mid-chain isomers(George et al.2002;Yang et al.2015).However,no similar characteristics in susceptibility to biodegradation were found within other branched C6-C7alkanes,implying that the biodegradation did not progress sufficiently for other analogue ratios of branched alkanes.

    Table 3 Group compositions of C6-C7light hydrocarbon and relevant ratios

    4.2.3 Cycloalkanes

    A total of eight C6-C7cycloalkanes,including six fivemembered cyclcoalkanes and two six-membered cyclohexanes,were detected(Fig.2;Table 1).In the Dawanqi samples,no obvious changes occured in the relative abundance of the C6-C7cycloalkanes during biodegradation,which implies that such a biodegradation scale could not sufficiently affect these compounds.

    4.3 Light hydrocarbon parameters

    Based on the above study,the variation of C6-C7LHs may affect common LH parameters.

    4.3.1 Mango's light parameters K1 and K2

    Mango(1987)determined that four isoheptanes had fixed roles in different petroleum systems,K1=(2MC6+2,3-DMC5)/(3MC6+2,4DMC5)≈1.0,regardless of the concentrations in the oils.Subsequently,Mango(1990,1992,1994)posed a steady-state catalytic process and the parentdaughter scheme was established and modified for theformation of C7hydrocarbons.Based on the scheme,the second invariance ratio was predicted,K2=(2,2DMC5+ 2,3DMC5+2,4DMC5+3,3DMC5+2,2,3TMC4)/(2MC6+ 3MC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5). Generally,analogous oil genesis sets should have similar K1 and K2 values.

    In non-degraded oils(type I oils),Mango parameter K1 is approximately 1.04-1.05,and K2 is approximately 0.25-0.26.In type II and type III oils,Mango parameters show relatively low K1 values(0.81-0.99)and relatively high K2 values(0.29-0.59).The K1 values are affected very little in type II and type III oils.In typeIV oils,there are higher relative Mango parameters of K1 and K2(1.83 and 1.14).Biodegradation could affect Mango parameters K1 and K2(Fig.10;Table 4).

    Fig.7 Bar charts of the average relative content of branched C6-C7alkanes for Dawanqi oils

    Fig.8 Ternary diagram of C6-C7monomethylalkanes,dimethylalkanes and trimethylalkanes for Dawanqi oils

    Fig.9 Plot of 2MC5/3MC5vs 2MC6/3MC6of crude oils from Dawanqi Oilfield

    4.3.2 Heptane value and isoheptane value

    Thompson(1979)proposed two LH parameters:the Paraffin index 1,of which the formula is:Isoheptane Value=(2MC6+3MC6)/(1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)and the Paraffin index 2,which can been expressed as:Heptane Value=nC7×100/(CYC6+2MC6+ 1,1DMCYC5+3MC6+1,c3DMCYC5+1,t3DMCYC5+ 1,t2DMCYC5+nC7+MCYC6).The distribution of nondegraded samples from the Dawanqi Oilfield show that Dawanqi oils belong to mature oils.With increasing biodegradation,the values of n-heptane and isoheptane decrease gradually(Fig.11;Table 4).

    Thompson(1983)proposed that when the heptane value is 0-18 and isoheptane value is 0-0.8,a crude oil iscatergorized as‘‘Biodegraded’’.However,in the Dawanqi oils,only three biodegraded oils are in the‘‘Biodegraded’’zone determined by Thompson(1983)(Fig.11;Table 4). Here,because the biodegraded samples belong to slight or minor biodegraded oils(ranks 1 or 3 on the degree of biodegradation scale)as described before,the values of nheptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.As shown in Fig.11,when the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil can be catergorized as within the‘‘Biodegraded’’zone.

