• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    2016-10-20 02:27:26XiaoyanHuXianwuBiRuizhongHuGuoshengCaiYouweiChen
    Acta Geochimica 2016年2期

    Xiaoyan Hu·Xianwu Bi·Ruizhong Hu·Guosheng Cai·Youwei Chen

    ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    Xiaoyan Hu1·Xianwu Bi1·Ruizhong Hu1·Guosheng Cai2·Youwei Chen1

    Tin deposits are often closely associated with granitic intrusions.In this study,we analyzed tin partition coefficients between different fluids and meltsas well as various crystals and meltsfrom the Furong tin deposit associated with the Qitianling A-type granite.Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids,melts,and minerals.Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content,high volatile content,and low oxygen fugacity.Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage.Furthermore,the volatiles F and Cl in the magma play important roles in tin partitioning behavior.Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase.High Cl content in the aqueous fluid catalyzes water-rock interaction and leads to the extraction of tin from tinbearing minerals.All these findings support a hydrothermal origin for the tin deposits.In light of the geotectonic setting,petrochemicalcharacteristics,andmineralizing physicochemical conditions of the Furong tin deposit,it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.

    Tin·Partition·Peralkaline granite·

    Hunan Province

    1 Introduction

    Tin deposits are typically closely related to granite spatially,temporally,and metallogenically(Lehmann 1990;Xia and Liang 1991).Most granites associated with tin deposits display an extreme degree of differentiation and generally share the petrochemical characteristics of being peraluminous,enriched in K(relative to Na),and high in Si content,but lower in Ca,F(xiàn)e,Mg,and Ti content(Lehmann 1990;Xia and Liang 1991;Chesley et al.1993;Yeap 1993;Sun and Higgins 1996;Botelho and Moura 1998;Bettencourt et al.2005).Historically,tin mineralization has been thought to be tied to peraluminous,K-rich,orogenic S-type granites.However,in recent decades,important economic tin deposits associated closely with A-type granites have been found(Taylor 1979;Mitchell and Carson 1981;Sawkins 1990;Bi et al.1993;Botelho and Moura 1998;Liverton and Botelho 2001;Haapala and Lukkari 2005). For example,the Furong superlarge tin deposit in Hunan Province,southeast China is closely associated with the Qitianling peralkaline A-type granite intrusion(Zhao et al. 1998,2000;Zheng and Jia 2001;Wang et al.2003a,b;Li 2006;Shuang et al.2006).A-type granite is generally characterized as peralkaline and anorogenic.Nearly all peralkaline intrusive granites contain alkalis more than 8 wt%more than those in calc-alkali anorogenic granites(Tu 1989).It is important to research the metallogeny of this new type of tin deposit.While there has been someresearch on the new type of tin deposit associated with A-type granite,the question of whether tin-rich aqueous fluid could be derived through peralkaline intrusion remains unsettled.One point of view is that the mineralized fluids of the Furong tin deposit were derived directly from later highly evolved magma(Wang et al.2004;Li and Liu 2005;Shuang et al.2006;Li et al.2007a,b),but another is that the tin-bearing fluids were provided by post-magmatic hydrothermal alteration of the Qitianling granite(Zhao et al.2005;Jiang et al.2006).

    ? Xiaoyan Hu huxiaoyan@mail.gyig.ac.cn

    1State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,People’s Republic of China

    2Guizhou Bureau of Nonferrous Metal and Nuclear Industry Geological Exploration,Guiyang 550002,People’s Republic of China

    Metal mineralization associated with intrusions depends to a great extent on fractional crystallization of the magma and partitioning of metallic elements between the melt and aqueous fluid phases in the evolution of the magma.The fractional crystallization of magma and the partition behavior of its metallic elements depend on the composition of the melt,the composition of fluid derived from the melt,and the physicochemical conditions under which the partitioning occurs(Holland 1972;Feiss 1978;Candela and Holland 1984;Urabe 1985;Candela 1989;Keppler and Wyllie 1991;Lowenstern et al.1991;Peiffert et al.1994;Candela and Piccoli 1995;Chantal et al.1996;Webster 1997;Bai et al.1998;Halter et al.2002).Existing experimental data of tin partitioning behavior have been collected for this paper.These data include the tin partition coefficients between the crystals and liquids between different granitic melts and aqueous fluid phases in known experimental physicochemical conditions.Based on the existing data,geochemical behavior of tin throughout magma evolution and the factors leading to the tin-bearing granite’s petrochemical characteristics are discussed.Furthermore,whether the mineralized aqueous fluids of the Furong tin deposit were derived from the Qitianling peralkaline intrusion is discussed in the context of the petrochemical characteristics of the Qitianling A-type granite,the mineralizing physicochemical conditions,and the geotectonic setting.Finally,the favorable factors of tin mineralization associated with the peralkaline granites are summarized,a significant step inunderstanding the mechanism of tin ore-forming processes related to peralkaline intrusive granite.

    2 Tin partitioning behavior

    2.1 Tin partition between minerals and melts

    Fractional crystallization is the dominant petrogenetic process controlling magmatic evolution.The main tin carrier in tin deposits related to granitic rocks is cassiterite. Some accessory minerals such as biotite,hornblende,titanite,ilmenite,and magnetite are usually important hosts for tin in granitic rocks because of the preferential substitution of major cations Ti4+and Fe3+in those crystals by Sn4+(Barsukov 1957;Petrova and Legeydo 1965). These substitutions are possible because the coordination radii of Ti4+,F(xiàn)e3+,and Sn4+are similar(61,65,and 69 pm,respectively)(Shannon 1976).In contrast,tin contents in feldspar and quartz are generally very lowmuch less than tin content in bulk granite rocks.

    Table 1 Partition coefficients of tin between different minerals and melts

    Thecompileddataoftinpartitioncoefficientsbetween different minerals and melts are shown in Table 1(Gan 1993).Generally,tin tends to partition into biotite,magnetite,ilmenite,and amphibole rather than plagioclase,K-feldspar,and quartz.As the table shows,tin partition coefficients are affected by the melt composition.For example,the value 5.18 ofbetween amphibole and metaluminous andesitic melt is almost ten times that between amphibole and peralkaline rhyolitic melt(0.57). The bulk tin partition coefficients between the minerals and different melts are estimated roughly as the average of the coefficients ofthe individual minerals against the melts.The bulk tin partition coefficients between the minerals and peralkaline basaltic melt,metaluminous andesitic melt,peralkaline andesitic melt,metaluminous acidic melt,peralkaline rhyolitic melt,and peraluminous acidic melt are 0.92,2.41,1.04,1.21,0.50 and 1.03,respectively.The majority of the bulk tin partition coefficients between the minerals and the melts are near 1.The bulk tin partition coefficient between the minerals and the peralkaline rhyoliticmeltisthelowestat0.50.Thisimpliesthattheresidual magma is likely to be enriched in tin following fractional crystallization of peralkaline granitic magma.In contrast,when the magma is rich in Ti4+,F(xiàn)e3+,Mg2+,etc.,the residual magma will be deficient in tin after abundant tin-bearing minerals crystallize.For example,tin is depleted in melt from the mantle at 1000°C for melts containing abundant olivine and pyroxene crystals,a result of a higher bulk tin partition coefficient(>1)(Lehmann(1990),and tin content in the melt generally is less than 1 μg/g(Hamaguchi and Tin 1969).Tin enrichment in residual melt is almost impossible through andesitic magma evolution because of higher bulk tin partition coefficients between sphene/magnetite and andesitic melt(Petrova and Legeydo 1965;Gill 1978;Osborn1979).However,peralkalineandesiticmagma candifferentiatetin-richmelt,asisthecaseintheSilsilahtinbearing peralkaline granite in the northeast Arabia shield(Bray1985),whichimpliesthatperalkalinemeltisfavorable for tin enrichment in the melt phase(Linnen et al.1995,1996).Furthermore,if a crustal source intrusion is initially rich in tin,the residual later stage magma will be more enrichedintinafter highly evolving duetolow initial Ti,F(xiàn)e,andMgcontentsintheintrusion.Therefore,tintransportand enrichment in residual magma should occur in peralkaline crustalsourceintrusionswithahigherdegreeof fractionation.

