• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    2016-10-20 02:27:38LuYangChunmingZhangMeijunLiJingZhaoXueningQiJinxiuDu
    Acta Geochimica 2016年2期

    Lu Yang·Chunming Zhang·Meijun Li·Jing Zhao· Xuening Qi·Jinxiu Du

    ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    Lu Yang1·Chunming Zhang2·Meijun Li1·Jing Zhao1· Xuening Qi3·Jinxiu Du4

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,and carry much information regarding the genetic origin and alteration of crude oils.But secondary alterations-especially biodegradation-have a significant effect on the composition of LHs in crude oils.Because most of the LHs affected in oils underwent only slight biodegradation(rank 1 on the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,23 crude oils from the Dawanqi Oilfield in the Tarim Basin,NW China,eleven of which have been biodegraded to different extents,were analyzed in order to investigate the effect of slight to minor biodegradation on C6-C7LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.For branched C6-C7alkanes,generally,monomethylalkanesarebiodegradedearlierthan dimethylalkanes and trimethylalkanes,which indicates that branched alkanes are more resistant to biodegradation,with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-C7LHs.There is a particular case:although 2,2,3-trimethylbutane has a relative higher alkylation degree,2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane.2,2-Dimethylpentane is the most resistant to biodegradation in branched C6-C7alkanes.Furthermore,the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation,which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation.With increasing biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of n-heptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils.Because biodegraded samples belong to slight or minor biodegraded oils,the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the‘‘Biodegraded’’zone.When the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil in Dawanqi Oilfield is defined as the‘‘Biodegraded’’zone.

    Crude oils·Light hydrocarbons· Biodegradation·Dawanqi Oilfield·Tarim Basin

    This contribution has been accepted as a poster presentation in the 27th International Meeting on Organic Geochemistry.

    ? Chunming Zhang zhangcm@126.com

    1State Key Laboratory of Petroleum Resources and Prospecting,College of Geosciences,China University of Petroleum,Beijing 102249,China

    2Key Laboratory of Exploration Technologies for Oil and Gas Resources,College of Earth Environment and Water Resource,Yangtze University,Wuhan 430100,China

    3Langfang Branch,Research Institute of Petroleum Exploration and Development,PetroChina,Langfang 065000,China

    4Huabei Oilfield Company,PetroChina,Renqiu 062552,China

    1 Introduction

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,especially for light oils in which commonly used biomarkers are usually present in extremely low concentrations or even under the detection limit of routine gas chromatography-mass spectrometry analyses(Peters et al.2005).

    Benchmark research has suggested that LHs carry much information regarding the genetic associations and alteration of crude oils.It has been documented that LHs can be applied to oil-oil correlation studies,distinguishing genetic types of crude oils,and determining their thermal maturation levels(Williams 1974;Philippi 1975;Thompson 1983;Halpern 1995;Haven 1996;Chung et al.1998;Zhang et al.2005).However,secondary alteration-especially biodegradation-has a significant effect on the composition of LHs in crude oils.Based on the differing resistance of compound classes to biodegradation,Peters et al.(2005)developed a scale of 1-10 to assess the degree of biodegradation.Much work has been done on the effect of biodegradation on the molecular composition of crude oils(Volkman et al.1983;Connan 1984;Palmer 1993;Fisher et al.1998),whilst relatively little work has been done on the effect of biodegradation on the behavior of LHs.

    Welte et al.(1982)demonstrated the preferential depletion of straight-chain alkanes relative to branched and cyclic alkanes during biodegradation and proposed two parameters(iso-pentane/n-pentane,3-methylpentane/nhexane)that could be used to indicate biodegradation. BeMent et al.(1994)suggested that 2,3-dimethylpentane is more subject to bacterial attack than 2,4-dimethylpentane. Masterson et al.(2001)showed that n-heptane,3-methylhexane,cyclohexanel and methylcyclohexane were more easily removed by biodegradation than benzene or toluene. George et al.(2002)suggested three main controls on the susceptibility to biodegradation(carbon skeleton,degree of alkylation,and position of alkylation).

    Up to the present,details have been limited on the relative susceptibility of LHs to biodegradation.Because most of the LHs in oils underwent only slight biodegradation(rank 1 of the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,a total of 23 light oils from the Dawanqi Oilfield in the Tarim Basin(NW China)were analyzed to investigate the effect of slight to minor biodegradation on the distribution of C6-C7LHs.The resultscanbroadenthecurrentunderstandingof biodegradation effects on these low molecular weight hydrocarbons in crude oils.

    2 Geologic setting

    The Dawanqi Oilfield is located in the western margin of the Kuqa Depression,north of the Tarim Basin,NW China(Fig.1).The oil field covers an area of 5.4 km2with a proved oil reserve of 48.35×106bbl,with 13.64×109scf of dissolved gas(Zhao et al.2003).The Kuqa Depression is situated in the southern foot of the Tianshan orogenic Belt and is dominated by Mesozoic and Cenozoic deposits.This east-west trending depression,450 km long and 50-80 km wide and covering an area of about 2.8×104km2,is one of the most productive gas depressions in China.It contains the North and South Slopes,Baicheng and Yangxia Sags,and Yiqikelike,Kelasu and Qiulitage structural Belts(Graham et al.1993;Jiang et al.2010).The Dawanqi Anticline,situated in the western part of the Baicheng Sag,is composed of several normal fault blocks or broken anticlines separated by a number of normal faults(Zhang et al.2011).These faults,as pathways for oil migration,lead to the accumulation of oil and gas in traps under the gypsum salt(Tang et al. 2014).