    Fig.10 Bar charts of Mango parameters K1 and K2 for oil samples from Dawanqi Oilfield

    Table 4 Geochemical parameters list of C6-C7hydrocarbons

    4.3.3 Methylcyclohexane index and cyclohexane index

    The C6and C7oil correlation ternary diagram has been widely used to gain geochemical information(Hu et al. 1990;Dai 1992,1993;Odden et al.1998;Odden 1999;Jarvie 2001;Hu and Zhang 2011).Based on these diagrams,the indices of methylcyclohexane(MCH index)and cyclohexane(CA index)have been developed by many scholars as optimum indices for parent material type and maturity(Hu et al.1990;Dai 1992,1993;Hu and Zhang 2011).The formula of these two parameters are:MCHindex=MCYC6/(nC7+MCYC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)×100,CA index=CYC6/(nC6+CYC6+MCYC5)×100.Parent materials from humic kerogen show the distribution pattern of the MCH index as>50%and the CA index as>27%,while those from sapropelic kerogen show the distribution pattern of the MCH index as<50%and the CA index as<27%.

    Fig.11 Correlation of the the isoheptane and heptane values of crude oils from Dawanqi Oilfield,contrasting with the Thompson model(1983)

    Fig.12 Ternary diagram of methylcyclohexane(MCYC6),dimethylcyclopentanes(∑DMCYC5)and n-heptane(nC7)for Dawanqi oils

    Fig.13 Ternary diagram of cyclohexane(CYC6),methylcyclopentane(MCYC5)and n-hexane(nC6)for Dawanqi oils

    The ternary diagram of the C7LHs show that the relative contentofmethylcyclohexaneis49%-74%,whichishigher than those of dimethylcyclopentane(14%-26%)and nheptane(0%-36%).Correspondingly,the ternary diagram of C6LHs show that the relative content of cyclohexane is 40%-78%,which is higher than those of methylcyclopentane(13%-24%)and n-hexane(1%-47%).Most of oil data is distributed in the position of methylcyclohexane and cyclohexane,which indicates that the Dawanqi oils maybe originate from terrigenous source rock.We can also see that the MCH index and CA index increase obviously with increasingbiodegradation,whichiscausedbythepreferential degradationofstraight-chainedalkanes(Figs.12,13;Table 4).

    All the above discussions indicate that LH parameters should be applied cautiously for the biodegraded oils.

    5 Conclusions

    1.Whole oil gas chromatograms show that Dawanqi crude oils have four distribution types.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale).

    2.Biodegradation resulted in the preferential depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.

    3.For branched C6-C7alkanes,biodegradation resulted in the preferentialdepletion of 2MC6.2,3DMC5is the most resistant to biodegradation.With increasing biodegradation,therelativecontentsofmonomethylalkanes decrease,whereas dimethylalkanes and trimethylalkanes increase.The degree of alkylation is one of the primary controlling factors of the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated However,there is a particularcase:although2,2,3TMC4hasarelativehigher alkylationdegree,2,3DMC5ismoreresistanttobiodegradation than 2,2,3TMC4.

    4.With increasing biodegradation,the ratios of 2MC5/ 3MC5and 2MC6/3MC6show a remarkable decrease,which indicates that 2MC5and 2MC6are more susceptible to biodegradation than 3MC5and 3MC6. Isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation.

    5.During biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of nheptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase.LHs parameters should be applied cautiously for the biodegradedoils.Becausebiodegradedsamplesbelongtoslight or minor biodegraded oils,the values of n-heptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.When the heptane value is 0-21 andtheisoheptane valueis 0-2.6,thecrude oil is categorized as within‘‘Biodegraded’’zone.

    AcknowledgmentsThe work was financially supported by the National Natural Science Foundation of China(Grant No.41272158 and 41172136).

