• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    2016-10-20 02:27:26XiaoyanHuXianwuBiRuizhongHuGuoshengCaiYouweiChen
    Acta Geochimica 2016年2期

    Xiaoyan Hu·Xianwu Bi·Ruizhong Hu·Guosheng Cai·Youwei Chen

    ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    Xiaoyan Hu1·Xianwu Bi1·Ruizhong Hu1·Guosheng Cai2·Youwei Chen1

    Tin deposits are often closely associated with granitic intrusions.In this study,we analyzed tin partition coefficients between different fluids and meltsas well as various crystals and meltsfrom the Furong tin deposit associated with the Qitianling A-type granite.Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids,melts,and minerals.Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content,high volatile content,and low oxygen fugacity.Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage.Furthermore,the volatiles F and Cl in the magma play important roles in tin partitioning behavior.Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase.High Cl content in the aqueous fluid catalyzes water-rock interaction and leads to the extraction of tin from tinbearing minerals.All these findings support a hydrothermal origin for the tin deposits.In light of the geotectonic setting,petrochemicalcharacteristics,andmineralizing physicochemical conditions of the Furong tin deposit,it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.

    Tin·Partition·Peralkaline granite·

    Hunan Province

    1 Introduction

    Tin deposits are typically closely related to granite spatially,temporally,and metallogenically(Lehmann 1990;Xia and Liang 1991).Most granites associated with tin deposits display an extreme degree of differentiation and generally share the petrochemical characteristics of being peraluminous,enriched in K(relative to Na),and high in Si content,but lower in Ca,F(xiàn)e,Mg,and Ti content(Lehmann 1990;Xia and Liang 1991;Chesley et al.1993;Yeap 1993;Sun and Higgins 1996;Botelho and Moura 1998;Bettencourt et al.2005).Historically,tin mineralization has been thought to be tied to peraluminous,K-rich,orogenic S-type granites.However,in recent decades,important economic tin deposits associated closely with A-type granites have been found(Taylor 1979;Mitchell and Carson 1981;Sawkins 1990;Bi et al.1993;Botelho and Moura 1998;Liverton and Botelho 2001;Haapala and Lukkari 2005). For example,the Furong superlarge tin deposit in Hunan Province,southeast China is closely associated with the Qitianling peralkaline A-type granite intrusion(Zhao et al. 1998,2000;Zheng and Jia 2001;Wang et al.2003a,b;Li 2006;Shuang et al.2006).A-type granite is generally characterized as peralkaline and anorogenic.Nearly all peralkaline intrusive granites contain alkalis more than 8 wt%more than those in calc-alkali anorogenic granites(Tu 1989).It is important to research the metallogeny of this new type of tin deposit.While there has been someresearch on the new type of tin deposit associated with A-type granite,the question of whether tin-rich aqueous fluid could be derived through peralkaline intrusion remains unsettled.One point of view is that the mineralized fluids of the Furong tin deposit were derived directly from later highly evolved magma(Wang et al.2004;Li and Liu 2005;Shuang et al.2006;Li et al.2007a,b),but another is that the tin-bearing fluids were provided by post-magmatic hydrothermal alteration of the Qitianling granite(Zhao et al.2005;Jiang et al.2006).

    ? Xiaoyan Hu huxiaoyan@mail.gyig.ac.cn

    1State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,People’s Republic of China

    2Guizhou Bureau of Nonferrous Metal and Nuclear Industry Geological Exploration,Guiyang 550002,People’s Republic of China

    Metal mineralization associated with intrusions depends to a great extent on fractional crystallization of the magma and partitioning of metallic elements between the melt and aqueous fluid phases in the evolution of the magma.The fractional crystallization of magma and the partition behavior of its metallic elements depend on the composition of the melt,the composition of fluid derived from the melt,and the physicochemical conditions under which the partitioning occurs(Holland 1972;Feiss 1978;Candela and Holland 1984;Urabe 1985;Candela 1989;Keppler and Wyllie 1991;Lowenstern et al.1991;Peiffert et al.1994;Candela and Piccoli 1995;Chantal et al.1996;Webster 1997;Bai et al.1998;Halter et al.2002).Existing experimental data of tin partitioning behavior have been collected for this paper.These data include the tin partition coefficients between the crystals and liquids between different granitic melts and aqueous fluid phases in known experimental physicochemical conditions.Based on the existing data,geochemical behavior of tin throughout magma evolution and the factors leading to the tin-bearing granite’s petrochemical characteristics are discussed.Furthermore,whether the mineralized aqueous fluids of the Furong tin deposit were derived from the Qitianling peralkaline intrusion is discussed in the context of the petrochemical characteristics of the Qitianling A-type granite,the mineralizing physicochemical conditions,and the geotectonic setting.Finally,the favorable factors of tin mineralization associated with the peralkaline granites are summarized,a significant step inunderstanding the mechanism of tin ore-forming processes related to peralkaline intrusive granite.

    2 Tin partitioning behavior

    2.1 Tin partition between minerals and melts

    Fractional crystallization is the dominant petrogenetic process controlling magmatic evolution.The main tin carrier in tin deposits related to granitic rocks is cassiterite. Some accessory minerals such as biotite,hornblende,titanite,ilmenite,and magnetite are usually important hosts for tin in granitic rocks because of the preferential substitution of major cations Ti4+and Fe3+in those crystals by Sn4+(Barsukov 1957;Petrova and Legeydo 1965). These substitutions are possible because the coordination radii of Ti4+,F(xiàn)e3+,and Sn4+are similar(61,65,and 69 pm,respectively)(Shannon 1976).In contrast,tin contents in feldspar and quartz are generally very lowmuch less than tin content in bulk granite rocks.

    Table 1 Partition coefficients of tin between different minerals and melts

    Thecompileddataoftinpartitioncoefficientsbetween different minerals and melts are shown in Table 1(Gan 1993).Generally,tin tends to partition into biotite,magnetite,ilmenite,and amphibole rather than plagioclase,K-feldspar,and quartz.As the table shows,tin partition coefficients are affected by the melt composition.For example,the value 5.18 ofbetween amphibole and metaluminous andesitic melt is almost ten times that between amphibole and peralkaline rhyolitic melt(0.57). The bulk tin partition coefficients between the minerals and different melts are estimated roughly as the average of the coefficients ofthe individual minerals against the melts.The bulk tin partition coefficients between the minerals and peralkaline basaltic melt,metaluminous andesitic melt,peralkaline andesitic melt,metaluminous acidic melt,peralkaline rhyolitic melt,and peraluminous acidic melt are 0.92,2.41,1.04,1.21,0.50 and 1.03,respectively.The majority of the bulk tin partition coefficients between the minerals and the melts are near 1.The bulk tin partition coefficient between the minerals and the peralkaline rhyoliticmeltisthelowestat0.50.Thisimpliesthattheresidual magma is likely to be enriched in tin following fractional crystallization of peralkaline granitic magma.In contrast,when the magma is rich in Ti4+,F(xiàn)e3+,Mg2+,etc.,the residual magma will be deficient in tin after abundant tin-bearing minerals crystallize.For example,tin is depleted in melt from the mantle at 1000°C for melts containing abundant olivine and pyroxene crystals,a result of a higher bulk tin partition coefficient(>1)(Lehmann(1990),and tin content in the melt generally is less than 1 μg/g(Hamaguchi and Tin 1969).Tin enrichment in residual melt is almost impossible through andesitic magma evolution because of higher bulk tin partition coefficients between sphene/magnetite and andesitic melt(Petrova and Legeydo 1965;Gill 1978;Osborn1979).However,peralkalineandesiticmagma candifferentiatetin-richmelt,asisthecaseintheSilsilahtinbearing peralkaline granite in the northeast Arabia shield(Bray1985),whichimpliesthatperalkalinemeltisfavorable for tin enrichment in the melt phase(Linnen et al.1995,1996).Furthermore,if a crustal source intrusion is initially rich in tin,the residual later stage magma will be more enrichedintinafter highly evolving duetolow initial Ti,F(xiàn)e,andMgcontentsintheintrusion.Therefore,tintransportand enrichment in residual magma should occur in peralkaline crustalsourceintrusionswithahigherdegreeof fractionation.

