• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer

    2016-10-20 02:27:25HongtaoHangYanyouWu
    Acta Geochimica 2016年2期

    Hongtao Hang·Yanyou Wu

    ?

    ORIGINAL ARTICLE

    Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer

    Hongtao Hang1,2·Yanyou Wu1

    The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly,this study quantified the photosynthetic assimilation of inorganic carbon(CO2and HCO3-)by plants.The net photosynthetic CO2assimilation(PN),the photosynthetic assimilation of CO2and bicarbonate(PN’),the proportion of increased leaf area(fLA)and the stablecarbonisotopecomposition(δ13C)of Orychophragmus violaceus(Ov)and Brassica juncea(Bj)under three bicarbonate levels(5,10 and 15 mm NaHCO3)were examined to determine the relationship among PN,PN’and fLA.PN’,not PN,changed synchronously with fLA. Moreover,the proportions of exogenous bicarbonate and total bicarbonate(including exogenous bicarbonate and dissolved CO2-generated bicarbonate)utilised by Ov were 2.27%and 5.28%at 5 mm bicarbonate,7.06%and 13.28%at 10 mm bicarbonate,and 8.55%and 17.31%at 15 mm bicarbonate,respectively.Meanwhile,the proportions of exogenous bicarbonate and total bicarbonate utilised by Bj were 1.77%and 3.28%at 5 mm bicarbonate,2.11%and 3.10%at 10 mm bicarbonate,and 2.36%and 3.09%at 15 mm bicarbonate,respectively.Therefore,the dissolvedCO2-generatedbicarbonateandexogenous bicarbonate are important sources of inorganic carbon for plants.

    Karst·Bicarbonate·Photosynthesis· Inorganic carbonic utilization·Stable carbon isotope composition

    1 Introduction

    In general,terrestrial plants prioritize the use of atmospheric CO2as their principal inorganic carbon source for photosynthesis.Inkarstregions,karstrocks mainly develop in limestone(CaCO3)during the dynamic chemicaldissolutionofcalciumcarbonate[CaCO3+H2-O+CO2→Ca2++HCO3-],wherewaterand atmospheric CO2are consumed.A large amount of dissolved inorganic carbon(DIC)in the form of HCO3-exists in the surface runoff.Therefore,plants growing in the karst regions can utilise both atmospheric CO2and dissolved HCO3-for photosynthesis(Waele et al.2009;Palmer 1991;Wu and Xing 2012;Yan et al.2012).The photosynthetic assimilation of CO2in plants and the chemical dissolution of carbonate rocks are important CO2sinks. Thus,research on the photosynthetic assimilation of inorganic carbon(atmospheric CO2and dissolved HCO3-)in plants is crucial for providing evidence on plant productivity and carbon sinks in the karst regions.

    Photosynthetic activities,which include the net assimilation of CO2,indicate the potential growth and productivity of plants.The photosynthetic rate reflecting the photosynthetic assimilation of CO2in plants can be accurately determined using an open gas-exchange system(Long and Bernacchi 2003).Several studies indicated that plants can utilise exogenous bicarbonate as an alternative inorganic carbon source for photosynthesis when sources of the exogenous inorganic carbon change(Raven 1970;Shelp and Canvin 1980).However,the photosyntheticassimilation of bicarbonate in plants cannot be determined using an open gas exchange system.Some plants utilise exogenous bicarbonate(Wu and Xing 2012;Raven et al. 1982;Price et al.1985),whereas others utilise bicarbonate generated from dissolved CO2.However,the dissolution of carbonate rocks currently remains unclear.

    ? Yanyou Wu wuyanyou@mail.gyig.ac.cn

    1State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    The stable carbon isotope technique is commonly used to identify various carbon sources utilised by plants.The stable carbon isotope ratio(δ13C)can be applied as an index for carbon metabolic processes,such as photosynthesis(Farquhar et al.1989).Labelling the stable carbon isotope in exogenous bicarbonate can trace whether or not plants utilise CO2from the conversion of exogenous bicarbonate for photosynthesis.Therefore,the changes of the δ13C of plant tissues in different culture environments can reflect the sources of inorganic carbon for photosynthesis,as carbon metabolic pathways change when plants are exposed to various environmental conditions.