    Based on seismic,drilling and logging data,the sequence stratigraphic framework of Dawanqi Oilfield is:Paleogene Suweiyi Formation,Neogene Jidike,Kangcun and Kuqa Formations,and the Quaternary(Liu et al.2005).The Neogene Kuqa Formation is the most important prolific payzone in Dawanqi Oilfield.The Upper Triassic lacustrine shales/mudstones,thin coal seams formed in fluvial-deltaic and lacustrine environments,and the Lower-Middle Jurassic coal beds deposited in a swamp-lacustrine system were considered to be the main potential source rocks in the Kuqa Depression(Liang et al.2003;Zou et al.2006).

    3 Samples and experimental procedures

    Twenty-three light oil samples were carefully selected at wellheads from the Dawanqi Oilfield in the Tarim Basin. These samples were collected at temperatures between 25 and 30°,but were quickly refrigerated at below-6°(Canipa-Morales et al.2003).The production zones of these samples are 69.5-662.5 m deep.

    Gas chromatography(GC)of the whole oil samples was performed on an Agilent 6890 gas chromatograph,equipped with two sets of electronic pressure controllers and a flame ionization detector(300°).A 50 m PONY capillary column was used with Helium as the carrier gas and a split ratio of approximately 50:1.The oven was programmed to an initial temperature of 35°for 5 min,followed by a heating ramp at 4°/min to 300°for 20 min.LHs were identified based on the GC analysis technique and byrelative retention times.The whole oil GC of C6-C7LHs in well DW126-8 and their qualitative analyses are shown in Fig.2 and Table 1,respectively.

    Fig.1 Location map of the Dawanqi Oilfield in the Tarim Basin

    Fig.2 Partial whole oil gas chromatograms of well DW126-8,showing the C6-C7region.Peak numbers are listed in Table 1

    These crude oil samples have MPR values ranging from 0.96 to 1.17(RO≈0.88%-0.92%)(Table 2).They have similar thermal maturity.Their densities are commonly lowerthan0.8000 g cm-3,withaminimumof 0.7801 g cm-3.The variations in the relative amounts of fluorenes,dibenzothiophenes,and dibenzofurans from the oil samples are plotted on a ternary diagram from Li et al.(2013).As shown in Fig.3,all the data points are distributed in Zone 4,which shows that Dawanqi oils may originatefrombrackish/salinelacustrineshales.All Dawanqi oil samples belong to the same oil family.

    Table 1 List of C6-C7light hydrocarbon in Dawanqi oils

    4 Results and discussion

    4.1 Gas chromatography of whole oils

    Whole oil gas chromatograms show that Dawanqi oils are characterized by the distribution of light oil,with a predominance of low molecular-weight normal alkanes.In general,the crude oils in the Dawanqi Oilfield have the following distribution types(Fig.4;Table 2).

    Type I The normal alkanes have a common range of carbonnumbersfromnC4to nC30,with a unimodalpattern maximizing at nC9or nC10,are observed.The values of nC21-/nC22+and nC13-/nC14+have a higher relative abundance(9.43-11.68 and 1.33-1.79).They are dominated by low molecular-weight normal alkanes.Most of crudeoilsinDawanqiOilfieldbelongtothistype(Fig.4a). Type II The normal alkane series of this type exhibit a common carbon number range of nC4to nC30and a bimodal distribution pattern,predominated by nC9and nC17.The value of nC21-/nC22+ranges from 3.32 to 6.40 and the value of nC13-/nC14+ranges from 0.29 to 0.95(Fig.4b). Type III The carbon numbers of normal alkanes range from nC4to nC30maximizing at nC14.The samples have a nC21-/nC22+value ranging from 4.35 to 5.27 and a nC13-/nC14+value between 0.40 and 0.56(Fig.4c).

    Type IV There is no obvious n-alkane distribution in this type.Pristine and phytane have been depleted(Fig.4d).

    Except Type IV,the values of pristane/phytane(Pr/Ph)values range from 1.90 to 3.06.Twenty-two crude oil samples have Pr/nC17values ranging from 0.10 to 0.18 and Ph/nC18values between 0.05 and 0.08.These two ratios show slight changes(Table 2).

    Welte et al.(1982)proposed two LH ratios,3MC5/nC6and iso-pentane/n-pentane(iC5/nC5),to identify biodegradation.In the major crude oils(Type I),there are lower relative ratios of 3MC5/nC6and iC5/nC5(0.35-0.37 and 0.79-0.93).In contrast,from type II to type III,these two ratios increase gradually(0.48-2.86 and 0.95-2.51),which shows that crude oils from the Dawanqi Oilfield are characterized by obvious biodegradation.In type IV oils,nC5was totally depleted(Fig.5;Table 2).

    Based on the above analyses,as reported by Yang et al.(2015),the Dawanqi oils from shallower depth usually show biodegraded characteristics.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale)(Peters et al. 2005).From Type I to Type IV,the extent of biodegradation exhibits a marked tendency to increase.

    4.2 Effect of biodegradation on C6-C7light hydrocarbons

    A total of 23 homologues and isomers of C6-C7LHs,includingstraight-chainedalkanes,branchedalkanes,5-membered cycloalkanes,6-membered cycloalkanes,and aromatic hydrocarbons,were detected with the GC analysis technique(Fig.2;Table 1).Here,no significant systematic susceptibility to biodegradation was found within Benz and Tol,so we will not discuss these two compounds.Except aromatic hydrocarbons,C6-C7LHs are mainly controlled by biodegradation.

    4.2.1 Relative abundance of C6-C7homologues and isomers

    The relative abundance of C6-C7homologues and isomers in Dawanqioilsshowregulardistributionduringbiodegradation.

    In Type I oils,six-membered cycloalkanes have a relatively higher abundance(33.69%-36.70%),followed by straight-chained alkanes(27.00%-28.41%)and branched alkanes(24.90%-27.70%).The proportions of five-membered cycloalkanes range from 10.39%to 11.26%,with relatively lower values.With increasing biodegradation(from Type II to Type IV),the relative abundance of straight-chained alkanes and branched alkanes decreased gradually;five-membered cycloalkanes and six-membered cycloalkanesincreasedgradually(Fig.6; Table 3). Biodegradation resulted in the preferential depletion of straight-chained alkanes and branched alkanes.