    High volatile content,particularly F and Cl,can increase tin solubility in the granite melt phase(Bhalla et al.2005;Farges et al.2006).F in melt can reduce the melt viscosity and liquidus and lower the crystallizing temperature(Baker and Vaillancourt 1995;Xiong et al.1998).These factors decrease bulk(with crystals including biotite, hornblende,titanite,ilmenite and magnetite,plagioclase,K-feldspar and quartz,etc.)because of the decreasing substitution by tin in the minerals for the higher crystal order under lower temperature conditions(Badejoko 1984;Xu et al.1995).As a result,tin contents in the minerals are lower and tin becomes enriched in the melt phase when granitic magma contains more volatiles.

    Magmaticoxygenfugacityisanotherveryimportantfactor influencing tin partitioning behavior between minerals and melts.TheionicradiusofSn2+is93 pmandislargerthanthat of Sn4+(Huheey et al.1993).Existing data show thatisgenerallylessthan1and,and that crystals include tin-bearing biotite, hornblende,sphene,ilmenite,and magnetite(Ishihara,1981). If the oxygen fugacity is higher,the Sn4+/Sn2+ratio value in the melt will increase(Linnen et al.1995,1996;Farges et al. 2006),accompanied by a higher bulkAs a result, tinintheresidualmeltwillberelativelydepleted.Lowoxygen fugacity is also a favorable factor for enriching tin in residual magmabydecreasingbulk,asobservedinthemany tinoredepositsassociatedwithhighlydifferentiallowoxygen fugacity granite(Ishihara 1981;Lehmann 1990).

    It is speculated that tin tends to partition into the residual magma in differential fractional crystallization processes, when the initial magma is characterized as peraluminous(crustal sources)with lower contents of Ti4+,F(xiàn)e3+,and Mg2+;peralkaline;volatile-rich;and having low oxygen fugacity.Such magmas probably serve as favorable reservoirs or as an important transport media for tin ore formation.

    2.2 Tin partition between granitic melt and aqueous fluid phase

    Experimental results of tin partition coefficientsbetween granitic melt and coexisting aqueous fluid show thatis influenced by oxygen fugacity,temperature,pressure,and chemical compositions of melt and coexisting aqueous fluid(Wang et al.1986;Li 1989;Webster 1990;Keppler and Wyllie 1991;Chen and Peng 1994;Xiong et al.1998;Villemant and Boudon 1999;Hu et al.2008).

    Previous experimental results imply that tin favors partitioning into aqueous fluids with abundant Cl-and F-ligands(Wang et al.1986;Li 1989;Keppler and Wyllie 1991;Chen and Peng 1994;Hu et al.2008).The geochemistry of tin in aqueous fluids indicatesthat Sn2+complexeswith Cl-more easilythanwithothercomplexions,anddivalenttinchloride compounds are stable in reducing acid media(Jackson and Helgeson 1985;Chen 1986;Li 1989;Wilson and Eugster 1990;Taylor and Wall 1993;Barnes 1997;Sherman et al. 2000;Mu¨ller and Seward 2001).An experimental study(Hu etal.2008)conductedat850°C,100 MPaandfo2nearNNO revealed thatincreases with increasing HCl content in aqueous fluid in which Sn2+is the dominant species. Additionally,the aluminum saturation index(ASI)of the melts after equilibrium with high HCl concentration in the aqueous fluid phase will increase due to the transport of alkalisinthemelttotheaqueousfluidphase.Thepresenceof fluorine in the starting fluid does not significantly influence

    Daq.fl./meltSnbecause fluorine isinclinedto partitioninginto the melt phase(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999).Furthermore,compounds of Sn4+and F-could play an important role for tin transport in aqueous fluids when Sn4+is the dominant species at higher oxygen fugacity conditions(Liu and Chen 1986).

    2.3 Tin partition influenced by F and Cl

    Volatileelements,particularlyFandCl,playimportantroles in the evolution of magmas and hydrothermal ore-forming fluid(Webster and Holloway 1988;Webster 1990).The halogens affect intrusion properties such as viscosity,diffusibility,and vapor saturation.Fluorine and chlorine in silicatemelt canimprovediffusibilityofcationsbyreducing cation activation energies for diffusion(Baker and Watson 1988).Therefore,diffusibility and solubility of tin in melt increasewithincreasingFandClcontentsinthemelt(Bhalla et al.2005),and high-F and high-Cl content melt could extract tin during magma evolution before the magma is water-saturated.By complexing with metals,they exert strong controls over the compositional variations and the style of mineralization in hydrothermal ore deposits.

    According to previous studies(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999),F(xiàn) is preferentially partitioning into the melt phase,and the partition coefficients of F between aqueous fluid and silicate melt at high pressure and temperature conditions are generally less than 1.As a result,F(xiàn) should be enriched in those kinds of melts through granitic crystallization and differentiation.In contrast to F,Cl prefers partitioning into aqueous fluids with a wide range of partition coefficients from 2 to 117(Webster 1992b,c,1997;Bureau et al.2000).Mg,Ca,F(xiàn)e,Si,and F clearly influence Cl partitioning behavior between aqueous fluids and silicate melts.Chlorine partition coefficientsincreasewithdecreasingmolarratiosof(Al+Na+Ca+Mg)/Si and F content in silicate melts;increasing H2O/(H2O+CO2)molar ratios and Cl content in the system are also favorable for chlorine partitioning into the aqueous fluid phase(Webster and Holloway 1988;Webster 1992a;Signorelli and Carroll 2000;Mathez and Webster 2005).

    Experimentalstudiesontinpartitioningbehavior between the aqueous fluid and granitic melt phases in systems with coexisting F and Cl at 850°C,100 MPa,and fo2near NNO show thatis generally less than 0.1,with a little variation when F content in the melt is more than about 1 wt%.Howeverincreases rapidly when F content in the melt is less than about 1 wt%-i.e.decreasing F content in the melt phase is favorable for tin partitioning into the aqueous fluid phase(Hu et al.2009).In other words,granitic silicate melt with high F content(more than about 1 wt%)could extract tin,becoming enriched in tin in the melt phase.This is consistent with the fact that a lot of granites associated with tin deposits have a relatively high F content.Increasingvalues can be caused by increasing Cl partition coefficients,especially in a water-saturated magma system with high HCl content but low F content.Stronger partitioning of Cl into the fluid phase also may cause the partitioning of major elements such as Na and K into the aqueous fluid phase,while the concentrations of SiO2and Al2O3in the melt phase are evidently unaffected by increasing HCl concentrations(Frank et al.2003;Hu et al. 2008).Additionally,Na and K will lead to increased ASI in the melts.It is also implied that increasingis a result of decreasing F content in the melt phase,which could be caused by a great deal of F-bearing minerals crystallizing from tin-rich melt or F degassing into the aqueous fluid phase when pressure is abruptly lowered through fractures or faults,or near the edge of the magma chamber.Furthermore,lower F content in the melt also could decrease tin saturated solubility in the melt(Bhalla et al.2005),contributing to disseminated cassiterite crystallization in the melt accompanied by F-bearing minerals. Noticeably,chlorine and fluorine begin to exsolve at respective pressures of~100 MPa and≤10 MPa and degas at the rates of 22-55%,and 0-15%,respectively,upon eruption(Spilliaert et al.2006).In shallow magma degassing processes,the aqueous fluids generated by the different degassing paths are deficient in F but enriched in Cl(Villemant and Boudon 1999),which apparently is favorable for Cl-rich aqueous fluid extraction of tin from the melt phase,as well as water-rock interactions.