    BeMent WO,Levey RA,Mango FD(1994)The temperature of oil generation as defined with a C7chemistry maturity parameter(2,4-DMP/2,3-DMP ratio).In:First joint AAPG/AMPG Hedberg research conference.Geological Aspects of Petroleum System,2-6 Oct 1994,Mexico City(Oral Presentation)

    Canipa-Morales NK,Galan-Vidal CA,Guzman-Vega MA,Jarvie DM(2003)Effect of evaporation on C7light hydrocarbon parameter. Org Geochem 34:813-826

    Chung HM,Walters CC,Buck S,Bingham B(1998)Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons:an example of the Beryl Field.Org Geochem 29:381-396

    Connan J(1984)Biodegradation of crude oils in reservoirs.Adv Pet Geochem 1:299-335

    Dai JX(1992)Identification and distinction of various alkane gases. Sci China B 35:1246-1257

    Dai JX(1993)Identification of coal formed gas and oil type gas by light hydrocarbons.Pet Explor Dev 20:26-32(in Chinese with English abstract)

    Fisher SJ,Alexander R,Kagi RI,Oliver GA (1998)Aromatic hydrocarbons as indicators of biodegradation in North Western Australian reservoirs.In:Purcell PG,Purcell RR(eds),The sedimentary basins of Western Australia 2.Proceedings of Petroleum Exploration Society of Australia Symposium,Perth,pp 185-194

    George SC,Boreham CJ,Minifie SA,Teerman SC(2002)The effect of minor to moderate biodegradation on C5to C9hydrocarbons in crude oils.Org Geochem 33:1293-1317

    Graham SA,Hendrix MS,Wang LB,Homewood P(1993)Collision successor basins of western China,impact of tectonic inheritance on sand composition.Geol Soc Am Bull 105:323-344

    Halpern HI(1995)Development and applications of light-hydrocarbon-based star diagrams.AAPG Bull 79:801-815

    Haven HLT(1996)Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies.Org Geochem 24:957-976

    Hu GY,Zhang S(2011)Characterization of low molecular weight hydrocarbons in Jingbian gas field and its application to gas sources identification.Energy Explor Exploit 29:777-796

    Hu TL,Ge BX,Zhang YG,Liu B(1990)The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas.Pet Geol Exp 12:375-393(in Chinese with English abstract)

    Jarvie DM(2001)Williston basin petroleum systems:inferences from oil geochemistry and geology.Mt Geol 38:19-41

    Jiang ZX,Li LX,Song Y,Tian FH,Zhao MJ,Wang HJ,Zhao ZX(2010)Control of neotectonic movement on hydrocarbon accumulation in the Kuqa Foreland Basin,west China.Pet Sci 7:49-58

    Li MJ,Wang TG,Zhong NN,Zhang WB,Sadik A,Li HB(2013)Ternary diagram of fluorenes,dibenzothiophenes and dibenzofurans:indicating depositional environment of crude oil source rocks.Energy Explor Exploit 31:569-588

    Liang DG,Zhang SC,Chen JP,Wang FY,Wang PR(2003)Organic geochemistry of oil and gas in the Kuqa Depression,Tarim Basin,NW China.Org Geochem 34:873-888

    Liu WH,Zhang DW,Zheng JJ,Chen MJ,Wang XF,Gao B(2005)A preliminary discussion on geochemical dynamic tracing of oil/gas reservoir ring process-taking Dawanqi structure in Kuqa Depression as an example.Oil Gas Geol 26:716-717(in Chinese with English abstract)

    Mango FD(1987)An invariance in the isoheptanes of petroleum. Science 237:514-517

    Mango FD(1990)The origin of light hydrocarbons in petroleum:a kinetic test of the steady-state catalytic hypothesis.Geochim Cosmochim Acta 54:1315-1323

    Mango FD(1992)Transition metal catalysis in the generation of petroleum:a genetic anomaly in ordovician oils.Geochim Cosmochim Acta 10:3851-3854

    Mango FD(1994)The origin of light hydrocarbon in petroleum:ring preferencein theclosure of carbocyclicrings.Geochim Cosmochim Acta 58:895-901