    Table 2 General information for oils from Dawanqi Oilfield

    Fig.3 Ternary diagram showing the proportion of dibenzothiophenes(DBTs),fluorenes(FLs),and dibenzofurans(DBFs)from Dawanqi oils

    Fig.4 Whole oil gas chromatogram of different types oils from the Dawanqi Oilfield,Tarim Basin

    Fig.5 Plot of 3MC5/nC6vs iC5/nC5of crude oils from Dawanqi Oilfield

    Fig.6 Graph of the average relative content of C6-C7straightchained alkanes,branched alkanes,five-membered cycloalkanes and six-membered cycloalkanes for Dawanqi oils(filled diamond straightchained alkane;open diamond branched alkane;open circle fivemembered cycloalkane;filled square six-membered cycloalkane)

    4.2.2 Branched alkanes

    A total of four methyl-,six dimethyl-and one trimethylsubstituted C6-C7alkanes were detected in oils from the Dawanqi Oilfield(Fig.2;Table 1).The relative abundance of these branched C6-C7alkanes exhibited regular distribution during biodegradation.

    As shown in Fig.7,with increasing biodegradation,the relative abundance of 2MC6decreases gradually.The relative amounts of 2MC5and 3MC6almost remained unchanged in type I and type II,while decreasing in type III and type IV.3MC5show a marked increasing trend with greater biodegradation until type IV oils.Dimethylalkanes and trimethylalkanes exhibit a steadily increasing trend,especially2,3DMC5.InbranchedC6-C7alkanes,biodegradation resulted in the prior depletion of 2MC6,whereas 2,3DMC5is the most resistant to biodegradation.

    The ternary diagram of C6-C7monomethylalkanes,dimethylalkanes,and trimethylalkanes also shows a similar distribution(Fig.8).With increasing biodegradation,the relative contents of monomethylalkanes decrease and dimethylalkanes increase.For trimethylalkanes,because only 2,2,3TMC4was detected in Dawanqi oils by GC analysis technique,the proportions of the trimethylalkanes range from 1.06%to 4.42%,with relatively lower values. The relative contents of trimethylalkanes also show a slight increasing trend.As already mentioned by George et al.(2002)and Yang et al.(2015),the degree of alkylation isone of the primary controlling factors for the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated. There is,however,a particular case:although 2,2,3TMC4has a relative higher alkylation degree,2,3DMC5is more resistant to biodegradation than 2,2,3TMC4.

    The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation,which is mainly reflected in the variation of the 2MC5/ 3MC5and 2MC6/3MC6ratios in Dawanqi oils(Fig.9;Table 3).In non-degraded oils(type I oils),there are higher relative ratios of 2MC5/3MC5and 2MC6/3MC6(1.26-1.32 and 0.90-0.92).With increasing biodegradation,these two ratios show a remarkable decreasing trend(0.16-1.28 and 0.26-0.74),which indicates that the 2MC5and 2MC6are more susceptible to biodegradation than the 3MC5and 3MC6.Isomers of the bilateral methyl groups are more prone to bacterial attack relative to the mid-chain isomers(George et al.2002;Yang et al.2015).However,no similar characteristics in susceptibility to biodegradation were found within other branched C6-C7alkanes,implying that the biodegradation did not progress sufficiently for other analogue ratios of branched alkanes.

    Table 3 Group compositions of C6-C7light hydrocarbon and relevant ratios

    4.2.3 Cycloalkanes

    A total of eight C6-C7cycloalkanes,including six fivemembered cyclcoalkanes and two six-membered cyclohexanes,were detected(Fig.2;Table 1).In the Dawanqi samples,no obvious changes occured in the relative abundance of the C6-C7cycloalkanes during biodegradation,which implies that such a biodegradation scale could not sufficiently affect these compounds.

    4.3 Light hydrocarbon parameters

    Based on the above study,the variation of C6-C7LHs may affect common LH parameters.

    4.3.1 Mango's light parameters K1 and K2

    Mango(1987)determined that four isoheptanes had fixed roles in different petroleum systems,K1=(2MC6+2,3-DMC5)/(3MC6+2,4DMC5)≈1.0,regardless of the concentrations in the oils.Subsequently,Mango(1990,1992,1994)posed a steady-state catalytic process and the parentdaughter scheme was established and modified for theformation of C7hydrocarbons.Based on the scheme,the second invariance ratio was predicted,K2=(2,2DMC5+ 2,3DMC5+2,4DMC5+3,3DMC5+2,2,3TMC4)/(2MC6+ 3MC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5). Generally,analogous oil genesis sets should have similar K1 and K2 values.

    In non-degraded oils(type I oils),Mango parameter K1 is approximately 1.04-1.05,and K2 is approximately 0.25-0.26.In type II and type III oils,Mango parameters show relatively low K1 values(0.81-0.99)and relatively high K2 values(0.29-0.59).The K1 values are affected very little in type II and type III oils.In typeIV oils,there are higher relative Mango parameters of K1 and K2(1.83 and 1.14).Biodegradation could affect Mango parameters K1 and K2(Fig.10;Table 4).