    3 The Furong tin deposit and the Qitianling intrusion

    3.1 Geological characteristics

    As a new-found superlarge tin deposit,the Furong deposit is located in the largest Nanling Mountains’tungsten-tin polymetallic metallogenic belt in Hunan Province,southeast China(Xu et al.2000;Wei et al.2002).The deposit is closely associated with the Qitianling granite intrusion spatially,temporally,and metallogenically(Wang et al. 2003a;Cai et al.2004;Wang et al.2004;Jiang et al.2006;Li 2006;Shuang 2007;Peng et al.2008).The tin ore bodies of the deposit occur in the Qitianling granite complex or along its contacts with the wall rocks(Wei et al.2002).The host mineral is cassiterite with accessory minerals such as pyrite, chalcopyrite, magnetite, galena, sphalerite,arsenopyrite,etc.Located at the intersection of the NE-trending Yanling-Chenzhou-Lanshan and the NW-trending Chenzhou-Shaoyang tectonomagmatic belts,the Qitianling granite complex crops out over an area of about 520 km2and includes the Qiguling,Wuliqiao,Goutouling,Maziping,Nanxi,and Lijiadong units(Fig.1).According to40Ar-39Ar isotopic dating,the ages of the granites associated with the deposit are in the range of 151-160 Ma and the Qitianling granite intrusion occurred in Yanshanian(Liu et al.2003).The results of further studies suggest that the main geological period of mineralization occurred between 150 and 160 Ma(Mao et al.1997).This implies that the intrusion of the Qitianling granite and the mineralization of the Furong tin deposit occurred in the same geological period.

    Fig.1 Geological sketch map of the Qitianling granite(modified from Zhu et al.2007)

    3.2 Petrological and geochemical characteristics of the Qitianling granite complex

    The Qitianling granite complex is primarily composed of amphibole-biotite granite and biotite granite.Generally,both are peralkaline,K-rich,and have high volatiles contents mainly in the form of biotite and fluorite.Crystallization temperatures of the amphibole-biotite granite are in the range of 680-740°C,which is higher than that of the later biotite granite with crystallization temperatures of 530-650°C(Li et al.2007a).The oxygen fugacities of the amphibole-biotite granite and biotite granite range from -16.00 to-15.31 and-19.20 to-17.50,respectively(Li et al.2007a).The oxygen fugacities of both granites are relatively low,especially those of the biotite granites which approach NNO(Zhao et al.2005).The chemical compositions of the two granites are shown in Tables 2 and 3.

    The geologic age of the early stage amphibole-biotite granite is in the range of 158.6 to 162.9±0.4 Ma(Bi et al. 2008).It has a porphyritic texture with phenocrysts of quartz,K-feldspar,plagioclase,biotite,hornblende,etc.,and its accessory minerals are apatite,sphene,zircon,magnetite,etc.The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the amphibole-biotite granite have weight percentages in the range of 68.59-69.96,7.45-7.97,4.04-4.12,and 0.49-0.59,respectively.The ASI is in the range of 1.27-13.7 and the differentiation index(DI)is in the range of 82.40-84.71.Tin concentrations in the amphibole-biotite granite range from 14.90 to 95.80 μg/g.

    The biotite granite is the later intrusion with a geologic age of 156.7-153.5±0.4 Ma(Bi et al.2008).The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the granite have weight percentages in the range of 75.07-76.49,7.95-8.59,1.64-1.87,and0.09-0.12,respectively.Tin concentrations in the biotite granite are less than 12.80 μg/g.The ASI of the biotite granite is higher than that of the early stage amphibole-biotite granite,as is the DI value of the biotite granite with a range of 92.80-93.93.In contrast to the early amphibole-biotite granite,the biotite granite is characterized by its enrichment in silicon and potassium,peraluminous categorization,and high degrees of differentiation.

    Table 2 Chemical compositions of the Qitianling granite(wt%)

    Table 3 Volatiles F and Cl contents of biotite in the amphibolebiotite granite and biotite granite

    Furthermore,a series of studies on the Qitianling granite provide important information on the tectonic background of the formation(Zheng and Jia 2001;Shuang et al.2006;Li et al.2007b;Bi et al.2008).The Qitianling granite is characterized as peralkaline granite,having characteristic levels of rare earth elements,trace elements,and major elements,as well as Sr,He,Pb,S,H,and O isotope geochemistry characteristics of a peralkaline granite.Peralkaline granite may derive from crustal melting triggered byheat from the upwelling mantle.The two-stage granites of the Qitianling intrusion have a common magmatic origin and are assigned to A-type granite.It is implied that the Qitianling intrusion occurred under the geodynamic setting of lithospheric thinning of South China and post-orogenic crustal extension during the Mesozoic.

    4 Discussion

    As above mentioned,the Qitianling peralkaline granite derived mainly from crustal resources with some mantle material incorporated.Tin content in the early-stage amphibole-biotite granite varies from 14.90 to 95.80 μg/g(average 39.3 μg/g),and volatile content of the whole rock is rather high,especially Cl content as compared to the later stage biotite granite(Table 3).The early tin-rich and volatile-rich magma could have derived from tin-rich crustal strata melted by upwelling mantle heat.Additionally,the Qitianling granite is characterized as peralkaline and volatile-rich with lower oxygen fugacity near NNO,all of which are advantages for tin enrichment in residual magma during early-stage crystallization and differentiation processes under high pressure and closed conditions. As a result,the later stage peralkaline silicate magma would be a favorable reservoir with higher tin and volatile contents.The Cl-rich and tin-bearing hydrothermal fluid could be derived from the residual magma because of the higherachieved by higher silicon and water contents in the system.Average SiO2content in the late-stage biotite granite is 75.60 wt%,which is higher than that in the amphibole-biotite granite(69.21 wt%). Highercould also be caused by a great deal of F-bearing minerals such as fluorite and topaz crystallizing from tin-rich melt during magma cooling or by F degassing into the aqueous fluid phase when pressure is lower around fractures and faults and at the top of the magma chamber.The combination of the above favorable factors enhancesgreatly,which enhances tin partitioning in the aqueous fluids. BasedonthedataofthefluidinclusionstudyontheFurong tin deposits(Shuang 2007),the temperature and pressure of the deposits at formation are mainly in the ranges of 300-450°C and 17.9-180 MPa.The physicochemical conditions are favorable for F-bearing crystals crystallizing and Cl-rich volatiles degassing.So,the later stage magma of the Qitianling intrusion possessed advantageous physicochemical conditions to produce Cl-rich fluid.The Cl-rich fluid reacted withthemelt,leadingtoincreasedthatisafactorin deriving high tin-bearing aqueous fluids.At the same time,the Cl-rich fluid also reacted with tin-bearing minerals,such as biotite and magnetite,thus extracting more tin from these minerals to the aqueous fluid phase.