    High volatile content,particularly F and Cl,can increase tin solubility in the granite melt phase(Bhalla et al.2005;Farges et al.2006).F in melt can reduce the melt viscosity and liquidus and lower the crystallizing temperature(Baker and Vaillancourt 1995;Xiong et al.1998).These factors decrease bulk(with crystals including biotite, hornblende,titanite,ilmenite and magnetite,plagioclase,K-feldspar and quartz,etc.)because of the decreasing substitution by tin in the minerals for the higher crystal order under lower temperature conditions(Badejoko 1984;Xu et al.1995).As a result,tin contents in the minerals are lower and tin becomes enriched in the melt phase when granitic magma contains more volatiles.

    Magmaticoxygenfugacityisanotherveryimportantfactor influencing tin partitioning behavior between minerals and melts.TheionicradiusofSn2+is93 pmandislargerthanthat of Sn4+(Huheey et al.1993).Existing data show thatisgenerallylessthan1and,and that crystals include tin-bearing biotite, hornblende,sphene,ilmenite,and magnetite(Ishihara,1981). If the oxygen fugacity is higher,the Sn4+/Sn2+ratio value in the melt will increase(Linnen et al.1995,1996;Farges et al. 2006),accompanied by a higher bulkAs a result, tinintheresidualmeltwillberelativelydepleted.Lowoxygen fugacity is also a favorable factor for enriching tin in residual magmabydecreasingbulk,asobservedinthemany tinoredepositsassociatedwithhighlydifferentiallowoxygen fugacity granite(Ishihara 1981;Lehmann 1990).

    It is speculated that tin tends to partition into the residual magma in differential fractional crystallization processes, when the initial magma is characterized as peraluminous(crustal sources)with lower contents of Ti4+,F(xiàn)e3+,and Mg2+;peralkaline;volatile-rich;and having low oxygen fugacity.Such magmas probably serve as favorable reservoirs or as an important transport media for tin ore formation.

    2.2 Tin partition between granitic melt and aqueous fluid phase

    Experimental results of tin partition coefficientsbetween granitic melt and coexisting aqueous fluid show thatis influenced by oxygen fugacity,temperature,pressure,and chemical compositions of melt and coexisting aqueous fluid(Wang et al.1986;Li 1989;Webster 1990;Keppler and Wyllie 1991;Chen and Peng 1994;Xiong et al.1998;Villemant and Boudon 1999;Hu et al.2008).

    Previous experimental results imply that tin favors partitioning into aqueous fluids with abundant Cl-and F-ligands(Wang et al.1986;Li 1989;Keppler and Wyllie 1991;Chen and Peng 1994;Hu et al.2008).The geochemistry of tin in aqueous fluids indicatesthat Sn2+complexeswith Cl-more easilythanwithothercomplexions,anddivalenttinchloride compounds are stable in reducing acid media(Jackson and Helgeson 1985;Chen 1986;Li 1989;Wilson and Eugster 1990;Taylor and Wall 1993;Barnes 1997;Sherman et al. 2000;Mu¨ller and Seward 2001).An experimental study(Hu etal.2008)conductedat850°C,100 MPaandfo2nearNNO revealed thatincreases with increasing HCl content in aqueous fluid in which Sn2+is the dominant species. Additionally,the aluminum saturation index(ASI)of the melts after equilibrium with high HCl concentration in the aqueous fluid phase will increase due to the transport of alkalisinthemelttotheaqueousfluidphase.Thepresenceof fluorine in the starting fluid does not significantly influence

    Daq.fl./meltSnbecause fluorine isinclinedto partitioninginto the melt phase(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999).Furthermore,compounds of Sn4+and F-could play an important role for tin transport in aqueous fluids when Sn4+is the dominant species at higher oxygen fugacity conditions(Liu and Chen 1986).

    2.3 Tin partition influenced by F and Cl

    Volatileelements,particularlyFandCl,playimportantroles in the evolution of magmas and hydrothermal ore-forming fluid(Webster and Holloway 1988;Webster 1990).The halogens affect intrusion properties such as viscosity,diffusibility,and vapor saturation.Fluorine and chlorine in silicatemelt canimprovediffusibilityofcationsbyreducing cation activation energies for diffusion(Baker and Watson 1988).Therefore,diffusibility and solubility of tin in melt increasewithincreasingFandClcontentsinthemelt(Bhalla et al.2005),and high-F and high-Cl content melt could extract tin during magma evolution before the magma is water-saturated.By complexing with metals,they exert strong controls over the compositional variations and the style of mineralization in hydrothermal ore deposits.

    According to previous studies(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999),F(xiàn) is preferentially partitioning into the melt phase,and the partition coefficients of F between aqueous fluid and silicate melt at high pressure and temperature conditions are generally less than 1.As a result,F(xiàn) should be enriched in those kinds of melts through granitic crystallization and differentiation.In contrast to F,Cl prefers partitioning into aqueous fluids with a wide range of partition coefficients from 2 to 117(Webster 1992b,c,1997;Bureau et al.2000).Mg,Ca,F(xiàn)e,Si,and F clearly influence Cl partitioning behavior between aqueous fluids and silicate melts.Chlorine partition coefficientsincreasewithdecreasingmolarratiosof(Al+Na+Ca+Mg)/Si and F content in silicate melts;increasing H2O/(H2O+CO2)molar ratios and Cl content in the system are also favorable for chlorine partitioning into the aqueous fluid phase(Webster and Holloway 1988;Webster 1992a;Signorelli and Carroll 2000;Mathez and Webster 2005).