    Fig.7 Bar charts of the average relative content of branched C6-C7alkanes for Dawanqi oils

    Fig.8 Ternary diagram of C6-C7monomethylalkanes,dimethylalkanes and trimethylalkanes for Dawanqi oils

    Fig.9 Plot of 2MC5/3MC5vs 2MC6/3MC6of crude oils from Dawanqi Oilfield

    4.3.2 Heptane value and isoheptane value

    Thompson(1979)proposed two LH parameters:the Paraffin index 1,of which the formula is:Isoheptane Value=(2MC6+3MC6)/(1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)and the Paraffin index 2,which can been expressed as:Heptane Value=nC7×100/(CYC6+2MC6+ 1,1DMCYC5+3MC6+1,c3DMCYC5+1,t3DMCYC5+ 1,t2DMCYC5+nC7+MCYC6).The distribution of nondegraded samples from the Dawanqi Oilfield show that Dawanqi oils belong to mature oils.With increasing biodegradation,the values of n-heptane and isoheptane decrease gradually(Fig.11;Table 4).

    Thompson(1983)proposed that when the heptane value is 0-18 and isoheptane value is 0-0.8,a crude oil iscatergorized as‘‘Biodegraded’’.However,in the Dawanqi oils,only three biodegraded oils are in the‘‘Biodegraded’’zone determined by Thompson(1983)(Fig.11;Table 4). Here,because the biodegraded samples belong to slight or minor biodegraded oils(ranks 1 or 3 on the degree of biodegradation scale)as described before,the values of nheptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.As shown in Fig.11,when the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil can be catergorized as within the‘‘Biodegraded’’zone.

    Fig.10 Bar charts of Mango parameters K1 and K2 for oil samples from Dawanqi Oilfield

    Table 4 Geochemical parameters list of C6-C7hydrocarbons

    4.3.3 Methylcyclohexane index and cyclohexane index

    The C6and C7oil correlation ternary diagram has been widely used to gain geochemical information(Hu et al. 1990;Dai 1992,1993;Odden et al.1998;Odden 1999;Jarvie 2001;Hu and Zhang 2011).Based on these diagrams,the indices of methylcyclohexane(MCH index)and cyclohexane(CA index)have been developed by many scholars as optimum indices for parent material type and maturity(Hu et al.1990;Dai 1992,1993;Hu and Zhang 2011).The formula of these two parameters are:MCHindex=MCYC6/(nC7+MCYC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)×100,CA index=CYC6/(nC6+CYC6+MCYC5)×100.Parent materials from humic kerogen show the distribution pattern of the MCH index as>50%and the CA index as>27%,while those from sapropelic kerogen show the distribution pattern of the MCH index as<50%and the CA index as<27%.

    Fig.11 Correlation of the the isoheptane and heptane values of crude oils from Dawanqi Oilfield,contrasting with the Thompson model(1983)

    Fig.12 Ternary diagram of methylcyclohexane(MCYC6),dimethylcyclopentanes(∑DMCYC5)and n-heptane(nC7)for Dawanqi oils

    Fig.13 Ternary diagram of cyclohexane(CYC6),methylcyclopentane(MCYC5)and n-hexane(nC6)for Dawanqi oils

    The ternary diagram of the C7LHs show that the relative contentofmethylcyclohexaneis49%-74%,whichishigher than those of dimethylcyclopentane(14%-26%)and nheptane(0%-36%).Correspondingly,the ternary diagram of C6LHs show that the relative content of cyclohexane is 40%-78%,which is higher than those of methylcyclopentane(13%-24%)and n-hexane(1%-47%).Most of oil data is distributed in the position of methylcyclohexane and cyclohexane,which indicates that the Dawanqi oils maybe originate from terrigenous source rock.We can also see that the MCH index and CA index increase obviously with increasingbiodegradation,whichiscausedbythepreferential degradationofstraight-chainedalkanes(Figs.12,13;Table 4).

    All the above discussions indicate that LH parameters should be applied cautiously for the biodegraded oils.

    5 Conclusions

    1.Whole oil gas chromatograms show that Dawanqi crude oils have four distribution types.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale).

    2.Biodegradation resulted in the preferential depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.

    3.For branched C6-C7alkanes,biodegradation resulted in the preferentialdepletion of 2MC6.2,3DMC5is the most resistant to biodegradation.With increasing biodegradation,therelativecontentsofmonomethylalkanes decrease,whereas dimethylalkanes and trimethylalkanes increase.The degree of alkylation is one of the primary controlling factors of the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated However,there is a particularcase:although2,2,3TMC4hasarelativehigher alkylationdegree,2,3DMC5ismoreresistanttobiodegradation than 2,2,3TMC4.

    4.With increasing biodegradation,the ratios of 2MC5/ 3MC5and 2MC6/3MC6show a remarkable decrease,which indicates that 2MC5and 2MC6are more susceptible to biodegradation than 3MC5and 3MC6. Isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation.

    5.During biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of nheptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase.LHs parameters should be applied cautiously for the biodegradedoils.Becausebiodegradedsamplesbelongtoslight or minor biodegraded oils,the values of n-heptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.When the heptane value is 0-21 andtheisoheptane valueis 0-2.6,thecrude oil is categorized as within‘‘Biodegraded’’zone.

    AcknowledgmentsThe work was financially supported by the National Natural Science Foundation of China(Grant No.41272158 and 41172136).

    BeMent WO,Levey RA,Mango FD(1994)The temperature of oil generation as defined with a C7chemistry maturity parameter(2,4-DMP/2,3-DMP ratio).In:First joint AAPG/AMPG Hedberg research conference.Geological Aspects of Petroleum System,2-6 Oct 1994,Mexico City(Oral Presentation)

    Canipa-Morales NK,Galan-Vidal CA,Guzman-Vega MA,Jarvie DM(2003)Effect of evaporation on C7light hydrocarbon parameter. Org Geochem 34:813-826

    Chung HM,Walters CC,Buck S,Bingham B(1998)Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons:an example of the Beryl Field.Org Geochem 29:381-396

    Connan J(1984)Biodegradation of crude oils in reservoirs.Adv Pet Geochem 1:299-335

    Dai JX(1992)Identification and distinction of various alkane gases. Sci China B 35:1246-1257