    Orychophragmus violaceus(L.)and Brassica juncea(L.)Czern.et Coss.cv.Zangyou No.8 are cruciferous plants commonly used as experimental materials because of their high tolerance to bicarbonate stress in Southwest China(Wu et al.2005;Wang et al.2014).In this study,the photosynthetic and growth parameters of O.violaceus and B.juncea under different levels of exogenous bicarbonate were examined to determine their potential productivity. Moreover,the δ13C values of leaves and culture solutions were measured to determine the photosynthetic assimilation of inorganic carbon(atmospheric CO2or HCO3-)under water culture conditions.Furthermore,the relationship between the δ13C and photosynthesis of the two plant species was studied to explore the capacity of the plants to utilise bicarbonate and the‘missing carbon sink’involved in the chemical dissolution of carbonate rocks.

    2 Materials and methods

    2.1 Plant materials and experimental treatments

    The O.violaceus and B.juncea were obtained from the Institute of Geochemistry,Chinese Academy of Sciences and the Guizhou Institute of Rapeseed,respectively.Seeds of these plants were germinated in 12-hole trays with perlitesinagreenhouseata12 hlightcycle(200 μmol m-2s-1,PPFD),a day/night temperature range of 25°C/18°C,and a relative humidity range of 50%-60%in the laboratory of the Institute of Geochemistry,Chinese Academy of Sciences,Guizhou Province,China(26.57°N,106.72°E,altitude of 1045 m).Seedlings which germinated in a uniform size were selected and cultured with half-strength Hoagland nutrient solution(Hoagland and Arnon 1950).5,10,15 mm NaHCO3labelled with δ13C value of-2.45‰ were added into the Hoagland nutrient solution to simulate three bicarbonate levels to culture two-old seedlings which germinated healthily and uniformly from each plant species.Meanwhile,three levels of bicarbonate labelled with δ13C value of-24.409‰were used to culture two-old seedlings that germinated healthily and uniformly.Eighteen healthy and uniform seedlings from each plant species were subjected to both treatments.The modified Hoagland nutrient solution was changed daily to maintain consistency for each treatment. All measurements were conducted in triplicates.

    2.2 Leaf gas exchange

    Leaf gas exchange was determined between 09:00 and 11:00 am by using an open gas-exchange system(Li-6400,Li-Cor,Lincoln,NE,USA).Photosynthesis was induced with light(200 μmol m-2s-1,PPFD)and ambient CO2concentration(400 μmol mol-1).The net photosynthetic rate(PN,μmol CO2m-2s-1),the transpiration rate(E,mmol H2O m-2s-1),and the stomatal conductance(gs,mol H2O m-2s-1)were measured on the youngest fully expanded leaf from the top of all the tested plants on day 7 after the onset of bicarbonate treatment.Water use efficiency(WUE)wascalculatedusingthefollowing equation:

    where PNis the net photosynthetic rate and E is the transpiration rate.

    2.3 Determination of leaf biomass

    The leaf biomass was estimated to determine the leaf area(LA,mm2)of the youngest fully expanded leaf of both plants from each bicarbonate treatment(Evans and Poorter 2001).After 1,3,5,7,9,11,and 13 days of water culture,the leaf length(XL,mm)and the maximum leaf width(XW,mm)of the youngest fully expanded leaves from each bicarbonatetreatmentweredeterminedusinga portable digital caliper.Leaves in varying sizes of each plant species were randomly selected to determine the LA,leaf length,and maximum leaf width on day 7.The values of LA were estimated using the leaf length and the maximum leaf width of all the leaves on the basis of the following power curve equation:

    where LA(mm2)is the value of the LA of each plant at different bicarbonate treatments on day 7,and b0and b1are constants.

    To eliminate the physiological errors produced by the initial leaf,the initial leaf length and maximum leaf widthof each plant species under different bicarbonate treatments were calibrated using the followed logistic equation:

    where LA’is the LA of each plant treated with bicarbonate;A,B,and K are constants;and t is the culture time(t=0,1,3,5,7,9,11,13 days).

    Furthermore,the proportion of increased biomass(fLA)during bicarbonate treatment can be calculated as

    2.4 Determination of the stable carbon isotope composition in leaves

    The stable carbon isotope ratios(δ13CL)of the first youngest fully expanded leaf from the top of each tested plants at each bicarbonate treatment level was determined via gas isotope ratio mass spectrometry(MAT-252,F(xiàn)innigan MAT,Bremen,Germany).The δ13C values of leaves from three seedlings in each plant species under each bicarbonate level were determined on day 7 after the bicarbonate treatment.The stable carbon isotope ratios(δ13C)in all samples were calculated using a standard equation(Pee Dee Belemnite,PDB)and expressed as Eq.4.The accuracy of the analysis was±0.1‰.