    Experimentalstudiesontinpartitioningbehavior between the aqueous fluid and granitic melt phases in systems with coexisting F and Cl at 850°C,100 MPa,and fo2near NNO show thatis generally less than 0.1,with a little variation when F content in the melt is more than about 1 wt%.Howeverincreases rapidly when F content in the melt is less than about 1 wt%-i.e.decreasing F content in the melt phase is favorable for tin partitioning into the aqueous fluid phase(Hu et al.2009).In other words,granitic silicate melt with high F content(more than about 1 wt%)could extract tin,becoming enriched in tin in the melt phase.This is consistent with the fact that a lot of granites associated with tin deposits have a relatively high F content.Increasingvalues can be caused by increasing Cl partition coefficients,especially in a water-saturated magma system with high HCl content but low F content.Stronger partitioning of Cl into the fluid phase also may cause the partitioning of major elements such as Na and K into the aqueous fluid phase,while the concentrations of SiO2and Al2O3in the melt phase are evidently unaffected by increasing HCl concentrations(Frank et al.2003;Hu et al. 2008).Additionally,Na and K will lead to increased ASI in the melts.It is also implied that increasingis a result of decreasing F content in the melt phase,which could be caused by a great deal of F-bearing minerals crystallizing from tin-rich melt or F degassing into the aqueous fluid phase when pressure is abruptly lowered through fractures or faults,or near the edge of the magma chamber.Furthermore,lower F content in the melt also could decrease tin saturated solubility in the melt(Bhalla et al.2005),contributing to disseminated cassiterite crystallization in the melt accompanied by F-bearing minerals. Noticeably,chlorine and fluorine begin to exsolve at respective pressures of~100 MPa and≤10 MPa and degas at the rates of 22-55%,and 0-15%,respectively,upon eruption(Spilliaert et al.2006).In shallow magma degassing processes,the aqueous fluids generated by the different degassing paths are deficient in F but enriched in Cl(Villemant and Boudon 1999),which apparently is favorable for Cl-rich aqueous fluid extraction of tin from the melt phase,as well as water-rock interactions.

    3 The Furong tin deposit and the Qitianling intrusion

    3.1 Geological characteristics

    As a new-found superlarge tin deposit,the Furong deposit is located in the largest Nanling Mountains’tungsten-tin polymetallic metallogenic belt in Hunan Province,southeast China(Xu et al.2000;Wei et al.2002).The deposit is closely associated with the Qitianling granite intrusion spatially,temporally,and metallogenically(Wang et al. 2003a;Cai et al.2004;Wang et al.2004;Jiang et al.2006;Li 2006;Shuang 2007;Peng et al.2008).The tin ore bodies of the deposit occur in the Qitianling granite complex or along its contacts with the wall rocks(Wei et al.2002).The host mineral is cassiterite with accessory minerals such as pyrite, chalcopyrite, magnetite, galena, sphalerite,arsenopyrite,etc.Located at the intersection of the NE-trending Yanling-Chenzhou-Lanshan and the NW-trending Chenzhou-Shaoyang tectonomagmatic belts,the Qitianling granite complex crops out over an area of about 520 km2and includes the Qiguling,Wuliqiao,Goutouling,Maziping,Nanxi,and Lijiadong units(Fig.1).According to40Ar-39Ar isotopic dating,the ages of the granites associated with the deposit are in the range of 151-160 Ma and the Qitianling granite intrusion occurred in Yanshanian(Liu et al.2003).The results of further studies suggest that the main geological period of mineralization occurred between 150 and 160 Ma(Mao et al.1997).This implies that the intrusion of the Qitianling granite and the mineralization of the Furong tin deposit occurred in the same geological period.

    Fig.1 Geological sketch map of the Qitianling granite(modified from Zhu et al.2007)

    3.2 Petrological and geochemical characteristics of the Qitianling granite complex

    The Qitianling granite complex is primarily composed of amphibole-biotite granite and biotite granite.Generally,both are peralkaline,K-rich,and have high volatiles contents mainly in the form of biotite and fluorite.Crystallization temperatures of the amphibole-biotite granite are in the range of 680-740°C,which is higher than that of the later biotite granite with crystallization temperatures of 530-650°C(Li et al.2007a).The oxygen fugacities of the amphibole-biotite granite and biotite granite range from -16.00 to-15.31 and-19.20 to-17.50,respectively(Li et al.2007a).The oxygen fugacities of both granites are relatively low,especially those of the biotite granites which approach NNO(Zhao et al.2005).The chemical compositions of the two granites are shown in Tables 2 and 3.

    The geologic age of the early stage amphibole-biotite granite is in the range of 158.6 to 162.9±0.4 Ma(Bi et al. 2008).It has a porphyritic texture with phenocrysts of quartz,K-feldspar,plagioclase,biotite,hornblende,etc.,and its accessory minerals are apatite,sphene,zircon,magnetite,etc.The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the amphibole-biotite granite have weight percentages in the range of 68.59-69.96,7.45-7.97,4.04-4.12,and 0.49-0.59,respectively.The ASI is in the range of 1.27-13.7 and the differentiation index(DI)is in the range of 82.40-84.71.Tin concentrations in the amphibole-biotite granite range from 14.90 to 95.80 μg/g.

    The biotite granite is the later intrusion with a geologic age of 156.7-153.5±0.4 Ma(Bi et al.2008).The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the granite have weight percentages in the range of 75.07-76.49,7.95-8.59,1.64-1.87,and0.09-0.12,respectively.Tin concentrations in the biotite granite are less than 12.80 μg/g.The ASI of the biotite granite is higher than that of the early stage amphibole-biotite granite,as is the DI value of the biotite granite with a range of 92.80-93.93.In contrast to the early amphibole-biotite granite,the biotite granite is characterized by its enrichment in silicon and potassium,peraluminous categorization,and high degrees of differentiation.

    Table 2 Chemical compositions of the Qitianling granite(wt%)

    Table 3 Volatiles F and Cl contents of biotite in the amphibolebiotite granite and biotite granite

    Furthermore,a series of studies on the Qitianling granite provide important information on the tectonic background of the formation(Zheng and Jia 2001;Shuang et al.2006;Li et al.2007b;Bi et al.2008).The Qitianling granite is characterized as peralkaline granite,having characteristic levels of rare earth elements,trace elements,and major elements,as well as Sr,He,Pb,S,H,and O isotope geochemistry characteristics of a peralkaline granite.Peralkaline granite may derive from crustal melting triggered byheat from the upwelling mantle.The two-stage granites of the Qitianling intrusion have a common magmatic origin and are assigned to A-type granite.It is implied that the Qitianling intrusion occurred under the geodynamic setting of lithospheric thinning of South China and post-orogenic crustal extension during the Mesozoic.

    4 Discussion

    As above mentioned,the Qitianling peralkaline granite derived mainly from crustal resources with some mantle material incorporated.Tin content in the early-stage amphibole-biotite granite varies from 14.90 to 95.80 μg/g(average 39.3 μg/g),and volatile content of the whole rock is rather high,especially Cl content as compared to the later stage biotite granite(Table 3).The early tin-rich and volatile-rich magma could have derived from tin-rich crustal strata melted by upwelling mantle heat.Additionally,the Qitianling granite is characterized as peralkaline and volatile-rich with lower oxygen fugacity near NNO,all of which are advantages for tin enrichment in residual magma during early-stage crystallization and differentiation processes under high pressure and closed conditions. As a result,the later stage peralkaline silicate magma would be a favorable reservoir with higher tin and volatile contents.The Cl-rich and tin-bearing hydrothermal fluid could be derived from the residual magma because of the higherachieved by higher silicon and water contents in the system.Average SiO2content in the late-stage biotite granite is 75.60 wt%,which is higher than that in the amphibole-biotite granite(69.21 wt%). Highercould also be caused by a great deal of F-bearing minerals such as fluorite and topaz crystallizing from tin-rich melt during magma cooling or by F degassing into the aqueous fluid phase when pressure is lower around fractures and faults and at the top of the magma chamber.The combination of the above favorable factors enhancesgreatly,which enhances tin partitioning in the aqueous fluids. BasedonthedataofthefluidinclusionstudyontheFurong tin deposits(Shuang 2007),the temperature and pressure of the deposits at formation are mainly in the ranges of 300-450°C and 17.9-180 MPa.The physicochemical conditions are favorable for F-bearing crystals crystallizing and Cl-rich volatiles degassing.So,the later stage magma of the Qitianling intrusion possessed advantageous physicochemical conditions to produce Cl-rich fluid.The Cl-rich fluid reacted withthemelt,leadingtoincreasedthatisafactorin deriving high tin-bearing aqueous fluids.At the same time,the Cl-rich fluid also reacted with tin-bearing minerals,such as biotite and magnetite,thus extracting more tin from these minerals to the aqueous fluid phase.