    AsshowninTables 2and3,SnandClcontentsinthelater stage biotite granite are less than those in the amphibolebiotite granite,which may be the result of Sn and Cl partitioning into the aqueous fluid phase.In contrast with Cl distribution behavior,F(xiàn) is inclined to partition into the melt phase,with a degassing pressure and degassing rate of 10 MPa and 15%,respectively,which are lower than those of Cl at 100 MPa and 22-55%,respectively(Spilliaert et al. 2006).Fcontentinthemeltphaseincreaseswiththeevolution of magma in a closed,high-pressure system;F mainly remains in the late-stage biotite granite because the oreforming pressure of the Furong deposit is more than 10 MPa. Therefore,the F/Cl ratio(1.02-2.92)in biotite of the later stage biotite granite is evidently higher than that of the amphibole-biotite granite(0-0.21).Furthermore,the ASI of biotitegraniteishigherthanthatofamphibole-biotitegranite,which may be related to the abstraction of alkalis by the Clrichaqueousfluidphasederivedfromtheresidualmeltphase.

    The evidence from the fluid inclusion study on the Furong deposit shows that the physical chemistry of the ore-forming fluidischaracterizedbymid-to-hightemperatureandsalinity,and by a Cl-bearing fluid solution with the composition of CO2-CH4-CaCl2-NaCl-KCl-H2O(Shuang 2007;Bi et al. 2008).Researchontheminerals(Lietal.2007a)hasrevealed that the values of log(fH2O/fHF)fluid,log(fH2O/fHCl)fluid,and log(fHF/fHCl)fluidin the aqueous fluids coexisting with the amphibole-biotite granite are 4.22-4.39,2.78-3.24,and -1.82 to-1.73,respectively.The parallel values of the aqueous fluid coexisting withthe late-stagebiotitegranite are 3.27-3.53,2.85-3.22,and-0.75 to-0.02,respectively. Evidently,themagmatichydrothermalfluidsderivedfromthe magma in the later stage of the Qitianling intrusion bear higher levels of Cl,which is a favorable condition for tin partitioning into the aqueous fluid phase.

    According to Sn,F(xiàn),and Cl partition behavior and the petrological geochemical characteristics of the Qitianling granite mentioned above,the later stage magma of the Qitianling intrusion possesses favorable physicochemical conditions for deriving a Sn-rich aqueous fluid phase as part of tin ore formation.It can be deduced that tin-bearing ore-forming hydrothermal fluid could be derived from peralkaline,peraluminous,volatile-rich intrusions under favorable physicochemical conditions.

    5 Conclusion

    Based on the behavior of tin mineralization associated with granitic magmatism and on tin partition coefficients between the minerals and the different melts,we concludethat tin is likely to be concentrated in residual granitic melt and in the aqueous fluid phase during crystallization and differentiation processes when the granitic magma is peralkaline,high in volatiles,and low in Ca,F(xiàn)e,and Mg.The highly evolved residual peralkaline granitic magmas could have silicate melts enriched in tin,and thus serve as favorable tin ore reservoirs for later-magmatic hydrothermal tin deposit formation.Tin-rich aqueous fluid could be derivedfromlaterperalkalinegraniticmagmawith decreasing F content,increasing water saturation and silica content,under favorable lower pressure and temperature physical conditions.Acidic,Cl-rich aqueous fluids are particularly likely to scavenge abundant tin from highly evolved K-rich,peralkaline,granitic silicate melts,as well as from the high tin-bearing minerals such as biotite,hornblende,titanite, etc.Theyarefavorablefor hydrothermal tin metallization.Therefore,the Qitianling peralkaline intrusion could have produced tin-bearing mineralized hydrothermal aqueous fluid for the Furong tin deposit formation.

    AcknowledgmentsThe authors wish to thank Professor Fan Wenling for her instruction.Constructive,detailed comments by the reviewers and the chief editor were greatly appreciated.This research project was supported by National Natural Science Foundation of China(Grant Nos.41103030;41130423).

    Badejoko TA(1984)Correlations between microstructures,k-feldspar triclinicity and trace element geochemistry in stanniferous and barren granites,northern Nigeria.Lithos 17:259-271

    Bai TB,Koster AF,Gross V(1998)The distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce between granitic melts and coexistingaqueousfluids.GeochimetCosmochimActa 63:1117-1131

    Baker DR,Vaillancourt J(1995)The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport.Earth Planet Sci Lett 132:199-211

    Baker DR,Watson EB(1988)Diffusion of major and trace elements in compositionally complex Cl-and F-bearing silicate melts. J Non-Cryst Solids 102(1-3):62-70

    Barnes HL(1997)Geochemistry of hydrothermal ore deposits,3rd edn.Wiley,New York,pp 435-469

    Barsukov VL(1957)The geochemistry of tin,(translated from Geokhimiya 1957:36-45).Geochemistry 1:41-52

    Bettencourt JS,Leute WB Jr,Goraieb CL,Sparrenberger I,Bello RMS,Payolla BL(2005)Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites,Brazil:fluid inclusion and stable isotope characteristics.Lithos 80:365-386

    Bhalla P,Holtz F,Linnen RL,Behrens H,Koepke J(2005)Solubility of cassiterite in evolved granitic melts;effect of T,fo2and additional volatiles.Lithos 80:387-400

    Bi CS,Shen XY,Xu QS,Ming KH,Sun HL,Zhang CS(1993)Geologicalcharacteristicsofstanniferousgranitesinthe Beilekuduk tin metallogenic belt.Xinjiang Acta Petrol et Mineral 12:213-223(in Chinese with English abstract)

    Bi XW,Li HL,Shuang Y,Hu XY,Hu RZ,Peng JT(2008)Geochemical characteristics of fluid inclusions from Qitianling A-type granite,Hunan Province,China.Geol J China Univ 14(4):539-548(in Chinese with English abstract)

    Botelho NF,Moura MA(1998)Granite-ore deposit relationships in Central Brazil.J S Am Earth Sci 11:427-438

    Bray EA(1985)Geology of the Silsilah ring complex,and associated tin mineralization,Kingdom of Saudi Arabia-a synopsis.Am Mineral 70:1075-1086

    Bureau H,Keppler H,Metrich N (2000)Volcanic degassing of bromine and iodine:experimental fluid/melt partitioning data and applications to stratospheric chemistry.Earth Planet Sci Lett 183:51-60

    Cai JH,Wei CS,Mao XD,Chen KX,Cai MH(2004)Characters of mineralizing geology and metallogenic pattern of Furong tin orefield in southern Hunan province.Geol Sci Technol Inf 23:69-76

    Candela PA(1989)Magmatic ore-forming fluids:thermodynamic and mass transfer calculation of melt concentrations.Rev Econ Geol 4:203-221

    Candela PA,Holland HD(1984)The partitioning of copper and molybdenumbetweensilicatemeltsandaqueousfluids. Geochim Cosmochim Acta 48:373-380

    Candela PA,Piccoli PM(1995)Moldel ore-metal partitioning from melts into vapor and vapor/brine mistures.In:Thompson JFH(ed)Magmas,fluids,and ore deposits.Mineralogical Association of Canada,Ottawa,pp 101-127

    Chantal P,Chinh N,Michel C(1996)Uranium in granitic magmas:part 2.Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-hapligranite-H2O-NaX(X=Cl,F(xiàn))system at 770°C,2kar.Geochim Cosmochim Acta 60:1515-1929

    Chen J(1986)Experiment on solubility of cassiterite in the presence of charcoal.Geol Rev 32:287-294(in Chinese with English abstract)

    Chen ZL,Peng SL(1994)The experimental results of W and Sn Partitioning between fluid and melts and their significance for the origin of W and Sn ore deposits.Geol Rev 40:274-282(in Chinese with English abstract)

    Chesley JT,Halliday AN,Snee LW,Mezger K,Shepherd TJ,Scrivener RC (1993)Thermochronology of the Cornubian batholith in southwest England:implications for pluton emplacement and protracted hydrothermal mineralization.Geochim Cosmochim Acta 57:1817-1835