    Masterson WD,Dzou LIP,Holba AG,F(xiàn)incannon AL,Ellis L(2001)Evidence for biodegradation and evaporative fractionation in West Sak,Kuparuk and Prudhoe Bay field areas,North Slope,Alaska.Org Geochem 32:411-441

    Odden W (1999)A study of natural and artificially generated light hydrocarbons(C4-C13)in source rocks and petroleum fluids from offshore mid-Norway and the southernmost Norwegian and Danish sectors.Mar Pet Geol 16:747-770

    Odden W,Patience RL,Van Graas GW(1998)Application of light hydrocarbons(C4-C13)to oil/source rock correlations:a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway.Org Geochem 28:823-847

    Palmer SE(1993)Effect of biodegradation and water washing on crude oil composition.In:Engel MH,Macko SA(eds)Organic geochemistry,principles and applications.Plenum,New York,pp 511-533

    Peters KE,Walters CC,Moldowan JM(2005)The biomarker guide. Cambridge University Press,Cambridge

    Philippi GT(1975)The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim Cosmochim Acta 39:1353-1373

    Tang XY,Yang SC,Hu SB(2014)Thermal and maturation history of Jurassic source rocks in the Kuqa foreland depression of Tarim Basin,NW China.J Asian Earth Sci 89:1-9

    Thompson KFM(1979)Light hydrocarbons in subsurface sediments. Geochim Cosmochim Acta 43:657-672

    Thompson KFM(1983)Classification and thermal history of petroleum based on light hydrocarbon.Geochim Cosmochim Acta 47:303-316

    Volkman JK,Alexander R,Kagi RI,Woodhouse GW (1983)Demethylated hopanes in crude oils and their applications in petroleum geochemistry.Geochim Cosmochim Acta 47:785-794 Welte DH,Kratochvil H,Rullko¨tter J,Ladwein H,Schaefer RG(1982)Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin.Chem Geol 35:33-68

    Williams JA(1974)Characterization of oil types in Williston Basin. AAPG Bull 58:1243-1252

    Yang L,Zhang CM,Li MJ,Du JX (2015)Influence of slight biodegradation on C7hydrocarbons in crude oils:a case study of Dawanqi Oilfield in Tarim Basin.Geochimica 44:485-492(in Chinese with English abstract)

    Zhang CM,Li ST,Zhao HJ,Zhang J(2005)Applications of Mango’s light hydrocarbon parameters to petroleum from Tarim Basin,NW China.Appl Geochem 20:545-551

    Zhang SC,Zhang B,Zhu GY,Wang HT,Li ZX(2011)Geochemical evidence for coal-derived hydrocarbons and their charge historyin the Dabei Gas Field,Kuqa Thrust Belt,Tarim Basin,NW China.Mar Pet Geol 28:1364-1375

    Zhao MJ,Song Y,Liu SB,Qin SF(2003)The diffusion influence on gas pool:Dawanqi Oilfield as an example.Nat Gas Geosci 14:393-397

    Zou YR,Zhao CY,Wang YP,Zhao WZ,Peng PA,Shuai YH(2006)Characteristics and origin of natural gases in the Kuqa Depression of Tarim Basin,NW China.Org Geochem 37:280-290