    AsshowninTables 2and3,SnandClcontentsinthelater stage biotite granite are less than those in the amphibolebiotite granite,which may be the result of Sn and Cl partitioning into the aqueous fluid phase.In contrast with Cl distribution behavior,F(xiàn) is inclined to partition into the melt phase,with a degassing pressure and degassing rate of 10 MPa and 15%,respectively,which are lower than those of Cl at 100 MPa and 22-55%,respectively(Spilliaert et al. 2006).Fcontentinthemeltphaseincreaseswiththeevolution of magma in a closed,high-pressure system;F mainly remains in the late-stage biotite granite because the oreforming pressure of the Furong deposit is more than 10 MPa. Therefore,the F/Cl ratio(1.02-2.92)in biotite of the later stage biotite granite is evidently higher than that of the amphibole-biotite granite(0-0.21).Furthermore,the ASI of biotitegraniteishigherthanthatofamphibole-biotitegranite,which may be related to the abstraction of alkalis by the Clrichaqueousfluidphasederivedfromtheresidualmeltphase.

    The evidence from the fluid inclusion study on the Furong deposit shows that the physical chemistry of the ore-forming fluidischaracterizedbymid-to-hightemperatureandsalinity,and by a Cl-bearing fluid solution with the composition of CO2-CH4-CaCl2-NaCl-KCl-H2O(Shuang 2007;Bi et al. 2008).Researchontheminerals(Lietal.2007a)hasrevealed that the values of log(fH2O/fHF)fluid,log(fH2O/fHCl)fluid,and log(fHF/fHCl)fluidin the aqueous fluids coexisting with the amphibole-biotite granite are 4.22-4.39,2.78-3.24,and -1.82 to-1.73,respectively.The parallel values of the aqueous fluid coexisting withthe late-stagebiotitegranite are 3.27-3.53,2.85-3.22,and-0.75 to-0.02,respectively. Evidently,themagmatichydrothermalfluidsderivedfromthe magma in the later stage of the Qitianling intrusion bear higher levels of Cl,which is a favorable condition for tin partitioning into the aqueous fluid phase.

    According to Sn,F(xiàn),and Cl partition behavior and the petrological geochemical characteristics of the Qitianling granite mentioned above,the later stage magma of the Qitianling intrusion possesses favorable physicochemical conditions for deriving a Sn-rich aqueous fluid phase as part of tin ore formation.It can be deduced that tin-bearing ore-forming hydrothermal fluid could be derived from peralkaline,peraluminous,volatile-rich intrusions under favorable physicochemical conditions.

    5 Conclusion

    Based on the behavior of tin mineralization associated with granitic magmatism and on tin partition coefficients between the minerals and the different melts,we concludethat tin is likely to be concentrated in residual granitic melt and in the aqueous fluid phase during crystallization and differentiation processes when the granitic magma is peralkaline,high in volatiles,and low in Ca,F(xiàn)e,and Mg.The highly evolved residual peralkaline granitic magmas could have silicate melts enriched in tin,and thus serve as favorable tin ore reservoirs for later-magmatic hydrothermal tin deposit formation.Tin-rich aqueous fluid could be derivedfromlaterperalkalinegraniticmagmawith decreasing F content,increasing water saturation and silica content,under favorable lower pressure and temperature physical conditions.Acidic,Cl-rich aqueous fluids are particularly likely to scavenge abundant tin from highly evolved K-rich,peralkaline,granitic silicate melts,as well as from the high tin-bearing minerals such as biotite,hornblende,titanite, etc.Theyarefavorablefor hydrothermal tin metallization.Therefore,the Qitianling peralkaline intrusion could have produced tin-bearing mineralized hydrothermal aqueous fluid for the Furong tin deposit formation.

    AcknowledgmentsThe authors wish to thank Professor Fan Wenling for her instruction.Constructive,detailed comments by the reviewers and the chief editor were greatly appreciated.This research project was supported by National Natural Science Foundation of China(Grant Nos.41103030;41130423).

    Badejoko TA(1984)Correlations between microstructures,k-feldspar triclinicity and trace element geochemistry in stanniferous and barren granites,northern Nigeria.Lithos 17:259-271

    Bai TB,Koster AF,Gross V(1998)The distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce between granitic melts and coexistingaqueousfluids.GeochimetCosmochimActa 63:1117-1131

    Baker DR,Vaillancourt J(1995)The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport.Earth Planet Sci Lett 132:199-211

    Baker DR,Watson EB(1988)Diffusion of major and trace elements in compositionally complex Cl-and F-bearing silicate melts. J Non-Cryst Solids 102(1-3):62-70

    Barnes HL(1997)Geochemistry of hydrothermal ore deposits,3rd edn.Wiley,New York,pp 435-469

    Barsukov VL(1957)The geochemistry of tin,(translated from Geokhimiya 1957:36-45).Geochemistry 1:41-52

    Bettencourt JS,Leute WB Jr,Goraieb CL,Sparrenberger I,Bello RMS,Payolla BL(2005)Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites,Brazil:fluid inclusion and stable isotope characteristics.Lithos 80:365-386

    Bhalla P,Holtz F,Linnen RL,Behrens H,Koepke J(2005)Solubility of cassiterite in evolved granitic melts;effect of T,fo2and additional volatiles.Lithos 80:387-400

    Bi CS,Shen XY,Xu QS,Ming KH,Sun HL,Zhang CS(1993)Geologicalcharacteristicsofstanniferousgranitesinthe Beilekuduk tin metallogenic belt.Xinjiang Acta Petrol et Mineral 12:213-223(in Chinese with English abstract)

    Bi XW,Li HL,Shuang Y,Hu XY,Hu RZ,Peng JT(2008)Geochemical characteristics of fluid inclusions from Qitianling A-type granite,Hunan Province,China.Geol J China Univ 14(4):539-548(in Chinese with English abstract)

    Botelho NF,Moura MA(1998)Granite-ore deposit relationships in Central Brazil.J S Am Earth Sci 11:427-438

    Bray EA(1985)Geology of the Silsilah ring complex,and associated tin mineralization,Kingdom of Saudi Arabia-a synopsis.Am Mineral 70:1075-1086

    Bureau H,Keppler H,Metrich N (2000)Volcanic degassing of bromine and iodine:experimental fluid/melt partitioning data and applications to stratospheric chemistry.Earth Planet Sci Lett 183:51-60

    Cai JH,Wei CS,Mao XD,Chen KX,Cai MH(2004)Characters of mineralizing geology and metallogenic pattern of Furong tin orefield in southern Hunan province.Geol Sci Technol Inf 23:69-76

    Candela PA(1989)Magmatic ore-forming fluids:thermodynamic and mass transfer calculation of melt concentrations.Rev Econ Geol 4:203-221

    Candela PA,Holland HD(1984)The partitioning of copper and molybdenumbetweensilicatemeltsandaqueousfluids. Geochim Cosmochim Acta 48:373-380