    Dai JX(1993)Identification of coal formed gas and oil type gas by light hydrocarbons.Pet Explor Dev 20:26-32(in Chinese with English abstract)

    Fisher SJ,Alexander R,Kagi RI,Oliver GA (1998)Aromatic hydrocarbons as indicators of biodegradation in North Western Australian reservoirs.In:Purcell PG,Purcell RR(eds),The sedimentary basins of Western Australia 2.Proceedings of Petroleum Exploration Society of Australia Symposium,Perth,pp 185-194

    George SC,Boreham CJ,Minifie SA,Teerman SC(2002)The effect of minor to moderate biodegradation on C5to C9hydrocarbons in crude oils.Org Geochem 33:1293-1317

    Graham SA,Hendrix MS,Wang LB,Homewood P(1993)Collision successor basins of western China,impact of tectonic inheritance on sand composition.Geol Soc Am Bull 105:323-344

    Halpern HI(1995)Development and applications of light-hydrocarbon-based star diagrams.AAPG Bull 79:801-815

    Haven HLT(1996)Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies.Org Geochem 24:957-976

    Hu GY,Zhang S(2011)Characterization of low molecular weight hydrocarbons in Jingbian gas field and its application to gas sources identification.Energy Explor Exploit 29:777-796

    Hu TL,Ge BX,Zhang YG,Liu B(1990)The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas.Pet Geol Exp 12:375-393(in Chinese with English abstract)

    Jarvie DM(2001)Williston basin petroleum systems:inferences from oil geochemistry and geology.Mt Geol 38:19-41

    Jiang ZX,Li LX,Song Y,Tian FH,Zhao MJ,Wang HJ,Zhao ZX(2010)Control of neotectonic movement on hydrocarbon accumulation in the Kuqa Foreland Basin,west China.Pet Sci 7:49-58

    Li MJ,Wang TG,Zhong NN,Zhang WB,Sadik A,Li HB(2013)Ternary diagram of fluorenes,dibenzothiophenes and dibenzofurans:indicating depositional environment of crude oil source rocks.Energy Explor Exploit 31:569-588

    Liang DG,Zhang SC,Chen JP,Wang FY,Wang PR(2003)Organic geochemistry of oil and gas in the Kuqa Depression,Tarim Basin,NW China.Org Geochem 34:873-888

    Liu WH,Zhang DW,Zheng JJ,Chen MJ,Wang XF,Gao B(2005)A preliminary discussion on geochemical dynamic tracing of oil/gas reservoir ring process-taking Dawanqi structure in Kuqa Depression as an example.Oil Gas Geol 26:716-717(in Chinese with English abstract)

    Mango FD(1987)An invariance in the isoheptanes of petroleum. Science 237:514-517

    Mango FD(1990)The origin of light hydrocarbons in petroleum:a kinetic test of the steady-state catalytic hypothesis.Geochim Cosmochim Acta 54:1315-1323

    Mango FD(1992)Transition metal catalysis in the generation of petroleum:a genetic anomaly in ordovician oils.Geochim Cosmochim Acta 10:3851-3854

    Mango FD(1994)The origin of light hydrocarbon in petroleum:ring preferencein theclosure of carbocyclicrings.Geochim Cosmochim Acta 58:895-901

    Masterson WD,Dzou LIP,Holba AG,F(xiàn)incannon AL,Ellis L(2001)Evidence for biodegradation and evaporative fractionation in West Sak,Kuparuk and Prudhoe Bay field areas,North Slope,Alaska.Org Geochem 32:411-441

    Odden W (1999)A study of natural and artificially generated light hydrocarbons(C4-C13)in source rocks and petroleum fluids from offshore mid-Norway and the southernmost Norwegian and Danish sectors.Mar Pet Geol 16:747-770

    Odden W,Patience RL,Van Graas GW(1998)Application of light hydrocarbons(C4-C13)to oil/source rock correlations:a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway.Org Geochem 28:823-847

    Palmer SE(1993)Effect of biodegradation and water washing on crude oil composition.In:Engel MH,Macko SA(eds)Organic geochemistry,principles and applications.Plenum,New York,pp 511-533

    Peters KE,Walters CC,Moldowan JM(2005)The biomarker guide. Cambridge University Press,Cambridge

    Philippi GT(1975)The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim Cosmochim Acta 39:1353-1373

    Tang XY,Yang SC,Hu SB(2014)Thermal and maturation history of Jurassic source rocks in the Kuqa foreland depression of Tarim Basin,NW China.J Asian Earth Sci 89:1-9

    Thompson KFM(1979)Light hydrocarbons in subsurface sediments. Geochim Cosmochim Acta 43:657-672

    Thompson KFM(1983)Classification and thermal history of petroleum based on light hydrocarbon.Geochim Cosmochim Acta 47:303-316

    Volkman JK,Alexander R,Kagi RI,Woodhouse GW (1983)Demethylated hopanes in crude oils and their applications in petroleum geochemistry.Geochim Cosmochim Acta 47:785-794 Welte DH,Kratochvil H,Rullko¨tter J,Ladwein H,Schaefer RG(1982)Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin.Chem Geol 35:33-68

    Williams JA(1974)Characterization of oil types in Williston Basin. AAPG Bull 58:1243-1252

    Yang L,Zhang CM,Li MJ,Du JX (2015)Influence of slight biodegradation on C7hydrocarbons in crude oils:a case study of Dawanqi Oilfield in Tarim Basin.Geochimica 44:485-492(in Chinese with English abstract)

    Zhang CM,Li ST,Zhao HJ,Zhang J(2005)Applications of Mango’s light hydrocarbon parameters to petroleum from Tarim Basin,NW China.Appl Geochem 20:545-551