    26 October 2015/Revised:11 November 2015/Accepted:29 December 2015/Published online:27 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    a级一级毛片免费在线观看| 亚洲伊人久久精品综合| 国产精品女同一区二区软件| 韩国高清视频一区二区三区| 久久毛片免费看一区二区三区| 午夜福利在线观看免费完整高清在| 欧美日韩视频精品一区| 精品少妇久久久久久888优播| 99热6这里只有精品| 男女无遮挡免费网站观看| 色综合色国产| 99热国产这里只有精品6| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 老师上课跳d突然被开到最大视频| 亚洲在久久综合| 午夜福利在线在线| 国产精品精品国产色婷婷| 五月天丁香电影| 亚洲人成网站在线播| 亚洲久久久国产精品| 国产亚洲5aaaaa淫片| 国产亚洲午夜精品一区二区久久| 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 一区二区av电影网| 女人十人毛片免费观看3o分钟| 亚洲av综合色区一区| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 大香蕉97超碰在线| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 大香蕉97超碰在线| 久热这里只有精品99| 高清黄色对白视频在线免费看 | 2021少妇久久久久久久久久久| 日日啪夜夜爽| 人体艺术视频欧美日本| 国产亚洲91精品色在线| 国产精品99久久99久久久不卡 | 久久久a久久爽久久v久久| 国产av精品麻豆| 亚洲国产精品专区欧美| 欧美xxxx黑人xx丫x性爽| 免费黄网站久久成人精品| 内射极品少妇av片p| 国产一区二区三区av在线| 久久综合国产亚洲精品| 中文字幕制服av| 国产成人精品福利久久| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 熟女av电影| 国产精品国产三级专区第一集| 有码 亚洲区| 老司机影院成人| 国产精品99久久99久久久不卡 | 夜夜骑夜夜射夜夜干| 精品亚洲成a人片在线观看 | 超碰97精品在线观看| 人妻一区二区av| 欧美日韩视频精品一区| 久久 成人 亚洲| 午夜精品国产一区二区电影| 亚洲国产日韩一区二区| 亚洲国产精品专区欧美| 国产精品久久久久久精品电影小说 | 中文天堂在线官网| 又粗又硬又长又爽又黄的视频| 五月天丁香电影| 午夜免费观看性视频| 日韩av不卡免费在线播放| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 国产在线免费精品| 免费不卡的大黄色大毛片视频在线观看| 18禁裸乳无遮挡免费网站照片| videos熟女内射| 日本免费在线观看一区| 国产男人的电影天堂91| 人妻系列 视频| 欧美人与善性xxx| av国产免费在线观看| 国产高清有码在线观看视频| 国产一区有黄有色的免费视频| 亚洲电影在线观看av| 精品午夜福利在线看| 在线免费十八禁| h视频一区二区三区| 男女边摸边吃奶| 伦理电影免费视频| 中文字幕免费在线视频6| 亚洲在久久综合| 成人国产麻豆网| 插阴视频在线观看视频| 国产av一区二区精品久久 | 日本欧美国产在线视频| 亚洲精品一二三| 国产精品久久久久久精品电影小说 | 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 三级国产精品片| 国产成人一区二区在线| 日日撸夜夜添| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久久电影| 亚洲内射少妇av| 少妇熟女欧美另类| 国产男女超爽视频在线观看| 丰满乱子伦码专区| 九九爱精品视频在线观看| 国产av码专区亚洲av| 日韩中文字幕视频在线看片 | 观看av在线不卡| 在线观看免费高清a一片| 观看免费一级毛片| 日本与韩国留学比较| 欧美zozozo另类| 精品亚洲成a人片在线观看 | 涩涩av久久男人的天堂| 久久久午夜欧美精品| 久久99热这里只频精品6学生| 亚洲不卡免费看| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 国产免费一级a男人的天堂| 激情 狠狠 欧美| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频 | 秋霞伦理黄片| 日本与韩国留学比较| 在线观看免费高清a一片| 一级爰片在线观看| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂 | 大片电影免费在线观看免费| 久久久久久久国产电影| 大话2 