    Candela PA,Piccoli PM(1995)Moldel ore-metal partitioning from melts into vapor and vapor/brine mistures.In:Thompson JFH(ed)Magmas,fluids,and ore deposits.Mineralogical Association of Canada,Ottawa,pp 101-127

    Chantal P,Chinh N,Michel C(1996)Uranium in granitic magmas:part 2.Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-hapligranite-H2O-NaX(X=Cl,F(xiàn))system at 770°C,2kar.Geochim Cosmochim Acta 60:1515-1929

    Chen J(1986)Experiment on solubility of cassiterite in the presence of charcoal.Geol Rev 32:287-294(in Chinese with English abstract)

    Chen ZL,Peng SL(1994)The experimental results of W and Sn Partitioning between fluid and melts and their significance for the origin of W and Sn ore deposits.Geol Rev 40:274-282(in Chinese with English abstract)

    Chesley JT,Halliday AN,Snee LW,Mezger K,Shepherd TJ,Scrivener RC (1993)Thermochronology of the Cornubian batholith in southwest England:implications for pluton emplacement and protracted hydrothermal mineralization.Geochim Cosmochim Acta 57:1817-1835

    Farges F,Linnen RL,Brown GEJ(2006)Redox and speciation of tin in hydrous silicate glasses:a comparison with Ta,Mo and W. Can.Mineral 44:795-810

    Feiss PG(1978)Magmatic sources of copper in porphyry copper deposits.Econ Geol 72:197-404

    Frank MR,Candela PA,Piccoli PM(2003)Alkali exchange equilibra between a silicate melt and coexisting magmatic volatile phase:an experimental study at 800°C and 100 MPa.Geochim Cosmochim Acta 67:1415-1427

    Gan GL(1993)Mineral-melt element partition coefficients:data and major variation regularities.Acta Petrol et Mineral 12:144-181(in chinese with English abstract)

    Gill JB(1978)Role of trace element partition coefficients in models of andesite genesis.Geochim Cosmochim Acta 42:709-724

    Haapala I,Lukkari S(2005)Petrological and geochemical evolution of the Kymi stock,a topaze granite cupola within the Wiborg rapakivi batholith,F(xiàn)inland.Lithos 80:247-362

    Halter WE,Pettke T,Heinrich CA(2002)The origin of Cu/Au ratios in porphyry-type ore deposits.Science 296:1844-1846

    Hamaguchi H,Tin KR(1969)In:Wedepohl KH(ed)Handbook of geochemistry.vol II/4.Springer,Berlin Heidelberg,50-B-1 to 50-M-5

    Holland HD(1972)Granites,solutions,and base metal deposits.Econ Geol 67:281-301

    Hu XY,Bi XW,Hu RZ,Shang LB,F(xiàn)an WL(2008)Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid.Geochem J 42:141-150

    Hu XY,Bi XW,Shang LB,Hu RZ,Cai GS,Chen YW(2009)An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma.Chin Sci Bull 54(6):1087-1097

    Huheey JE,Keiter EA,Keiter RL(1993)Inorganic chemistry:principles of structure and reactivity,4th edn.HarperCollins,New York

    Ishihara S(1981)The granitoid series and mineralization.Econ Geol 75th Anniv Vol 458-484

    Jackson KJ,Helgeson HC(1985)Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin:I. Calculation of the solubility of cassiterite at high pressures and temperatures.Geochim et Cosmochim Acta 49:1-22

    Jiang SY,Zhao KD,Jinag YH,Ling HF,Ni P(2006)New type of tin mineralization related to granite in South China:evidence from mineralchemistry,elementandisotopegeochemistry.ActaPetrol Sin 22(10):2509-2516(in Chinese with English abstract)

    Keppler H,Wyllie PJ(1991)Partitioning of Cu,Sn,Mo,U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF.Contrib Mineral Petrol 109:149-1601

    Lehmann B(1990)Metallogeny of tin.Springer,Berlin,pp 19-29

    Li TJ(1989)Experimental studies of the solubility of cassiterite and the extraction of tin from granitic melts.Chin J Geochem 8:84-96

    Li ZL(2006)Geochemical relationship between tin mineralization and A-type granite:a case of the Furong tin orefield,Hunan province,South China.A dissertation Submitted for the degree of Doctor of Philosophy of the Chinese Academy of Sciences and for Diploma of the Institute of Geochemisty.(in Chinese with English abstract)

    Li TY,Liu JQ (2005)Characteristics and composition of fluid inclusions in Furong tin orefield,Qitianling aream,South Huan Province.Geol Mineral Resour South China 3:44-49(in Chinese with English abstract)

    Li HL,Bi XW,Hu RZ,Peng JT,Shuang Y,Li ZL,Li XM,Yuan SD(2007a)Mineral chemistry of biotie in the Qitianling granite associated with the Furong tin deposit:trancing tin mineralization signatures.Acta Petrol Sin 23:2605-2614(in Chinese with English abstract)

    Li ZL,Hu RZ,Yang JS,Peng JT,Li XM,Bi XW(2007b)He,Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit,Hunan Province,China.Lithos 97:161-173

    Linnen RL,Pichavant M,Holtz F,Burgess S(1995)The effect of fo2on the solubility,diffusion and speciation of tin in haplogranitic melt at melt at 850°C and 2kbar.Geochim et Cosmochim Acta 59:1579-1588

    Linnen RL,Pichavant M,Holtz F(1996)The combined effect of fo2and melt composition on SnO2solubility and tin diffusion in haplogranitic melts.Geochim Cosmochim Acta 60:4965-4976

    Liu YS,Chen SQ (1986)An experimental study on cassiterite solubility and tin transport during mineralization.Acta Geol Sin 59:78-87

    Liu YM,Xu JF,Dai TM,Li XH,Deng XG,Wang Q(2003)40Ar-39Ar isotopic ages of Qitianling granite and their geologic implications.Sci China(D)46:50-59

    Liverton T,Botelho NF(2001)Fractionated alkaline rare-metal granites:two examples.J Asian Earth Sci 19:399-412

    Lowenstern JB,Mahood GA,Rivers ML,Sutton SR(1991)Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252:1405-1409

    Mao JW,Li YH,Li HY,Wang DH,Song HB(1997)Helium isotopic evidence on metalgenesis of mantle fluids in the Wangu gold deposit,Hunan Province.Geol Rev 43:646-649(in Chinese with English abstract)

    Mathez EA,Webster JD(2005)Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid.Geochim Cosmochim Acta 69:1275-1286

    Mitchell AHG,Carson MS(1981)Mineral deposits and global tectonic settings.Academic Press,Cambridge

    Mu¨ller B,Seward TM (2001)Spectrophotometric determination of the stability of tin(II)chloride complexes in aqueous solution up to 300°C.Geochim Cosmochim Acta 65:4187-4199

    Osborn EF(1979)The reaction principle.In:Yoder HS(Ed)The evolution of Igneous Rocks,fiftieth anniversary perspectives. Princeton University Press,Princeton,pp 133-170

    Peiffert C,Cuney M,Chinh NT(1994)Uranium in granitic magmas:part I.experimental determination of uranium-solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3system at 720-770°C,2kbar.Geochim Cosmochim Acta 58:2495-2507

    Peng JT,Hu RZ,Yuan SD,Bi XW,Sheng NP(2008)The time ranges of granitoid emplacement and related nonferrous metallic mineralization in Southern Hunan.Geol Rev 54:617-625(in Chinese with English abstract)