    2.5 Determination of the proportion of exogenous bicarbonate in the nutrient solution

    The stable carbon isotope ratios(δ13CNS)in the nutrient solution from each plant under each treatment were determined 1 day after the bicarbonate treatment via gas isotope ratio mass spectrometry.

    According to the bivariate isotope-mixture model,

    where δNSiis the δ13C value of the nutrient solution,δais the δ13C value of the bicarbonate generated from atmospheric carbon dioxide,δCiis the δ13C value of the initial nutrient solution added with exogenous NaHCO3,and fBNSiis the proportion of exogenous bicarbonate in the total inorganic carbon sources in the nutrient solution.

    For the exogenous NaHCO3labelled with a δ13C value of-2.45‰PDB,Eq.5 can be changed to

    where δNS1is the δ13C value of the nutrient solution,δais the δ13C value of the bicarbonate generated from atmospheric carbon dioxide,δC1is the δ13C value of the initial nutrient solution added with exogenous NaHCO3and labelled with a δ13C value of-2.45‰PDB,and fBNS1is the proportion of exogenous bicarbonate in the total inorganic carbon sources in the nutrient solution.Similarly,for the exogenous NaHCO3labelled with a δ13C value of -24.409‰PDB,Eq.5 can be changed to

    where δNS2is the δ13C value of the nutrient solution,δais the δ13C value of the bicarbonate generated from atmospheric carbon dioxide,δC2is the δ13C value of the initial nutrient solution added with exogenous NaHCO3and labelled with a δ13C value of-24.409‰PDB,and fBNS2is the proportion of exogenous bicarbonate in the total inorganic carbon sources in the nutrient solution.

    Plant seedlings with uniform sizes were randomly selected for analysis;thus,fBNS1can be equal to fBNS2.-Comparing Eq.6 with Eq.7,we can calculate fBNSas

    where δNS1is the δ13C value of the bicarbonate treatment solution added with NaHCO3and labelled with a δ13C value of-2.45‰PDB,δNS2is the δ13C value of the bicarbonate treatment solution added with NaHCO3and labelled with a δ13C value of-24.409‰PDB,and fBNSis the proportion of exogenous bicarbonate in the total inorganic carbon sources in the nutrient solution.

    2.6 Calculations of the bicarbonate utilisation proportion and corrected photosynthetic rate

    For the bivariate isotope-mixture model,

    δLis the δ13C value of the leaves in the tested plants cultivated with NaHCO3and labelled with an δ13C value of -2.45‰or-24.409‰PDB,δAis the δ13C value of the leaf in the tested plants with atmospheric CO2as the sole carbon source,δBis the δ13C value of the leaf of the tested plants with exogenous NaHCO3as the sole carbon source,and fBLis the proportion of exogenous bicarbonate utilised by the tested plants under each bicarbonate treatment.

    For the exogenous NaHCO3labelled with a δ13C value of-2.45‰PDB,Eq.9 can be changed to

    where δL1is the δ13C value of the leaves in the tested plants cultivated with NaHCO3and labelled with a δ13C value of-2.45‰PDB,δA1is the δ13C value of the leaf in the tested plants with atmospheric CO2as the sole carbon source,δB1is the δ13C value of the leaf of the tested plants with exogenous NaHCO3as the sole carbon source,and fBL1is the proportion of exogenous bicarbonate utilised by the tested plants under each bicarbonate treatment.

    Similarly,for the exogenous NaHCO3labelled with a δ13C value of-24.409‰PDB,Eq.9 can be changed to

    where δL2is the δ13C value of the leaves in the tested plants cultivated with NaHCO3and labelled with a δ13C value of-24.409‰PDB,δA2is the δ13C value of the leaf in the tested plants with atmospheric CO2as the sole carbon source,δB2is the δ13C value of the leaf in the tested plants with exogenous NaHCO3as the sole carbon source,and fBL2is the proportion of exogenous bicarbonate utilised by the tested plants under each bicarbonate treatment.