    Farges F,Linnen RL,Brown GEJ(2006)Redox and speciation of tin in hydrous silicate glasses:a comparison with Ta,Mo and W. Can.Mineral 44:795-810

    Feiss PG(1978)Magmatic sources of copper in porphyry copper deposits.Econ Geol 72:197-404

    Frank MR,Candela PA,Piccoli PM(2003)Alkali exchange equilibra between a silicate melt and coexisting magmatic volatile phase:an experimental study at 800°C and 100 MPa.Geochim Cosmochim Acta 67:1415-1427

    Gan GL(1993)Mineral-melt element partition coefficients:data and major variation regularities.Acta Petrol et Mineral 12:144-181(in chinese with English abstract)

    Gill JB(1978)Role of trace element partition coefficients in models of andesite genesis.Geochim Cosmochim Acta 42:709-724

    Haapala I,Lukkari S(2005)Petrological and geochemical evolution of the Kymi stock,a topaze granite cupola within the Wiborg rapakivi batholith,F(xiàn)inland.Lithos 80:247-362

    Halter WE,Pettke T,Heinrich CA(2002)The origin of Cu/Au ratios in porphyry-type ore deposits.Science 296:1844-1846

    Hamaguchi H,Tin KR(1969)In:Wedepohl KH(ed)Handbook of geochemistry.vol II/4.Springer,Berlin Heidelberg,50-B-1 to 50-M-5

    Holland HD(1972)Granites,solutions,and base metal deposits.Econ Geol 67:281-301

    Hu XY,Bi XW,Hu RZ,Shang LB,F(xiàn)an WL(2008)Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid.Geochem J 42:141-150

    Hu XY,Bi XW,Shang LB,Hu RZ,Cai GS,Chen YW(2009)An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma.Chin Sci Bull 54(6):1087-1097

    Huheey JE,Keiter EA,Keiter RL(1993)Inorganic chemistry:principles of structure and reactivity,4th edn.HarperCollins,New York

    Ishihara S(1981)The granitoid series and mineralization.Econ Geol 75th Anniv Vol 458-484

    Jackson KJ,Helgeson HC(1985)Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin:I. Calculation of the solubility of cassiterite at high pressures and temperatures.Geochim et Cosmochim Acta 49:1-22

    Jiang SY,Zhao KD,Jinag YH,Ling HF,Ni P(2006)New type of tin mineralization related to granite in South China:evidence from mineralchemistry,elementandisotopegeochemistry.ActaPetrol Sin 22(10):2509-2516(in Chinese with English abstract)

    Keppler H,Wyllie PJ(1991)Partitioning of Cu,Sn,Mo,U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF.Contrib Mineral Petrol 109:149-1601

    Lehmann B(1990)Metallogeny of tin.Springer,Berlin,pp 19-29

    Li TJ(1989)Experimental studies of the solubility of cassiterite and the extraction of tin from granitic melts.Chin J Geochem 8:84-96

    Li ZL(2006)Geochemical relationship between tin mineralization and A-type granite:a case of the Furong tin orefield,Hunan province,South China.A dissertation Submitted for the degree of Doctor of Philosophy of the Chinese Academy of Sciences and for Diploma of the Institute of Geochemisty.(in Chinese with English abstract)

    Li TY,Liu JQ (2005)Characteristics and composition of fluid inclusions in Furong tin orefield,Qitianling aream,South Huan Province.Geol Mineral Resour South China 3:44-49(in Chinese with English abstract)

    Li HL,Bi XW,Hu RZ,Peng JT,Shuang Y,Li ZL,Li XM,Yuan SD(2007a)Mineral chemistry of biotie in the Qitianling granite associated with the Furong tin deposit:trancing tin mineralization signatures.Acta Petrol Sin 23:2605-2614(in Chinese with English abstract)

    Li ZL,Hu RZ,Yang JS,Peng JT,Li XM,Bi XW(2007b)He,Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit,Hunan Province,China.Lithos 97:161-173

    Linnen RL,Pichavant M,Holtz F,Burgess S(1995)The effect of fo2on the solubility,diffusion and speciation of tin in haplogranitic melt at melt at 850°C and 2kbar.Geochim et Cosmochim Acta 59:1579-1588

    Linnen RL,Pichavant M,Holtz F(1996)The combined effect of fo2and melt composition on SnO2solubility and tin diffusion in haplogranitic melts.Geochim Cosmochim Acta 60:4965-4976

    Liu YS,Chen SQ (1986)An experimental study on cassiterite solubility and tin transport during mineralization.Acta Geol Sin 59:78-87

    Liu YM,Xu JF,Dai TM,Li XH,Deng XG,Wang Q(2003)40Ar-39Ar isotopic ages of Qitianling granite and their geologic implications.Sci China(D)46:50-59

    Liverton T,Botelho NF(2001)Fractionated alkaline rare-metal granites:two examples.J Asian Earth Sci 19:399-412

    Lowenstern JB,Mahood GA,Rivers ML,Sutton SR(1991)Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252:1405-1409

    Mao JW,Li YH,Li HY,Wang DH,Song HB(1997)Helium isotopic evidence on metalgenesis of mantle fluids in the Wangu gold deposit,Hunan Province.Geol Rev 43:646-649(in Chinese with English abstract)

    Mathez EA,Webster JD(2005)Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid.Geochim Cosmochim Acta 69:1275-1286

    Mitchell AHG,Carson MS(1981)Mineral deposits and global tectonic settings.Academic Press,Cambridge

    Mu¨ller B,Seward TM (2001)Spectrophotometric determination of the stability of tin(II)chloride complexes in aqueous solution up to 300°C.Geochim Cosmochim Acta 65:4187-4199

    Osborn EF(1979)The reaction principle.In:Yoder HS(Ed)The evolution of Igneous Rocks,fiftieth anniversary perspectives. Princeton University Press,Princeton,pp 133-170

    Peiffert C,Cuney M,Chinh NT(1994)Uranium in granitic magmas:part I.experimental determination of uranium-solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3system at 720-770°C,2kbar.Geochim Cosmochim Acta 58:2495-2507

    Peng JT,Hu RZ,Yuan SD,Bi XW,Sheng NP(2008)The time ranges of granitoid emplacement and related nonferrous metallic mineralization in Southern Hunan.Geol Rev 54:617-625(in Chinese with English abstract)

    Petrova ZI,Legeydo VA(1965)Geochemistry of tin in the magmatic process.Geochem Intern 2:301-307(translated from Geokhimiya 4,482-489)

    Sawkins FJ.Metal deposits in relation to plate tectonics.2nd,Springer-Verlay;1990.p.315

    Shannon RD(1976)Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751-767

    Sherman DM,Ragnarsdottir KV,Oelkers EH,Collins CR(2000)Speciation of tin(Sn2+and Sn4+)in aqueous Cl solutions from 25°C to 350°C:an in situ EXAFS study.Chem Geol 167:169-176

    Shuang Y(2007)The geochemistry of ore-forming fluid of Furong tin polymetallic deposit in Hunan Province,P.R.China.Ph.D. thesis,IGCAS(in Chinese with English abstract)

    Shuang Y,Bi XW,Hu RZ,Peng JT,Li ZL,Li XM,Yuan SD,Qi YQ(2006)Tin-polymetallic deposit and its indication of source of hydrothermal ore-forming fluid.Mineral Petrol 26:57-65(in Chinese with English abstract)

    Signorelli S(2000)Carroll MR solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts.Geochim Cosmochim Acta 64:2851-2862

    Spilliaert N,Metrich N,Allard P(2006)S-Cl-F degassing pattern of water-rich alkali basalt:modelling and relationship with eruption stylesonMountEtanavolcano.EarthPlanetSciLett248:772-786