    Petrova ZI,Legeydo VA(1965)Geochemistry of tin in the magmatic process.Geochem Intern 2:301-307(translated from Geokhimiya 4,482-489)

    Sawkins FJ.Metal deposits in relation to plate tectonics.2nd,Springer-Verlay;1990.p.315

    Shannon RD(1976)Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751-767

    Sherman DM,Ragnarsdottir KV,Oelkers EH,Collins CR(2000)Speciation of tin(Sn2+and Sn4+)in aqueous Cl solutions from 25°C to 350°C:an in situ EXAFS study.Chem Geol 167:169-176

    Shuang Y(2007)The geochemistry of ore-forming fluid of Furong tin polymetallic deposit in Hunan Province,P.R.China.Ph.D. thesis,IGCAS(in Chinese with English abstract)

    Shuang Y,Bi XW,Hu RZ,Peng JT,Li ZL,Li XM,Yuan SD,Qi YQ(2006)Tin-polymetallic deposit and its indication of source of hydrothermal ore-forming fluid.Mineral Petrol 26:57-65(in Chinese with English abstract)

    Signorelli S(2000)Carroll MR solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts.Geochim Cosmochim Acta 64:2851-2862

    Spilliaert N,Metrich N,Allard P(2006)S-Cl-F degassing pattern of water-rich alkali basalt:modelling and relationship with eruption stylesonMountEtanavolcano.EarthPlanetSciLett248:772-786

    Sun SS,Higgins NC(1996)Neodymium and strontium isotope study of the Blue Tier Batholith,NE Tasmania,and its bearing on the origin of tin-bearing alkali feldspar granites.Ore Geol Rev 10:339-365

    Taylor GR(1979)Geology of tin deposits.Elsevier,NewYork

    Taylor JR,Wall VJ(1993)Cassiterite solubility,tin speciation,and transport in a magmatic aqueous phase.Econ Geol 88:437-460

    Tu GZ(1989)Alkali-rich intrusive rocks.Mineral Resour Geol 13:1-4(in Chinese)

    Urabe T(1985)Aluminous granite as a source magma of hydrothermal ore deposits:an experimental study.Econ Geol 80:148-157 Villemant B,Boudon G (1999)H2O and halogen(F,Cl,Br)behaviour during shallow magma degassing processes.Earth Planet Sci Lett 168:271-286

    Wang YR,Haselton T,Aruscavage P(1986)Experimental research on the partitioning coefficients of tin between fluids and granitic melts.Annual Report Institute of Geochemistry Academia Sinica.GuiYang.GuiZhouPeople’sPublishingHouse,pp 180-181(in Chinese)

    Wang DH,Chen YC,Li HQ,Chen ZH,Yu JJ,Lu YF(2003a)Geochemistry characteristics of Furong tin deposit and its significance for ore prospecting,Hunan.Geol Bull China 22:50-56(in Chinese with English abstract)

    Wang DH,Chen YH,Li HQ,Chen ZH,Yu JJ,Lu YF,Li JY(2003b)Geological and geochemical features of the Furong tin deposits in Hunan and their significance for mineral prospecting.Bull Geol 22:50-56(in Chinese with English abstract)

    Wang XW,Wang XD,Liu JQ,Chang HL(2004)Relationship of Qitianling granite to Sn mineralization in Hunan Province.Geol Sci Technol Inf 23:1-12(in Chinese with English abstract)

    Webster JD(1990)Partitioning of F between H2O and CO2fluids and topaz rhyolite melt.Contrib Mineral Petrol 104:424-438

    Webster JD(1992a)Fluid-melt interactions in Cl-rich granitic systems:effects of melt composition at 2kbar and 800°C. Geochim Cosmochim Acta 56:659-678

    Webster JD(1992b)Fluid-melt interactions involving Cl-rich granites:experimental study from 2 to 8 kbar.Geochim Cosmochim Acta 56:679-687

    Webster JD(1992c)Water solubility and chlorine partitioning in Clrich granitic systems:effect of melt composition at 2kbar and 800°C.Geochim Cosmochim Acta 56:678-687

    Webster JD(1997)Exsolution of magmatic volatile phases from Clenriched mineralizing granitic magmas and implications for ore metal transport.Geochim Cosmochim Acta 61:1017-1029

    Webster JD,Holloway JR(1988)Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:new implications for granitic differentiation and ore deposition.Geochim Cosmochim Acta 52:2091-2105

    Wei SL,Zeng QW,Xu YM,Lan XM,Kang WQ,Liao XJ(2002)Characteristics and ore prospects of tin deposits in the Qitianling area,Hunan.Geol China 29:67-75(in Chinese with English abstract)

    Wilson GA,Eugster HP(1990)Cassiterite solubility and tin speciation in supercritical chloride solutions.In:Spencer RJ,Chou-I-Ming(eds)Fluid-mineral interactions;a tribute to H.P. Eugster,vol 2.Geochemical Society Special Publications,Houston,pp 179-195

    Xia HY,Liang SY(1991)The genesis of granitic Tin-Tungsten rare metal ore deposits in the South-east of China.China Science Press,Beijing(in Chinese)

    Xiong XL,Zhao ZH,Zhu JC,Rao B,Lai M(1998)Experiments on the fluid/melt partition of fluorine in the system albite granite-H2O-HF.Geochimica 27:67-73

    Xu H,Zhao M,Ji SY(1995)A study on the composition and structural state of K-feldspars from Qianlishan granites,Hunan Province. J Nanjing Univ 31:121-127(in Chinese with English abstract)

    Xu YM,Hou MS,Liao XJ,Ao ZW(2000)Deposit types and prospect for prospecting of Sn deposits in Furong ore fluid,Chenzhou. Hunan Geol 19:95-100(in Chinese with English abstract)

    Yeap EB(1993)Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development.J South East Asian Earth Sci 8:329-348

    Zhao ZH,Bao ZW,Zhang BY(1998)Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province.Sci China(D)41(-suppl.):102-112(in Chinese with English abstract)

    Zhao ZH,Bao ZW,Zhang BY,Xiong XL(2000)Crust-mantle interaction and its contribution to the Shizhuyuan tungstenpolymetallic mineralization.Sci China(D)30(suppl.):161-168(in Chinese with English abstract)

    Zhao KD,Jiang SY,Jiang YH,Wang RC(2005)Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan province,South China:implication for the genesis of granite and related tin mineralization.Eur J Mineral 17:635-648

    Zheng JJ,Jia BH(2001)Geological characteristics and related tin polymetallic mineralization of the Qitianling granite complex in southern Hunan province.Geol Mineral Resour South China 9:50-57(in Chinese with English abstract)

    Zhu J,Zhang P,Xie C(2007)Qitianling granite body.In:Zhou X et al(eds)Genesis of late mesozoic granites in Nanning region and geodynamic evolution of lithosphere.Science Press,Beijing,pp 520-533(in Chinese)