    In this study,plant seedlings with uniform sizes were randomly selected for analysis.Thus,δA1could be equal to δA2,and fBL1could be equal to fBL2.Comparing Eq.10 with Eq.11,we can calculate the proportion of utilised exogenous bicarbonate(fBL)as

    For(δB1-δB2)in Eq.12,the difference can be replaced with(δC1-δC2),where δC1and δC2represent the δ13C valuesofNaHCO3labelledwith-2.45‰and -24.409‰PDB,respectively.Thus,Eq.12 can be changed to

    where fBLonly represents the proportion of exogenous bicarbonate used by the plants(in total leaf biomass)as a photosynthetic substance during the bicarbonate treatment. Thus,the bicarbonate utilisation proportion(fb)of the increased leaf biomass of each plant during the bicarbonate treatment can be calculated as

    where fbis the proportion of utilised exogenous bicarbonate with increased leaf biomass(LA’i-LA’0)during the bicarbonate treatment,fBLis the proportion of exogenous bicarbonate used by the plants(in total leaf biomass)as a photosynthetic substance during the bicarbonate treatment,and fLAis the proportion of increased biomass during the bicarbonate treatment.

    We used Eq.14 to determine the proportion of exogenous NaHCO3used by the plants(in increased leaf biomass)as a photosynthetic inorganic carbon during the bicarbonate treatment.However,the addition of both exogenous bicarbonate and dissolved atmospheric CO2in the nutrient solution can trigger a reversible chemical reaction because of the bicarbonate treatment.We assumed that fBNS0and fBNSare the proportions of exogenous bicarbonate in the initial and final nutrient solutions,respectively.In this study,the value of fBNS0can be considered as 1,and the value of fBNScan be calculated using Eq.8.Furthermore,the proportion of total bicarbonate(fb’)utilised by each plant during the bicarbonate treatment can be calculated with

    The bicarbonate utilisation capacity(BUC)and the corrected photosynthetic rate(PN’)were calculated with

    where PNis the net photosynthetic rate of the plants with CO2as the sole carbon source for photosynthesis,fb’is the proportion of total bicarbonate utilised by the plants,and BUC is the photosynthetic rate of the plants which catalysed bicarbonate into CO2for photosynthesis7.

    2.7 Data analysis

    Data were subjected to ANOVA to determine significant differences(defined as P≤0.05)between group means. Data are shown as mean±standard error(SE)via factorial analysis with SPSS(version 20.0).The mean results were compared via a Duncan post hoc test at the 5%significance level(P≤0.05).

    3 Results

    3.1 Gas exchange

    TheO.violaceusandB.junceaexhibiteddifferentchangesin gas exchangecharacteristics,suchasPN,gs,andWUE,under variousbicarbonatelevels(Fig.1).PNsignificantly decreased in O.violaceus but increased in B.juncea after the bicarbonate treatment.However,both plants showed no significant changes in gsafter treatments with different bicarbonate levels.Furthermore,the WUE values of both plants significantly increased after the bicarbonate treatment,and the highest WUE was achieved at 10 mm bicarbonate.

    3.2 Leaf biomass

    To estimate accurately the leaf biomass,15 leaves of varying sizes from each plant species were randomly selected to determine the LA,leaf length and maximumleaf width.The LAs can be estimated using the power curve equation(Table 1).Furthermore,the leaf area of both plants in the hydroponic culture with bicarbonates for various culturing times can be fitted using the logistic growth model equation(Table 2).The initial leaf,initial leaf length,and maximum leaf width of each plant species under various bicarbonate treatments were calibrated on the basis of the logistic growth equation to eliminate physiological errors.

    The O.violaceus and B.juncea exhibited different changes in fLAvalues under different bicarbonate levels(Fig.2).The highest and lowest fLAvalues in O.violaceus were under 10 and 15 mm bicarbonate levels,respectively. Those of B.juncea were under 10 and 5 mm bicarbonate levels,respectively.

    Fig.1 Net photosynthetic rate(a,PN),stomatal conductance(b,gs)and water use efficiency(c,WUE)of Orychophragmus violaceus and Brassica juncea under bicarbonate treatments.The mean±SE(n=9)followed by different letters in the same plant species differ significantly at p≤0.05 subjected to one-way ANOVA and t-test

    Table 1 Leaf area estimation model

    Table 2 The model of growth rate(leaf area)with time(t)

    3.3 Leaf stable carbon isotope ratios

    The δ13C values of the leaves varied with plant species and bicarbonate treatments(Table 3).The δ13C values of O. violaceus were higher than those of B.juncea.Moreover,the δ13C values of O.violaceus and B.juncea were higher under treatment with 10 mm bicarbonate than under treatments with other bicarbonate levels.