    Zhang SC,Zhang B,Zhu GY,Wang HT,Li ZX(2011)Geochemical evidence for coal-derived hydrocarbons and their charge historyin the Dabei Gas Field,Kuqa Thrust Belt,Tarim Basin,NW China.Mar Pet Geol 28:1364-1375

    Zhao MJ,Song Y,Liu SB,Qin SF(2003)The diffusion influence on gas pool:Dawanqi Oilfield as an example.Nat Gas Geosci 14:393-397

    Zou YR,Zhao CY,Wang YP,Zhao WZ,Peng PA,Shuai YH(2006)Characteristics and origin of natural gases in the Kuqa Depression of Tarim Basin,NW China.Org Geochem 37:280-290

    26 October 2015/Revised:11 November 2015/Accepted:29 December 2015/Published online:27 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    免费观看的影片在线观看| 久久精品91无色码中文字幕| 99热只有精品国产| 免费av毛片视频| 淫秽高清视频在线观看| 成人国产一区最新在线观看| 亚洲精品亚洲一区二区| 午夜影院日韩av| 伊人久久大香线蕉亚洲五| 一进一出抽搐gif免费好疼| 亚洲色图av天堂| 久久久久免费精品人妻一区二区| 免费看光身美女| 久久久久久久久中文| 精品久久久久久久久久免费视频| 在线播放国产精品三级| 免费人成在线观看视频色| 国产成人av激情在线播放| 两个人看的免费小视频| 少妇的逼水好多| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 性色avwww在线观看| 亚洲av不卡在线观看| 国产亚洲精品综合一区在线观看| 人人妻人人澡欧美一区二区| 国产一区二区三区在线臀色熟女| 久9热在线精品视频| 国产综合懂色| 亚洲精品在线美女| 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| www国产在线视频色| 久久久久免费精品人妻一区二区| 最好的美女福利视频网| 午夜亚洲福利在线播放| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 国产蜜桃级精品一区二区三区| 搡老妇女老女人老熟妇| 内地一区二区视频在线| 国产精品99久久99久久久不卡| 女人高潮潮喷娇喘18禁视频| 国内揄拍国产精品人妻在线| 床上黄色一级片| 听说在线观看完整版免费高清| 久久午夜亚洲精品久久| 国内精品久久久久精免费| 欧美日韩综合久久久久久 | 欧美色欧美亚洲另类二区| 丁香六月欧美| 悠悠久久av| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影| 中文字幕精品亚洲无线码一区| 色精品久久人妻99蜜桃| 欧美3d第一页| 欧美3d第一页| 国产成人a区在线观看| 精品久久久久久久久久免费视频| 国产又黄又爽又无遮挡在线| 日本在线视频免费播放| 国产高清三级在线| 成人一区二区视频在线观看| 欧美最黄视频在线播放免费| 成人国产综合亚洲| 亚洲电影在线观看av| 婷婷亚洲欧美| 日本在线视频免费播放| 在线观看日韩欧美| 一级黄片播放器| 久久久久九九精品影院| 精品免费久久久久久久清纯| 免费大片18禁| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 日本五十路高清| 国产成年人精品一区二区| 久久久久久久精品吃奶| 观看免费一级毛片| 免费无遮挡裸体视频| 99视频精品全部免费 在线| 国产精品一及| 久久久久久大精品| 久久久久久人人人人人| 波多野结衣巨乳人妻| 亚洲成a人片在线一区二区| 国产成人影院久久av| 男女做爰动态图高潮gif福利片| 我的老师免费观看完整版| 1000部很黄的大片| 欧美在线黄色| 国产一区二区三区在线臀色熟女| 午夜福利视频1000在线观看| 成年女人毛片免费观看观看9| 国产成人啪精品午夜网站| 怎么达到女性高潮| 一级黄色大片毛片| ponron亚洲| 亚洲国产精品999在线| 男女做爰动态图高潮gif福利片| 国产国拍精品亚洲av在线观看 | 久久久久国内视频| 欧美丝袜亚洲另类 | 欧美成人性av电影在线观看| 中文字幕人妻熟人妻熟丝袜美 | 免费在线观看亚洲国产| 亚洲最大成人中文| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 国内精品美女久久久久久| 在线免费观看的www视频| 真人一进一出gif抽搐免费| 国产色婷婷99| 成人国产一区最新在线观看| 欧美zozozo另类| 欧美中文综合在线视频| 熟女电影av网| 久久久久久大精品| 国产成人欧美在线观看| 中文亚洲av片在线观看爽| 97超视频在线观看视频| 在线看三级毛片| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线一区亚洲| 国产又黄又爽又无遮挡在线| 女人高潮潮喷娇喘18禁视频| 在线观看午夜福利视频| 在线国产一区二区在线| 热99在线观看视频| 在线观看日韩欧美| 亚洲最大成人中文| 天堂√8在线中文| 热99re8久久精品国产| 91在线观看av| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 欧美区成人在线视频| 亚洲18禁久久av| 一进一出抽搐动态| 国产精品亚洲美女久久久| 中文字幕人成人乱码亚洲影| 国产淫片久久久久久久久 | 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 亚洲一区高清亚洲精品| 亚洲 欧美 日韩 在线 免费| 最近视频中文字幕2019在线8| 老司机午夜福利在线观看视频| 一个人看的www免费观看视频| 国产91精品成人一区二区三区| 一个人免费在线观看电影| 免费在线观看亚洲国产| av天堂中文字幕网| 99在线人妻在线中文字幕| 很黄的视频免费| 搡老熟女国产l中国老女人| 国内精品美女久久久久久| 中文字幕久久专区| 黄色片一级片一级黄色片| 免费在线观看成人毛片| 久久久久久国产a免费观看| 国产国拍精品亚洲av在线观看 | 少妇人妻精品综合一区二区 | 草草在线视频免费看| 男人的好看免费观看在线视频| 久久久精品大字幕| 波多野结衣高清无吗| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久久免 | 