    Sun SS,Higgins NC(1996)Neodymium and strontium isotope study of the Blue Tier Batholith,NE Tasmania,and its bearing on the origin of tin-bearing alkali feldspar granites.Ore Geol Rev 10:339-365

    Taylor GR(1979)Geology of tin deposits.Elsevier,NewYork

    Taylor JR,Wall VJ(1993)Cassiterite solubility,tin speciation,and transport in a magmatic aqueous phase.Econ Geol 88:437-460

    Tu GZ(1989)Alkali-rich intrusive rocks.Mineral Resour Geol 13:1-4(in Chinese)

    Urabe T(1985)Aluminous granite as a source magma of hydrothermal ore deposits:an experimental study.Econ Geol 80:148-157 Villemant B,Boudon G (1999)H2O and halogen(F,Cl,Br)behaviour during shallow magma degassing processes.Earth Planet Sci Lett 168:271-286

    Wang YR,Haselton T,Aruscavage P(1986)Experimental research on the partitioning coefficients of tin between fluids and granitic melts.Annual Report Institute of Geochemistry Academia Sinica.GuiYang.GuiZhouPeople’sPublishingHouse,pp 180-181(in Chinese)

    Wang DH,Chen YC,Li HQ,Chen ZH,Yu JJ,Lu YF(2003a)Geochemistry characteristics of Furong tin deposit and its significance for ore prospecting,Hunan.Geol Bull China 22:50-56(in Chinese with English abstract)

    Wang DH,Chen YH,Li HQ,Chen ZH,Yu JJ,Lu YF,Li JY(2003b)Geological and geochemical features of the Furong tin deposits in Hunan and their significance for mineral prospecting.Bull Geol 22:50-56(in Chinese with English abstract)

    Wang XW,Wang XD,Liu JQ,Chang HL(2004)Relationship of Qitianling granite to Sn mineralization in Hunan Province.Geol Sci Technol Inf 23:1-12(in Chinese with English abstract)

    Webster JD(1990)Partitioning of F between H2O and CO2fluids and topaz rhyolite melt.Contrib Mineral Petrol 104:424-438

    Webster JD(1992a)Fluid-melt interactions in Cl-rich granitic systems:effects of melt composition at 2kbar and 800°C. Geochim Cosmochim Acta 56:659-678

    Webster JD(1992b)Fluid-melt interactions involving Cl-rich granites:experimental study from 2 to 8 kbar.Geochim Cosmochim Acta 56:679-687

    Webster JD(1992c)Water solubility and chlorine partitioning in Clrich granitic systems:effect of melt composition at 2kbar and 800°C.Geochim Cosmochim Acta 56:678-687

    Webster JD(1997)Exsolution of magmatic volatile phases from Clenriched mineralizing granitic magmas and implications for ore metal transport.Geochim Cosmochim Acta 61:1017-1029

    Webster JD,Holloway JR(1988)Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:new implications for granitic differentiation and ore deposition.Geochim Cosmochim Acta 52:2091-2105

    Wei SL,Zeng QW,Xu YM,Lan XM,Kang WQ,Liao XJ(2002)Characteristics and ore prospects of tin deposits in the Qitianling area,Hunan.Geol China 29:67-75(in Chinese with English abstract)

    Wilson GA,Eugster HP(1990)Cassiterite solubility and tin speciation in supercritical chloride solutions.In:Spencer RJ,Chou-I-Ming(eds)Fluid-mineral interactions;a tribute to H.P. Eugster,vol 2.Geochemical Society Special Publications,Houston,pp 179-195

    Xia HY,Liang SY(1991)The genesis of granitic Tin-Tungsten rare metal ore deposits in the South-east of China.China Science Press,Beijing(in Chinese)

    Xiong XL,Zhao ZH,Zhu JC,Rao B,Lai M(1998)Experiments on the fluid/melt partition of fluorine in the system albite granite-H2O-HF.Geochimica 27:67-73

    Xu H,Zhao M,Ji SY(1995)A study on the composition and structural state of K-feldspars from Qianlishan granites,Hunan Province. J Nanjing Univ 31:121-127(in Chinese with English abstract)

    Xu YM,Hou MS,Liao XJ,Ao ZW(2000)Deposit types and prospect for prospecting of Sn deposits in Furong ore fluid,Chenzhou. Hunan Geol 19:95-100(in Chinese with English abstract)

    Yeap EB(1993)Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development.J South East Asian Earth Sci 8:329-348

    Zhao ZH,Bao ZW,Zhang BY(1998)Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province.Sci China(D)41(-suppl.):102-112(in Chinese with English abstract)

    Zhao ZH,Bao ZW,Zhang BY,Xiong XL(2000)Crust-mantle interaction and its contribution to the Shizhuyuan tungstenpolymetallic mineralization.Sci China(D)30(suppl.):161-168(in Chinese with English abstract)

    Zhao KD,Jiang SY,Jiang YH,Wang RC(2005)Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan province,South China:implication for the genesis of granite and related tin mineralization.Eur J Mineral 17:635-648

    Zheng JJ,Jia BH(2001)Geological characteristics and related tin polymetallic mineralization of the Qitianling granite complex in southern Hunan province.Geol Mineral Resour South China 9:50-57(in Chinese with English abstract)

    Zhu J,Zhang P,Xie C(2007)Qitianling granite body.In:Zhou X et al(eds)Genesis of late mesozoic granites in Nanning region and geodynamic evolution of lithosphere.Science Press,Beijing,pp 520-533(in Chinese)