男鬼变身卡| 一级二级三级毛片免费看| 国产爽快片一区二区三区| 夜夜看夜夜爽夜夜摸| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 亚洲欧美一区二区三区黑人 | 亚洲av综合色区一区| 国产av精品麻豆| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 亚洲成色77777| 日韩av免费高清视频| 韩国高清视频一区二区三区| 男女免费视频国产| 久久人人爽av亚洲精品天堂 | 97在线视频观看| 亚洲精品456在线播放app| 亚洲成人av在线免费| 少妇的逼好多水| 一级av片app| 精品国产露脸久久av麻豆| 国产精品三级大全| 国产91av在线免费观看| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 在线播放无遮挡| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 日韩成人伦理影院| 亚洲自偷自拍三级| 成年免费大片在线观看| 寂寞人妻少妇视频99o| 99九九线精品视频在线观看视频| 国产日韩欧美亚洲二区| 深夜a级毛片| 最后的刺客免费高清国语| 久久毛片免费看一区二区三区| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 99国产精品免费福利视频| 国产精品一及| 国产精品国产三级国产专区5o| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 在线观看免费日韩欧美大片 | 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 国产中年淑女户外野战色| 少妇高潮的动态图| 少妇的逼好多水| 中文字幕制服av| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 男女无遮挡免费网站观看| 精华霜和精华液先用哪个| 一本一本综合久久| 精品酒店卫生间| 一级a做视频免费观看| 中文字幕亚洲精品专区| 国产精品国产三级专区第一集| 王馨瑶露胸无遮挡在线观看| 国产毛片在线视频| 色哟哟·www| 九九爱精品视频在线观看| 男女啪啪激烈高潮av片| 久久久色成人| 欧美最新免费一区二区三区| 深爱激情五月婷婷| 成人一区二区视频在线观看| 一级毛片 在线播放| 性色av一级| 在线天堂最新版资源| 国产精品女同一区二区软件| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 欧美3d第一页| 亚洲av国产av综合av卡| 国产片特级美女逼逼视频| 久久久久国产网址| 欧美一区二区亚洲| 一级爰片在线观看| 草草在线视频免费看| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 男人添女人高潮全过程视频| 十分钟在线观看高清视频www | 日日啪夜夜爽| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 亚洲精品自拍成人| av在线播放精品| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色日韩在线| 久久精品久久精品一区二区三区| 熟女av电影| 在线观看三级黄色| 国产大屁股一区二区在线视频| 在线观看免费日韩欧美大片 | videossex国产| 欧美人与善性xxx| 国产精品免费大片| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 国产精品99久久99久久久不卡 | 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 精品一品国产午夜福利视频| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 亚洲精品自拍成人| 国产精品99久久99久久久不卡 | 另类亚洲欧美激情| 国产男人的电影天堂91| av在线老鸭窝| 高清日韩中文字幕在线| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 韩国av在线不卡| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频 | 99久国产av精品国产电影| 精品酒店卫生间| 夫妻午夜视频| 亚洲第一av免费看| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 午夜日本视频在线| 久久精品夜色国产| 日韩人妻高清精品专区| 能在线免费看毛片的网站| 国产成人freesex在线| 91久久精品国产一区二区三区| av在线老鸭窝| 97超视频在线观看视频| 亚洲精品国产av蜜桃| 午夜福利在线在线| 