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 日日夜夜操网爽| 国产野战对白在线观看| 久久久久国内视频| 欧美日韩国产亚洲二区| 深夜精品福利| 亚洲avbb在线观看| 97碰自拍视频| 一本久久中文字幕| 老司机深夜福利视频在线观看| 黄色女人牲交| 国产视频内射| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 国产av一区在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 色播亚洲综合网| 精品国内亚洲2022精品成人| 搡女人真爽免费视频火全软件 | 久久欧美精品欧美久久欧美| 精品国产美女av久久久久小说| 免费av毛片视频| 午夜亚洲福利在线播放| av片东京热男人的天堂| 亚洲在线自拍视频| 亚洲自拍偷在线| 久久久久国内视频| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| 精品国产超薄肉色丝袜足j| 最近视频中文字幕2019在线8| 日本三级黄在线观看| 老熟妇仑乱视频hdxx| 日日干狠狠操夜夜爽| 高潮久久久久久久久久久不卡| 亚洲自拍偷在线| 亚洲五月婷婷丁香| 欧美乱码精品一区二区三区| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 全区人妻精品视频| 狠狠狠狠99中文字幕| 亚洲av成人精品一区久久| 免费看a级黄色片| 男人的好看免费观看在线视频| 国产熟女xx| 18禁国产床啪视频网站| 97超级碰碰碰精品色视频在线观看| 波野结衣二区三区在线 | 级片在线观看| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 不卡一级毛片| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 日本黄大片高清| 两个人视频免费观看高清| 窝窝影院91人妻| 午夜a级毛片| 午夜激情福利司机影院| 精品一区二区三区视频在线观看免费| 亚洲五月天丁香| 中文资源天堂在线| 国产三级黄色录像| 亚洲av成人精品一区久久| av国产免费在线观看| 一级毛片女人18水好多| 久久亚洲精品不卡| av片东京热男人的天堂| 伊人久久大香线蕉亚洲五| 久久久久国内视频| 欧美日韩精品网址| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 亚洲精品色激情综合| 久久久久性生活片| 日韩欧美 国产精品| 久久久久久久精品吃奶| 特级一级黄色大片| 老汉色av国产亚洲站长工具| 中文在线观看免费www的网站| 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区| 在线天堂最新版资源| 69人妻影院| 国产精品野战在线观看| 男女床上黄色一级片免费看| 国产av一区在线观看免费| 一进一出抽搐gif免费好疼| 亚洲性夜色夜夜综合| 麻豆国产97在线/欧美| 中文资源天堂在线| 无遮挡黄片免费观看| 91在线精品国自产拍蜜月 | 久久精品91蜜桃| 一区福利在线观看| 久久6这里有精品| 99热这里只有精品一区| 国产高潮美女av| 欧美日韩乱码在线| 久久伊人香网站| 九九在线视频观看精品| 淫秽高清视频在线观看| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| 亚洲精品在线观看二区| 久久久久久大精品| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 国产精品久久久久久精品电影| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| av专区在线播放| 黄色成人免费大全| av欧美777| 一区二区三区免费毛片| 日韩欧美在线二视频| 每晚都被弄得嗷嗷叫到高潮| 国产精华一区二区三区| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 色老头精品视频在线观看| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 最新美女视频免费是黄的| 国产成人系列免费观看| 最近最新中文字幕大全免费视频| 88av欧美| 国产一级毛片七仙女欲春2| 亚洲中文字幕一区二区三区有码在线看| 欧美bdsm另类| 老鸭窝网址在线观看| 国内久久婷婷六月综合欲色啪| 黑人欧美特级aaaaaa片| av福利片在线观看| 午夜福利欧美成人| 99久久精品国产亚洲精品| 国产免费男女视频| 成人三级黄色视频| 天堂√8在线中文| 亚洲欧美日韩高清专用| 午夜免费男女啪啪视频观看 | 欧美乱妇无乱码| 国语自产精品视频在线第100页| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 中文字幕熟女人妻在线| 免费av观看视频| 国产精品日韩av在线免费观看| 亚洲在线观看片| 18禁国产床啪视频网站| 男女那种视频在线观看| 波多野结衣高清作品| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 欧美大码av| 国产精品久久久久久精品电影| 99热这里只有精品一区| 一区福利在线观看| 亚洲久久久久久中文字幕| 一级a爱片免费观看的视频| 日本黄色片子视频| 精品久久久久久,| 免费在线观看成人毛片| 国产午夜精品久久久久久一区二区三区 | 日韩高清综合在线| 熟女电影av网| 一本一本综合久久| 久久久久久人人人人人| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| 亚洲成人久久爱视频| 国产高清视频在线播放一区| 亚洲人与动物交配视频| 国产av在哪里看| 在线看三级毛片| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 国产男靠女视频免费网站| 99在线视频只有这里精品首页| 国产精品一区二区三区四区免费观看 | 亚洲久久久久久中文字幕| 3wmmmm亚洲av在线观看| 亚洲国产中文字幕在线视频| 精品国产美女av久久久久小说| 成人18禁在线播放| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 亚洲熟妇熟女久久| 脱女人内裤的视频| 久久精品综合一区二区三区| 91九色精品人成在线观看| 精品久久久久久久毛片微露脸| 免费av观看视频| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 欧美成人性av电影在线观看| 国产精品99久久99久久久不卡| 日本 欧美在线| h日本视频在线播放| 欧美黑人巨大hd| 亚洲色图av天堂| 天天躁日日操中文字幕| 日本黄色视频三级网站网址| 成人av在线播放网站| 午夜福利高清视频| 亚洲人成伊人成综合网2020| 