    22 June 2014/Revised:19 November 2015/Accepted:8 January 2016/Published online:21 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    国产一区有黄有色的免费视频 | 菩萨蛮人人尽说江南好唐韦庄| 天天一区二区日本电影三级| 国产精品人妻久久久久久| 日日啪夜夜爽| 人妻系列 视频| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 久久精品人妻少妇| 国产激情偷乱视频一区二区| 永久免费av网站大全| 中文字幕av在线有码专区| 又黄又爽又刺激的免费视频.| 久久久国产一区二区| 全区人妻精品视频| 可以在线观看毛片的网站| 成人亚洲精品av一区二区| 亚洲欧洲日产国产| 国产精品无大码| 寂寞人妻少妇视频99o| 免费看不卡的av| 极品少妇高潮喷水抽搐| 国产v大片淫在线免费观看| 毛片女人毛片| 国产精品精品国产色婷婷| 少妇人妻一区二区三区视频| 国产av码专区亚洲av| 成人一区二区视频在线观看| 亚洲av不卡在线观看| 国产精品嫩草影院av在线观看| av卡一久久| 综合色丁香网| 激情 狠狠 欧美| 我的女老师完整版在线观看| 欧美精品一区二区大全| 免费看光身美女| 别揉我奶头 嗯啊视频| 99热这里只有是精品在线观看| 国产片特级美女逼逼视频| 久久6这里有精品| 国产av不卡久久| 婷婷色麻豆天堂久久| 午夜福利高清视频| 插逼视频在线观看| 高清午夜精品一区二区三区| 亚洲精品视频女| 丰满人妻一区二区三区视频av| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 午夜福利视频精品| 国产成人a∨麻豆精品| 亚洲精品国产成人久久av| 一级二级三级毛片免费看| 日本wwww免费看| 亚洲自拍偷在线| 亚洲国产精品sss在线观看| 亚洲国产av新网站| 别揉我奶头 嗯啊视频| 最近视频中文字幕2019在线8| 夫妻午夜视频| 三级国产精品欧美在线观看| 亚洲va在线va天堂va国产| 国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 九九在线视频观看精品| 国产探花极品一区二区| 韩国高清视频一区二区三区| 欧美成人a在线观看| 日韩av免费高清视频| 久久久成人免费电影| 国产精品一区二区性色av| 亚洲成色77777| 国产精品人妻久久久久久| 日韩视频在线欧美| 亚洲国产精品国产精品| 亚洲精品456在线播放app| 亚洲四区av| 丰满乱子伦码专区| 国产一区亚洲一区在线观看| 日韩制服骚丝袜av| 婷婷色麻豆天堂久久| 精品不卡国产一区二区三区| 国产高清三级在线| 国产亚洲精品久久久com| 国产精品一及| 精品久久久噜噜| 久久6这里有精品| 婷婷色麻豆天堂久久| 成年av动漫网址| 国产黄a三级三级三级人| 你懂的网址亚洲精品在线观看| 亚洲精品中文字幕在线视频 | 美女高潮的动态| 成人av在线播放网站| 五月天丁香电影| 中文欧美无线码| 国产一区二区三区综合在线观看 | 久久久久国产网址| 成人一区二区视频在线观看| 亚洲成人久久爱视频| 高清欧美精品videossex| 男女国产视频网站| 亚洲经典国产精华液单| 中文欧美无线码| 国产成人freesex在线| 一级毛片 在线播放| 男女边摸边吃奶| 麻豆久久精品国产亚洲av| 国产成人精品福利久久| 亚洲国产日韩欧美精品在线观看| 如何舔出高潮| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区黑人 | 亚洲国产高清在线一区二区三| 人妻少妇偷人精品九色| 好男人在线观看高清免费视频| 国产亚洲精品av在线| 插阴视频在线观看视频| 成人国产麻豆网| 99久久九九国产精品国产免费| 建设人人有责人人尽责人人享有的 | 日韩大片免费观看网站| 秋霞伦理黄片| av卡一久久| 久久久精品94久久精品| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 久久久久国产网址| 久久久久网色| 熟妇人妻久久中文字幕3abv| 伊人久久精品亚洲午夜| 看黄色毛片网站| 直男gayav资源| 亚洲精品乱久久久久久| 亚洲国产精品sss在线观看| 男人舔奶头视频| 高清日韩中文字幕在线| av在线播放精品| 国产亚洲一区二区精品| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区免费观看| 午夜福利网站1000一区二区三区| 午夜日本视频在线| 亚洲乱码一区二区免费版| 久久久成人免费电影| 亚洲国产欧美人成| 天堂√8在线中文| 亚洲欧洲日产国产| 日本爱情动作片www.在线观看| 欧美日韩国产mv在线观看视频 | 国产成人精品一,二区| 成人综合一区亚洲| 成人欧美大片| 青春草视频在线免费观看| 亚洲av成人精品一区久久| 大又大粗又爽又黄少妇毛片口| 青春草视频在线免费观看| 国产高清三级在线| 男女国产视频网站| 久久久午夜欧美精品| 五月伊人婷婷丁香| 亚洲av成人精品一二三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合色惰| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 亚洲精品国产成人久久av| 男女边吃奶边做爰视频| 午夜精品国产一区二区电影 | 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 亚洲av日韩在线播放| 久久精品久久久久久噜噜老黄| 99九九线精品视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 久久这里有精品视频免费| 人体艺术视频欧美日本| 纵有疾风起免费观看全集完整版 | 午夜爱爱视频在线播放| 好男人视频免费观看在线| 欧美一区二区亚洲| 少妇裸体淫交视频免费看高清| 美女内射精品一级片tv| 久久久久精品性色| 国产乱来视频区| 精品久久久久久久久久久久久| av线在线观看网站| 欧美日韩在线观看h| 亚洲国产欧美在线一区| 亚洲av电影在线观看一区二区三区 | 日日摸夜夜添夜夜添av毛片| 精品一区二区三卡| 日韩欧美一区视频在线观看 | 高清毛片免费看| 成人一区二区视频在线观看| 99热这里只有是精品50| av在线老鸭窝| 国产69精品久久久久777片| 久久精品人妻少妇| 欧美精品一区二区大全| 亚洲欧美日韩无卡精品| 白带黄色成豆腐渣| 免费看不卡的av| 久久精品综合一区二区三区| 国产黄片视频在线免费观看| 亚洲精品国产av成人精品| 久久韩国三级中文字幕| 最后的刺客免费高清国语| 少妇人妻精品综合一区二区| 中文字幕制服av| 欧美高清成人免费视频www| 一级毛片aaaaaa免费看小| 十八禁国产超污无遮挡网站| 精品久久久噜噜| 欧美变态另类bdsm刘玥| 午夜免费男女啪啪视频观看| 亚洲国产日韩欧美精品在线观看| 成人亚洲精品一区在线观看 | 在线天堂最新版资源| 神马国产精品三级电影在线观看| 成人国产麻豆网| 久久久久久久午夜电影| 亚洲高清免费不卡视频| 狂野欧美白嫩少妇大欣赏| 高清毛片免费看| 午夜免费男女啪啪视频观看| 黄色日韩在线| 国产乱人视频| 日韩制服骚丝袜av| 亚洲精品国产成人久久av| 国模一区二区三区四区视频| 国内精品宾馆在线| 好男人视频免费观看在线| a级毛片免费高清观看在线播放| 深夜a级毛片| 精品人妻偷拍中文字幕| 色综合色国产| 欧美变态另类bdsm刘玥| 久久久久久久国产电影| 男插女下体视频免费在线播放| 97在线视频观看| 国产一区亚洲一区在线观看| 日韩欧美精品v在线| 亚洲第一区二区三区不卡| 久久久久免费精品人妻一区二区| 婷婷色av中文字幕| 三级毛片av免费| 在线 av 中文字幕| 国产精品熟女久久久久浪| 禁无遮挡网站| 欧美 日韩 精品 国产| 国产成人a区在线观看| 插阴视频在线观看视频| 一区二区三区乱码不卡18| 亚洲av电影不卡..在线观看| 国产色婷婷99| 人妻一区二区av| 亚洲色图av天堂| 91aial.com中文字幕在线观看| 亚州av有码| 在线观看免费高清a一片| 非洲黑人性xxxx精品又粗又长| 乱码一卡2卡4卡精品| 伦精品一区二区三区| 亚洲经典国产精华液单| 汤姆久久久久久久影院中文字幕 | 蜜臀久久99精品久久宅男| 日日啪夜夜爽| 99热这里只有精品一区| 欧美97在线视频| 日韩电影二区| 能在线免费观看的黄片| 青春草国产在线视频| 午夜精品国产一区二区电影 | 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久 | 午夜激情久久久久久久| 亚洲国产精品成人综合色| 97精品久久久久久久久久精品| 极品少妇高潮喷水抽搐| kizo精华| 午夜福利网站1000一区二区三区| 男人舔女人下体高潮全视频| 一区二区三区乱码不卡18| 久久久久久久大尺度免费视频| 内射极品少妇av片p| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 一级a做视频免费观看| 欧美日韩国产mv在线观看视频 | 成人亚洲欧美一区二区av| 国产一区二区三区av在线| 色综合站精品国产| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 熟妇人妻久久中文字幕3abv| 91午夜精品亚洲一区二区三区| 日韩不卡一区二区三区视频在线| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 一级毛片久久久久久久久女| 麻豆国产97在线/欧美| 国产精品爽爽va在线观看网站| 亚洲精品色激情综合| 国产高清国产精品国产三级 | 久久精品熟女亚洲av麻豆精品 | 日韩欧美 国产精品| 婷婷色综合大香蕉| 亚洲av福利一区| 国产免费视频播放在线视频 | 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 