    22 June 2014/Revised:19 November 2015/Accepted:8 January 2016/Published online:21 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 黑人高潮一二区| 久久青草综合色| 亚洲欧美日韩另类电影网站 | 免费人妻精品一区二区三区视频| 国产精品爽爽va在线观看网站| 国产片特级美女逼逼视频| 老熟女久久久| 大陆偷拍与自拍| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 另类亚洲欧美激情| 2022亚洲国产成人精品| 精品久久久久久久久av| 亚洲精品国产av成人精品| 日韩 亚洲 欧美在线| 日韩三级伦理在线观看| 日本免费在线观看一区| 免费看光身美女| 久久女婷五月综合色啪小说| 久久99热这里只有精品18| 啦啦啦中文免费视频观看日本| 99热全是精品| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 国产亚洲午夜精品一区二区久久| 成年人午夜在线观看视频| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 亚洲精品乱久久久久久| 成人无遮挡网站| 国产美女午夜福利| 欧美精品一区二区免费开放| 欧美精品一区二区大全| 欧美精品一区二区免费开放| 亚洲一级一片aⅴ在线观看| 日韩av在线免费看完整版不卡| 亚洲成人av在线免费| 国产av码专区亚洲av| 国产午夜精品久久久久久一区二区三区| 亚洲内射少妇av| 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 欧美区成人在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 蜜桃久久精品国产亚洲av| 欧美激情极品国产一区二区三区 | 人妻系列 视频| 久久这里有精品视频免费| 国产精品一区二区性色av| 免费不卡的大黄色大毛片视频在线观看| 成人无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 国产高清不卡午夜福利| 99久久精品热视频| 精品一区二区三区视频在线| 久久毛片免费看一区二区三区| 久久久亚洲精品成人影院| 亚洲内射少妇av| 精品人妻熟女av久视频| 色5月婷婷丁香| 中文欧美无线码| 日韩成人av中文字幕在线观看| 欧美3d第一页| 十八禁网站网址无遮挡 | 久久 成人 亚洲| 亚洲精品国产av蜜桃| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美区成人在线视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久成人av| 亚洲av成人精品一区久久| 久久国产精品大桥未久av | 中文字幕精品免费在线观看视频 | 色视频在线一区二区三区| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 国产精品久久久久久精品电影小说 | 国产一区二区三区av在线| 久久综合国产亚洲精品| av线在线观看网站| 日韩欧美 国产精品| 成人特级av手机在线观看| 国产乱来视频区| 高清视频免费观看一区二区| 国产成人91sexporn| 最后的刺客免费高清国语| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美| 99热全是精品| 波野结衣二区三区在线| 麻豆国产97在线/欧美| 韩国av在线不卡| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 美女中出高潮动态图| 伦精品一区二区三区| 日韩人妻高清精品专区| 青青草视频在线视频观看| 性色av一级| 人妻一区二区av| 精品人妻视频免费看| 免费观看无遮挡的男女| 久久国产精品男人的天堂亚洲 | 国产欧美日韩一区二区三区在线 | 欧美+日韩+精品| 3wmmmm亚洲av在线观看| 国产精品久久久久成人av| av专区在线播放| 日日啪夜夜撸| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 边亲边吃奶的免费视频| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| 国产精品久久久久久久电影| 激情 狠狠 欧美| 日本黄色片子视频| 国产熟女欧美一区二区| 免费大片18禁| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 久久久久人妻精品一区果冻| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 边亲边吃奶的免费视频| 91精品伊人久久大香线蕉| videos熟女内射| 中文天堂在线官网| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 黄片无遮挡物在线观看| 热99国产精品久久久久久7| 久久久欧美国产精品| 精品人妻视频免费看| av国产久精品久网站免费入址| 在线观看一区二区三区激情| 亚洲欧美精品专区久久| 热99国产精品久久久久久7| 国产成人午夜福利电影在线观看| 国产精品av视频在线免费观看| 精品久久久精品久久久| 日韩成人伦理影院| 黑人高潮一二区| 久久久久性生活片| 你懂的网址亚洲精品在线观看| 免费久久久久久久精品成人欧美视频 | 久久久欧美国产精品| 美女主播在线视频| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| 美女中出高潮动态图| 成人无遮挡网站| 亚洲精品国产av蜜桃| 久久av网站| 国产黄色免费在线视频| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美| 高清午夜精品一区二区三区| 黑人高潮一二区| 国产成人aa在线观看| 赤兔流量卡办理| 在线观看免费日韩欧美大片 | 插逼视频在线观看| 日韩不卡一区二区三区视频在线| 少妇裸体淫交视频免费看高清| 国产视频内射| 99re6热这里在线精品视频| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看 | 国产精品久久久久成人av| 日本欧美视频一区| 大香蕉久久网| 最黄视频免费看| 国产视频首页在线观看| 久久久久精品性色| 在线观看人妻少妇| 国产男女超爽视频在线观看| 精华霜和精华液先用哪个| 日韩成人av中文字幕在线观看| 一级黄片播放器| 联通29元200g的流量卡| 天堂中文最新版在线下载| 中国三级夫妇交换| 国语对白做爰xxxⅹ性视频网站| 亚洲精品456在线播放app| 中文资源天堂在线| 亚洲精品亚洲一区二区| 精品久久久久久久久av| 免费看日本二区| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 两个人的视频大全免费| 久久午夜福利片| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 久久久色成人| 网址你懂的国产日韩在线| 九色成人免费人妻av| 午夜精品国产一区二区电影| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 亚洲av欧美aⅴ国产| 啦啦啦中文免费视频观看日本| 联通29元200g的流量卡| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 亚洲精品视频女| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 在线观看三级黄色| 99久久人妻综合| 久久99精品国语久久久| 亚洲国产色片| 插逼视频在线观看| 91精品伊人久久大香线蕉| 国产精品国产av在线观看| 99热网站在线观看| 91精品国产九色| 成人毛片a级毛片在线播放| 女人十人毛片免费观看3o分钟| 日韩电影二区| 久久久久视频综合| 午夜福利在线在线| 国产淫片久久久久久久久| 国产黄片美女视频| 免费观看性生交大片5| 秋霞伦理黄片| 日韩三级伦理在线观看| 国产乱人偷精品视频| 婷婷色麻豆天堂久久| 亚洲欧美清纯卡通| 国产精品一区二区在线观看99| 大又大粗又爽又黄少妇毛片口| 2022亚洲国产成人精品| av女优亚洲男人天堂| 国产精品99久久久久久久久| 丰满乱子伦码专区| 国产色婷婷99| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 午夜福利高清视频| 国产欧美亚洲国产| 亚洲精品,欧美精品| 最近中文字幕高清免费大全6| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 嫩草影院入口| 亚洲人成网站高清观看| 男人舔奶头视频| 久久久精品94久久精品| 国产爽快片一区二区三区| 老司机影院毛片| 国产欧美另类精品又又久久亚洲欧美| 午夜福利影视在线免费观看| 欧美日本视频| 日韩大片免费观看网站| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av免费高清在线观看| 亚洲无线观看免费| 国产精品人妻久久久影院| 久久99热6这里只有精品| 国产欧美亚洲国产| av免费在线看不卡| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 精品一区在线观看国产| 国产精品蜜桃在线观看| 九九在线视频观看精品| 一级毛片电影观看| av线在线观看网站| 亚洲av中文av极速乱| 大片免费播放器 马上看| 中文在线观看免费www的网站| 国产永久视频网站| 欧美xxxx黑人xx丫x性爽| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 