    3.4 Stable carbon isotope rations in the nutrient solution

    Similarly,the δ13C values in the bicarbonate treatment solutions varied with plant species and bicarbonate levels(Table 4).Whenthebicarbonateconcentrationwasincreased,the δ13C values in the initial nutrient solutions(δ1and δ2)used to culture the plants for 1 day were similar to those of the exogenous bicarbonate(δC1and δC2).

    3.5 BUC and corrected photosynthetic rates

    The seedlings of the two plants were cultured for 7 d under treatments with different levels of exogenous NaHCO3and labelledwithδ13Cvaluesof-24.409‰and -2.45‰PDB.The fBLand fb’of both plants were calculated using Eqs.13 and 15,respectively.The fBLand fb’values of O.violaceus were significantly increased with the increasing concentration of bicarbonate,while those in B. juncea had no significant change(Fig.3a).The fBLand fb’values of B.juncea were lower than those of O.violaceus under each bicarbonate treatment.The photosynthetic inorganic carbon assimilation capacities(BUC and PN’)were calculated using Eqs.16 and 17,respectively.O. violaceus had higher BUC than B.juncea under the same bicarbonate treatment(Fig.3b).However,the PN’of O. violaceus were lower than that of B.juncea under each treatment.Moreover,both plants had the highest PN’values under the 10 mm bicarbonate level.

    Fig.2 The proportion of the increased leaf biomass(fLA)during bicarbonate treatment,asterisk represents the calibrated fLAvalues in the same parameters.Ov-Orychophragmus violaceus,Bj-Brassica juncea.The mean±SE(n=9)followed by different letters in the same plant species differ significantly at p≤0.05 subjected to oneway ANOVA and t-test

    Table 3 δ13C values of the leaves of Orychophragmus violaceus and Brassica juncea under bicarbonate treatments

    4 Discussion

    TerrestrialplantsutiliseatmosphericCO2astheir principal inorganic carbon source for photosynthesis. However,theseplantscanalsoutiliseexogenous bicarbonate as an alternative inorganic carbon source for photosynthesis when sources of exogenous inorganic carbon change(Raven 1970;Shelp and Canvin 1980).In karst regions,during the chemical dissolution ofcarbonaterocks(CaCO3+H2O+CO2→-Ca2++HCO3-),the majority of DIC is involved in the formation of bicarbonate.In the presence of plants,the dissolution of carbonate rocks can be accelerated by various biological effects.Therefore,plants growing in karst regions have access to both atmospheric CO2and bicarbonate for photosynthesis(Waele et al.2009;Yan et al.2012;Raven 1970).

    PNreflects the photosynthetic CO2assimilation and thus the potential growth and productivity of plants.This index can be determined using the open gas exchange system. Several studies determined the bicarbonate utilisation capacities of particular plants under hydroponic culture conditions via the stable carbon isotope technique;however,the fact that the bicarbonate generated from the dissolved CO2is utilised by the plants was ignored(Long and Bernacchi 2003;Wu and Xing 2012).In natural environments,quantifying the photosynthetic assimilation of bicarbonate in plants is difficult.Based on previous studies,the present study developed a new and improved method to quantify the bicarbonate utilisation capacity of plants under various bicarbonate levels via the stable carbon isotope technique in hydroponic culture.

    The PNand LA of both plants under various bicarbonate levels were examined in this study(Figs.1a,2).When the bicarbonate levels increased,the PNof O.violaceus significantly decreased,whereas that of the B.junceasignificantly increased.The increased fLAin O.violaceus changed non-synchronously with PNas the bicarbonate treatment intensified(Fig.4a).Meanwhile,the fLAvalues in the leaves of the B.juncea changed synchronously with the PNin response to various bicarbonate treatments.The deviation between the fLAand PNof the O.violaceus revealed that the PNvalues determined using the open gas exchange system did not reflect the true response to bicarbonate treatments and that some errors of the fLAvalues were caused by the difference in the properties of the initial leaves.Thus,an LA growth logistical model was established to eliminate these errors under each bicarbonate level.To eliminate the physiological errors caused by the initial leaf,we assumed that the calibrated values of LA in the initial leaves were 287 mm2in O.violaceus and 152 mm2in B.juncea.Similarly,the fLA*of O.violaceus still changed non-synchronously with PN.Therefore,we hypothesised that the PNdoes not reflect the real growth state(fLAor fLA*)under bicarbonate treatments.Furthermore,the change in δ13C values in the leaves and culture solutions treated with different bicarbonate levels can reflect that the plants can utilise both exogenous bicarbonate(NaHCO3)and dissolved atmospheric CO2-generated bicarbonate.