少妇熟女欧美另类| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 国产成人a∨麻豆精品| 亚洲在久久综合| 日韩强制内射视频| 国产午夜精品一二区理论片| 色哟哟·www| 一级爰片在线观看| 国产一区亚洲一区在线观看| 国产一区有黄有色的免费视频| 国产精品av视频在线免费观看| 美女高潮的动态| 成人毛片a级毛片在线播放| videossex国产| 亚洲中文av在线| 国产精品女同一区二区软件| 色5月婷婷丁香| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 久久精品夜色国产| 亚洲av中文av极速乱| 成年人午夜在线观看视频| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 亚洲在久久综合| 丰满迷人的少妇在线观看| 国产av一区二区精品久久 | 中文字幕人妻熟人妻熟丝袜美| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 免费观看a级毛片全部| 美女高潮的动态| 免费高清在线观看视频在线观看| 国产视频内射| 一区二区三区精品91| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 国产女主播在线喷水免费视频网站| 国产亚洲精品久久久com| 国产熟女欧美一区二区| av不卡在线播放| 你懂的网址亚洲精品在线观看| 丰满少妇做爰视频| 免费观看av网站的网址| 久久国内精品自在自线图片| av.在线天堂| 婷婷色综合www| 欧美区成人在线视频| av国产久精品久网站免费入址| 波野结衣二区三区在线| 日韩欧美精品免费久久| 欧美区成人在线视频| 欧美成人一区二区免费高清观看| 国产黄片美女视频| 亚洲国产精品一区三区| 中文字幕久久专区| 国国产精品蜜臀av免费| 成人综合一区亚洲| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 最黄视频免费看| 极品教师在线视频| 在线观看一区二区三区| 久久久久久久久久久丰满| 九九久久精品国产亚洲av麻豆| 国产深夜福利视频在线观看| 成人国产av品久久久| 欧美精品亚洲一区二区| 2022亚洲国产成人精品| 久久精品久久久久久久性| 亚洲真实伦在线观看| 国产精品国产三级国产专区5o| 蜜臀久久99精品久久宅男| 人妻系列 视频| 久久99精品国语久久久| 久热久热在线精品观看| 亚洲欧洲国产日韩| 涩涩av久久男人的天堂| 国产成人精品婷婷| 国产精品国产av在线观看| 欧美另类一区| 中文资源天堂在线| 国精品久久久久久国模美| 岛国毛片在线播放| 最后的刺客免费高清国语| 高清午夜精品一区二区三区| 男人和女人高潮做爰伦理| 日本黄大片高清| 中文乱码字字幕精品一区二区三区| 三级国产精品欧美在线观看| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 日本黄色片子视频| 观看av在线不卡| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 国产黄片美女视频| av不卡在线播放| 91久久精品电影网| 99热6这里只有精品| av播播在线观看一区| 晚上一个人看的免费电影| 成人国产麻豆网| av在线app专区| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 九草在线视频观看| 欧美xxxx黑人xx丫x性爽| av.在线天堂| av女优亚洲男人天堂| 亚洲一区二区三区欧美精品| 国产精品久久久久久久久免| 99久久精品热视频| 免费黄频网站在线观看国产| 成人国产麻豆网| 乱码一卡2卡4卡精品| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 高清不卡的av网站| 国产av码专区亚洲av| 国产老妇伦熟女老妇高清| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 少妇人妻久久综合中文| 免费人成在线观看视频色| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 高清不卡的av网站| 肉色欧美久久久久久久蜜桃| 国产美女午夜福利| 免费观看a级毛片全部| 亚洲图色成人| 2018国产大陆天天弄谢| 国产成人一区二区在线| 好男人视频免费观看在线| 免费观看在线日韩| 久久精品夜色国产| 3wmmmm亚洲av在线观看| 少妇精品久久久久久久| 日韩强制内射视频| 亚洲中文av在线| 春色校园在线视频观看| 亚洲精品亚洲一区二区| 纯流量卡能插随身wifi吗| 高清日韩中文字幕在线| 午夜视频国产福利| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 人妻少妇偷人精品九色| 国产真实伦视频高清在线观看| 