国产成人系列免费观看| 亚洲不卡免费看| 一进一出好大好爽视频| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区四那| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 99国产综合亚洲精品| 国产午夜精品论理片| 午夜激情福利司机影院| 成人国产一区最新在线观看| 观看美女的网站| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| av专区在线播放| 综合色av麻豆| 精品日产1卡2卡| 少妇高潮的动态图| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 最新中文字幕久久久久| 亚洲熟妇熟女久久| 三级毛片av免费| 九色国产91popny在线| 亚洲国产高清在线一区二区三| 精品久久久久久久毛片微露脸| 精品午夜福利视频在线观看一区| 国产爱豆传媒在线观看| av视频在线观看入口| 波多野结衣巨乳人妻| 国产欧美日韩精品亚洲av| 国产精品 欧美亚洲| 久久欧美精品欧美久久欧美| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 免费看日本二区| 国产精品影院久久| 久久精品综合一区二区三区| 欧美大码av| 男人舔女人下体高潮全视频| 嫁个100分男人电影在线观看| 国产色爽女视频免费观看| 人人妻,人人澡人人爽秒播| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品久久男人天堂| 男女午夜视频在线观看| 最近在线观看免费完整版| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 亚洲成av人片在线播放无| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 国产三级中文精品| 午夜老司机福利剧场| 白带黄色成豆腐渣| 嫩草影院精品99| 成人欧美大片| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 免费搜索国产男女视频| 中文字幕高清在线视频| 国产国拍精品亚洲av在线观看 | 日韩欧美在线二视频| 悠悠久久av| 超碰av人人做人人爽久久 | 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 国产aⅴ精品一区二区三区波| 熟女电影av网| 91在线精品国自产拍蜜月 | 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 日本 欧美在线| 欧美乱色亚洲激情| 午夜老司机福利剧场| 成人av一区二区三区在线看| www国产在线视频色| 国产欧美日韩一区二区三| 日日夜夜操网爽| 制服丝袜大香蕉在线| 在线观看66精品国产| 国产真实乱freesex| 精品人妻偷拍中文字幕| 免费看日本二区| 亚洲激情在线av| 日本一本二区三区精品| 国产精品一及| 国内精品久久久久精免费| 极品教师在线免费播放| h日本视频在线播放| 欧美色视频一区免费| 日本五十路高清| 国产久久久一区二区三区| 久久中文看片网| 成人精品一区二区免费| 啪啪无遮挡十八禁网站| 日本黄大片高清| 桃色一区二区三区在线观看| 国产欧美日韩一区二区三| 看片在线看免费视频| 一个人免费在线观看电影| 九九在线视频观看精品| x7x7x7水蜜桃| 国产精品av视频在线免费观看| 久久久久久久亚洲中文字幕 | 国产成人av教育| 在线视频色国产色| 国产又黄又爽又无遮挡在线| 国产精品精品国产色婷婷| av福利片在线观看| 少妇人妻精品综合一区二区 | 亚洲激情在线av| 日日夜夜操网爽| av在线天堂中文字幕| 在线a可以看的网站| 51国产日韩欧美| 久久久久亚洲av毛片大全| 免费在线观看亚洲国产| 午夜影院日韩av| 99久久综合精品五月天人人| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| av欧美777| 亚洲在线观看片| 欧美日韩乱码在线| 999久久久精品免费观看国产| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区视频9 | 91麻豆精品激情在线观看国产| 色综合婷婷激情| 天天躁日日操中文字幕| 在线观看av片永久免费下载| 性欧美人与动物交配| www.色视频.com| 18+在线观看网站| 亚洲精品影视一区二区三区av| 国产高潮美女av| 成人亚洲精品av一区二区| 亚洲内射少妇av| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区精品| 久久精品国产自在天天线| 国产色婷婷99| 丝袜美腿在线中文| 国产乱人视频| 国产av一区在线观看免费| 中文字幕熟女人妻在线| 午夜两性在线视频| 99久久精品国产亚洲精品| 18禁国产床啪视频网站| 国产成+人综合+亚洲专区| 高清毛片免费观看视频网站| 色在线成人网| 国产色爽女视频免费观看| 国产精品自产拍在线观看55亚洲| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放| 欧美不卡视频在线免费观看| 中亚洲国语对白在线视频| 午夜福利在线观看免费完整高清在 | 亚洲av二区三区四区| 老鸭窝网址在线观看| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 两个人的视频大全免费| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 国产单亲对白刺激| 最近在线观看免费完整版| 五月伊人婷婷丁香| 看免费av毛片| 欧美激情在线99| 精品人妻偷拍中文字幕| 人妻久久中文字幕网| 99在线人妻在线中文字幕| 亚洲国产日韩欧美精品在线观看 | 日韩精品中文字幕看吧| bbb黄色大片| 国产精品香港三级国产av潘金莲| av专区在线播放| 一区二区三区免费毛片| 午夜福利18| 99热这里只有是精品50| 国产一区二区激情短视频| 亚洲一区二区三区不卡视频| 两个人视频免费观看高清| 精品电影一区二区在线| 国产高清videossex| 少妇的逼好多水| netflix在线观看网站| 亚洲欧美日韩卡通动漫| 久久精品人妻少妇| 国产aⅴ精品一区二区三区波| 天美传媒精品一区二区| 国产爱豆传媒在线观看| 精品人妻一区二区三区麻豆 | 中文字幕久久专区| 男女视频在线观看网站免费| 亚洲精品一区av在线观看| 九色国产91popny在线| 亚洲av熟女| 午夜福利在线在线| 国产精品一区二区免费欧美| 99国产精品一区二区蜜桃av| 欧美又色又爽又黄视频| 久久久精品大字幕| 久久亚洲真实| 亚洲美女黄片视频| 国产激情欧美一区二区| 日韩欧美精品免费久久 | 69人妻影院| 嫩草影视91久久| 99热这里只有是精品50| 夜夜爽天天搞| 亚洲自拍偷在线|