欧美极品一区二区三区四区| 日本黄大片高清| 在线观看美女被高潮喷水网站| 又爽又黄a免费视频| 国产精品国产三级专区第一集| 亚洲国产最新在线播放| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 蜜臀久久99精品久久宅男| 国产免费一区二区三区四区乱码| 一级毛片aaaaaa免费看小| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 性色av一级| 国产免费福利视频在线观看| 黄色怎么调成土黄色| av在线app专区| 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区| h日本视频在线播放| 深爱激情五月婷婷| 国产大屁股一区二区在线视频| 日本免费在线观看一区| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 国产在视频线精品| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 人妻系列 视频| 1000部很黄的大片| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 国产欧美日韩精品一区二区| 久久久成人免费电影| 一级av片app| 91午夜精品亚洲一区二区三区| 午夜福利影视在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 观看免费一级毛片| 亚洲精品日韩av片在线观看| 亚洲va在线va天堂va国产| 秋霞伦理黄片| 亚洲av男天堂| 中文字幕制服av| 亚洲真实伦在线观看| 简卡轻食公司| 91狼人影院| www.色视频.com| 少妇人妻精品综合一区二区| 日本黄色日本黄色录像| 丰满人妻一区二区三区视频av| 97精品久久久久久久久久精品| h日本视频在线播放| 伦理电影免费视频| av黄色大香蕉| 日本与韩国留学比较| 高清欧美精品videossex| 91狼人影院| 97超视频在线观看视频| 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 久久国产精品男人的天堂亚洲 | 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 涩涩av久久男人的天堂| 精品午夜福利在线看| 一级爰片在线观看| 一级片'在线观看视频| 夜夜爽夜夜爽视频| 激情五月婷婷亚洲| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 伦理电影大哥的女人| 六月丁香七月| 看十八女毛片水多多多| 插阴视频在线观看视频| 制服丝袜香蕉在线| 黄色视频在线播放观看不卡| 蜜臀久久99精品久久宅男| 久久精品久久久久久久性| 精品人妻视频免费看| 欧美日韩亚洲高清精品| 精品一区二区免费观看| 国产成人a区在线观看| 大码成人一级视频| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 久久97久久精品| 亚洲经典国产精华液单| 2021少妇久久久久久久久久久| 人妻夜夜爽99麻豆av| 国产精品99久久99久久久不卡 | 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的 | 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 看免费成人av毛片| 性色avwww在线观看| 寂寞人妻少妇视频99o| 黄色视频在线播放观看不卡| 久久99蜜桃精品久久| 91精品国产九色| 亚洲av成人精品一二三区| videos熟女内射| 欧美精品国产亚洲| 蜜桃在线观看..| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 国产高潮美女av| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 内地一区二区视频在线| 五月玫瑰六月丁香| 人人妻人人看人人澡| 综合色丁香网| 黑丝袜美女国产一区| 大香蕉97超碰在线| 午夜日本视频在线| 国产精品蜜桃在线观看| 成人国产av品久久久| 免费看av在线观看网站| 久久久午夜欧美精品| 人妻少妇偷人精品九色| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区| 高清av免费在线| 国产色爽女视频免费观看| 国产 一区精品| 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 在线观看免费高清a一片| 99国产精品免费福利视频| 亚洲精品第二区| 欧美区成人在线视频| 亚洲高清免费不卡视频| 三级国产精品片| 国产深夜福利视频在线观看| 美女主播在线视频| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 久久精品夜色国产| 1000部很黄的大片| 亚洲欧美清纯卡通| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 涩涩av久久男人的天堂| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的 | 久久久久久久久久成人| 国产精品爽爽va在线观看网站| 精品一品国产午夜福利视频| 亚洲自偷自拍三级| 在线观看人妻少妇| 日本vs欧美在线观看视频 | 欧美一级a爱片免费观看看| 99久久中文字幕三级久久日本| 国产在线一区二区三区精| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 1000部很黄的大片| av不卡在线播放| av网站免费在线观看视频| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口| 舔av片在线| 国产精品一区二区在线观看99| av女优亚洲男人天堂| 欧美日韩视频精品一区| 免费黄频网站在线观看国产| 国产亚洲最大av| 国产欧美亚洲国产| 中文乱码字字幕精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 亚洲国产欧美人成| 成人免费观看视频高清| 亚洲国产精品成人久久小说| 精品久久久久久久久亚洲| 一级爰片在线观看| 视频中文字幕在线观看| 精品熟女少妇av免费看| 干丝袜人妻中文字幕| 亚洲av男天堂| 97超碰精品成人国产| 亚洲婷婷狠狠爱综合网| 男人舔奶头视频| 亚洲不卡免费看| 多毛熟女@视频| 亚洲中文av在线| 五月天丁香电影| 一区在线观看完整版| 国产成人a区在线观看| 久久人人爽av亚洲精品天堂 | 亚洲精品成人av观看孕妇| 少妇人妻 视频| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 有码 亚洲区| 精品酒店卫生间| 国产人妻一区二区三区在| 美女主播在线视频| 成年女人在线观看亚洲视频| 国产成人免费无遮挡视频| 中文天堂在线官网| 熟妇人妻不卡中文字幕| 精品久久久久久久久av| 日本黄色日本黄色录像| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 亚洲欧洲国产日韩| 国产 一区 欧美 日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 这个男人来自地球电影免费观看 | 免费黄网站久久成人精品| 男女边吃奶边做爰视频| 久久女婷五月综合色啪小说| 国产中年淑女户外野战色| 色婷婷av一区二区三区视频| 中国美白少妇内射xxxbb| 最近手机中文字幕大全| 深夜a级毛片| 涩涩av久久男人的天堂| 美女xxoo啪啪120秒动态图| 亚洲电影在线观看av| 国产中年淑女户外野战色| 亚洲av.av天堂| 国产毛片在线视频| 亚洲国产精品专区欧美| 国产av一区二区精品久久 | 免费看光身美女| 国产片特级美女逼逼视频| 在线观看一区二区三区| 日韩欧美一区视频在线观看 | 九九爱精品视频在线观看| 麻豆国产97在线/欧美| 亚洲经典国产精华液单| 免费在线观看成人毛片| 色吧在线观看| 免费看光身美女| 大香蕉97超碰在线| 国内少妇人妻偷人精品xxx网站| 天堂俺去俺来也www色官网| 日本wwww免费看| av卡一久久| 国产在线视频一区二区| 看非洲黑人一级黄片| 国产日韩欧美在线精品| 美女国产视频在线观看| 新久久久久国产一级毛片| 各种免费的搞黄视频| 80岁老熟妇乱子伦牲交| 18禁在线播放成人免费| 免费大片黄手机在线观看| 嫩草影院新地址| 夫妻性生交免费视频一级片| av女优亚洲男人天堂| 亚洲熟女精品中文字幕| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 日韩欧美精品免费久久| 永久免费av网站大全| 三级国产精品片| 亚洲国产av新网站| 青春草视频在线免费观看| 一级二级三级毛片免费看| 五月开心婷婷网| 男人和女人高潮做爰伦理| 2022亚洲国产成人精品| 中文字幕亚洲精品专区| 亚洲自偷自拍三级| 久久久欧美国产精品| 精品少妇久久久久久888优播| 久久久久久久久久人人人人人人| 女性被躁到高潮视频| 亚洲精品,欧美精品| 国产91av在线免费观看| 十分钟在线观看高清视频www | 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片| 欧美97在线视频| 中国国产av一级| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 久久精品人妻少妇| 中文字幕免费在线视频6| 色吧在线观看| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 黑丝袜美女国产一区|