热re99久久精品国产66热6| 亚洲欧美成人综合另类久久久| 91午夜精品亚洲一区二区三区| 男人和女人高潮做爰伦理| 亚洲精品日韩在线中文字幕| 亚洲精品国产av蜜桃| 免费不卡的大黄色大毛片视频在线观看| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜 | 在线观看美女被高潮喷水网站| 亚洲av二区三区四区| 在线 av 中文字幕| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 爱豆传媒免费全集在线观看| 欧美日本视频| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 亚洲精品成人av观看孕妇| 看非洲黑人一级黄片| 99热这里只有是精品50| 噜噜噜噜噜久久久久久91| 岛国毛片在线播放| 五月天丁香电影| 一区二区三区精品91| 亚洲图色成人| 多毛熟女@视频| 人妻制服诱惑在线中文字幕| 热99国产精品久久久久久7| av在线观看视频网站免费| 蜜桃久久精品国产亚洲av| 中文精品一卡2卡3卡4更新| 久久av网站| 成人无遮挡网站| 久久久亚洲精品成人影院| 免费看日本二区| 最近最新中文字幕免费大全7| 亚洲人成网站在线观看播放| 毛片一级片免费看久久久久| av网站免费在线观看视频| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品成人久久小说| av免费观看日本| 国产一区有黄有色的免费视频| 我要看日韩黄色一级片| 色网站视频免费| 免费黄色在线免费观看| 久久精品久久久久久噜噜老黄| 夜夜爽夜夜爽视频| 最近中文字幕高清免费大全6| 亚洲电影在线观看av| 国产乱来视频区| www.色视频.com| 国产午夜精品一二区理论片| 精品久久久久久久末码| 亚洲激情五月婷婷啪啪| 99久久人妻综合| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 下体分泌物呈黄色| 在线观看一区二区三区| a级一级毛片免费在线观看| 日日摸夜夜添夜夜爱| 纵有疾风起免费观看全集完整版| 极品教师在线视频| 久久久国产一区二区| 看免费成人av毛片| 亚洲国产色片| 日韩精品有码人妻一区| 久久这里有精品视频免费| 91久久精品国产一区二区成人| 交换朋友夫妻互换小说| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 亚洲精品日韩av片在线观看| 国产免费又黄又爽又色| 久久久久久久精品精品| 我的老师免费观看完整版| 久热久热在线精品观看| 午夜激情久久久久久久| 少妇高潮的动态图| 亚洲欧美一区二区三区国产| 99久久精品热视频| av视频免费观看在线观看| 我要看日韩黄色一级片| 成人高潮视频无遮挡免费网站| 亚洲综合精品二区| 91aial.com中文字幕在线观看| 国产深夜福利视频在线观看| 各种免费的搞黄视频| 美女中出高潮动态图| av国产精品久久久久影院| 日韩欧美 国产精品| 成年av动漫网址| 男女国产视频网站| 最近中文字幕2019免费版| 国产乱来视频区| 中国三级夫妇交换| 十八禁网站网址无遮挡 | 免费人成在线观看视频色| 国产免费视频播放在线视频| 在线观看av片永久免费下载| 国产在线一区二区三区精| 在线观看国产h片| 美女脱内裤让男人舔精品视频| 国产69精品久久久久777片| 国产一区亚洲一区在线观看| 看免费成人av毛片| 国产美女午夜福利| 久久久久久久久大av| 伦精品一区二区三区| 久久久久网色| 亚洲欧美成人综合另类久久久| 另类亚洲欧美激情| 午夜福利影视在线免费观看| 一区在线观看完整版| 日韩一区二区视频免费看| 久久午夜福利片| 黄片无遮挡物在线观看| 国产日韩欧美在线精品| 国产免费视频播放在线视频| freevideosex欧美| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 久久久亚洲精品成人影院| 乱码一卡2卡4卡精品| 日本爱情动作片www.在线观看| 国产高潮美女av| 久久久久久久久久久丰满| 久久综合国产亚洲精品| 日韩欧美 国产精品| 久久久久久久久久久丰满| 久久人人爽av亚洲精品天堂 | 国产精品久久久久久久久免| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 特大巨黑吊av在线直播| 国产精品爽爽va在线观看网站| 日本-黄色视频高清免费观看| 狠狠精品人妻久久久久久综合| 久久久精品94久久精品| 亚洲国产高清在线一区二区三| 如何舔出高潮| 狂野欧美激情性xxxx在线观看| 亚洲欧美精品自产自拍| 欧美成人午夜免费资源| 偷拍熟女少妇极品色| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| av在线播放精品| 2022亚洲国产成人精品| 欧美97在线视频|