国产成人精品婷婷| 一个人免费在线观看电影| 成人无遮挡网站| 精品欧美国产一区二区三| 午夜久久久久精精品| 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 精华霜和精华液先用哪个| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩卡通动漫| 国产精品久久久久久精品电影小说 | 欧美极品一区二区三区四区| 天堂网av新在线| 久久久久久久久久成人| 国产一级毛片七仙女欲春2| 久久这里只有精品中国| 午夜福利视频精品| 麻豆av噜噜一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲成色77777| 亚洲乱码一区二区免费版| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 亚洲成人一二三区av| 精品一区二区三卡| 亚洲欧美成人精品一区二区| 国产一级毛片七仙女欲春2| 亚洲内射少妇av| 97热精品久久久久久| 亚洲国产成人一精品久久久| 日韩成人伦理影院| 身体一侧抽搐| 天堂√8在线中文| 久久午夜福利片| 亚洲图色成人| 99视频精品全部免费 在线| 日本wwww免费看| 91在线精品国自产拍蜜月| 人妻系列 视频| 久久久欧美国产精品| 亚洲国产精品sss在线观看| 好男人视频免费观看在线| 精品亚洲乱码少妇综合久久| 成年版毛片免费区| 麻豆成人av视频| 亚洲色图av天堂| 日韩精品有码人妻一区| 欧美一区二区亚洲| 成年免费大片在线观看| 久久久久久久久中文| 国产乱人视频| 亚洲精品国产成人久久av| 精品人妻熟女av久视频| 国产探花在线观看一区二区| 午夜福利在线观看免费完整高清在| 日韩大片免费观看网站| 在线 av 中文字幕| 一级毛片aaaaaa免费看小| 男女边摸边吃奶| 嫩草影院精品99| 亚洲人成网站在线播| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| 在线 av 中文字幕| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 最近中文字幕高清免费大全6| 极品教师在线视频| 伦理电影大哥的女人| 国产不卡一卡二| 男女视频在线观看网站免费| 国产久久久一区二区三区| 国产有黄有色有爽视频| 777米奇影视久久| 在线免费观看不下载黄p国产| 亚洲最大成人中文| 亚洲精品日韩av片在线观看| 日日干狠狠操夜夜爽| 最后的刺客免费高清国语| 久热久热在线精品观看| 亚洲成色77777| 日韩欧美三级三区| 国产老妇伦熟女老妇高清| 日韩电影二区| 国产黄色免费在线视频| 国产精品精品国产色婷婷| 亚洲成人一二三区av| 大香蕉久久网| 婷婷六月久久综合丁香| 丰满少妇做爰视频| 中文字幕久久专区| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 亚洲成人一二三区av| 网址你懂的国产日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩综合久久久久久| 一级a做视频免费观看| 欧美丝袜亚洲另类| 中文资源天堂在线| 国产永久视频网站| 一级毛片久久久久久久久女| 欧美成人午夜免费资源| 一级毛片黄色毛片免费观看视频| 亚洲国产av新网站| 国产片特级美女逼逼视频| 91精品一卡2卡3卡4卡| 国产精品无大码| 国产黄色小视频在线观看| 亚洲av不卡在线观看| 国产男女超爽视频在线观看| 国产成人精品婷婷| 一级黄片播放器| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 2021少妇久久久久久久久久久| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久久丰满| 亚洲精品自拍成人| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 尤物成人国产欧美一区二区三区| eeuss影院久久| 国产精品久久久久久久久免| 亚洲精品乱码久久久久久按摩| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 尾随美女入室| 欧美另类一区| 在线观看免费高清a一片| 国产精品一区二区三区四区免费观看| 两个人视频免费观看高清| 日日啪夜夜爽| 我的女老师完整版在线观看| 天堂影院成人在线观看| 亚洲综合色惰| 99热这里只有精品一区| 国产在视频线精品| 一个人免费在线观看电影| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久 | 欧美一级a爱片免费观看看| 99久久精品热视频| 国产在线一区二区三区精| 日韩伦理黄色片| 成年av动漫网址| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的 | 免费高清在线观看视频在线观看| 少妇猛男粗大的猛烈进出视频 | 精品国产露脸久久av麻豆 | 真实男女啪啪啪动态图| 精品一区二区免费观看| 女人被狂操c到高潮| 婷婷色麻豆天堂久久| 日韩av在线大香蕉| 国产不卡一卡二| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 国产男人的电影天堂91| 国产综合懂色| 久久久成人免费电影| 国产在线一区二区三区精| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 亚洲成人精品中文字幕电影| 免费黄色在线免费观看| 身体一侧抽搐| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 免费无遮挡裸体视频| 欧美激情在线99| 亚洲无线观看免费| 最近视频中文字幕2019在线8| 午夜免费观看性视频| 又大又黄又爽视频免费| 午夜精品国产一区二区电影 | 欧美xxⅹ黑人| 久久久久网色| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| 观看美女的网站| 一个人看视频在线观看www免费| 一夜夜www| 亚洲性久久影院| 超碰av人人做人人爽久久| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 亚洲在线自拍视频| 亚洲国产精品专区欧美| 国产在线一区二区三区精| 国产精品一及| 久久久a久久爽久久v久久| 国产成人免费观看mmmm| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 免费少妇av软件| 久久这里只有精品中国| 国产精品蜜桃在线观看| 国产精品综合久久久久久久免费| 久久午夜福利片| 天堂中文最新版在线下载 | 一级a做视频免费观看| 精品一区二区三卡| 欧美另类一区| 国产精品99久久久久久久久| 亚洲av电影在线观看一区二区三区 | 三级毛片av免费| 亚洲欧美精品专区久久| 国产精品一区www在线观看| 国产伦在线观看视频一区| 嫩草影院精品99| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区三区| 一级毛片aaaaaa免费看小| 26uuu在线亚洲综合色| 亚洲国产成人一精品久久久| ponron亚洲| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看| 国产精品一区www在线观看| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 九草在线视频观看| 嫩草影院入口| 免费观看av网站的网址| 在线免费十八禁| 欧美xxⅹ黑人| 国产人妻一区二区三区在| av在线蜜桃| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 99热这里只有是精品在线观看| 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 美女黄网站色视频| 精品久久久噜噜| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 欧美极品一区二区三区四区| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区 | 亚洲色图av天堂| 国语对白做爰xxxⅹ性视频网站| 熟女电影av网| 六月丁香七月| 黄色日韩在线| 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 你懂的网址亚洲精品在线观看| 五月天丁香电影| 男女啪啪激烈高潮av片| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 色尼玛亚洲综合影院| xxx大片免费视频| 久久这里有精品视频免费| or卡值多少钱| 高清视频免费观看一区二区 | 久久久久久久大尺度免费视频| 国产亚洲5aaaaa淫片| 欧美3d第一页| 久久久成人免费电影| 精品一区二区三卡| 中国国产av一级| 少妇熟女aⅴ在线视频| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 亚洲欧美中文字幕日韩二区| 久久精品人妻少妇| 午夜激情福利司机影院| 国产乱人视频| 久久久久性生活片| 中文欧美无线码| 成人鲁丝片一二三区免费| 亚洲熟女精品中文字幕| 欧美3d第一页| 日本色播在线视频| 国产一级毛片在线| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 日韩精品有码人妻一区| 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 尤物成人国产欧美一区二区三区| 七月丁香在线播放| 黄色欧美视频在线观看| 国产成人精品婷婷| 小蜜桃在线观看免费完整版高清| 国产男人的电影天堂91| a级一级毛片免费在线观看| 国产高清国产精品国产三级 | 最近中文字幕高清免费大全6|