    Table 4 δ13C values in the nutrient solutions under bicarbonate treatments

    Fig.3 The various forms and proportions of bicarbonate utilized by the plants(a)and photosynthetic inorganic carbon assimilation capacities(b)of both plants among bicarbonate treatment.fBLis the proportion of exogenous bicarbonate utilised by the plants,fb’is the proportion of total bicarbonate utilised by the plants,(fb’-fBL)is the proportion of the bicarbonate generated by the dissolved CO2utilized by the plants.PNis net photosynthetic rate and BUC is bicarbonate-utilisation capacity of the plants.Asterik represents the calibrated values in the same parameters. Ov-Orychophragmus violaceus,Bj-Brassica juncea.The mean±SE(n=9)followed by different letters in the same plant species differ significantly at p≤0.05 subjected to one-way ANOVA and t-test

    Fig.4 The relationship of photosynthetic rate(PN,PN’or PN’*)and the proportion of increased leaf biomass(fLAor fLA*)of Orychophragmus violaceus(a)and Brassica juncea(b)during the bicarbonate treatment

    The PN'and PN'*changed synchronously with fLAand

    fLA*in the leaves of both plants under various bicarbonate levels(Fig.4).During the bicarbonate treatment period(7 days),the proportions of exogenous NaHCO3and total bicarbonate(including exogenous bicarbonate and the bicarbonate generated by the dissolved CO2)utilised by O. violaceus were 2.27%and 5.28%at 5 mm bicarbonate,7.06%and 13.28%at 10 mm bicarbonate,and 8.55% and 17.31%at 15 mm bicarbonate,respectively.Meanwhile,the proportions of exogenous NaHCO3and total bicarbonate utilised by B.Juncea were 1.77%and 3.28% at 5 mm bicarbonate,2.11%and 3.10%at 10 mm bicarbonate,and 2.36%and 3.09%at 15 mm bicarbonate,respectively.When the amount of exogenous bicarbonate was increased,the amounts of exogenous bicarbonate and total bicarbonate utilised increased in O.violaceus but did not significantly increase in B.juncea.The plants consumed a considerably large amount of bicarbonate generated from the dissolved CO2.The results of this study can be used to explore the potential productivity of the plants and the‘missing carbon sink’produced by the dissolution of carbonate rocks.

    AcknowledgmentsThe study was supported by the National Key Basic Research Program of China(2013CB956701),the National Natural Science Foundation of China(No.31070365),the project on social development of Guizhou Province(SY[2010]3043),and the StateKeyLaboratoryofEnvironmentalGeochemistry(SKLEG2014909).

    Evans JR,Poorter H(2001)Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain.Plant Cell Environ 24:755-767

    Farquhar GD,Ehleringer JR,Hubick KT(1989)Carbon isotope discrimination and photosynthesis.Annul Rev Plant Biol 40:503-537

    Hoagland DR,Arnon DI(1950)The water-culture method for growing plants without soil.Calif Agric Exp St 347:1-32

    Long SP,Bernacchi CJ(2003)Gas exchange measurements,what can they tell us about the underlying limitations to photosynthesis?Procedures and sources of error.J Exp Bot 54:2393-2401

    Palmer A(1991)Origin and morphology of limestone caves.Geol Soc Am Bull 103:1-21

    Price GD,Badger MR,Bassett ME,Whitecross MI(1985)Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina.Funct Plant Biol 12:241-256

    Raven J(1970)Exogenous inorganic carbon sources in plant photosynthesis.Biol Rev 45:167-220

    Raven J,Beardall J,Griffiths H(1982)Inorganic C-sources for Lemanea,Cladophora and Ranunculus in a fast-flowing stream:measurements of gas exchange and of carbon isotope ratio and their ecological implications.Oecologia 53:68-78

    Shelp BJ,Canvin DT(1980)Utilization of exogenous inorganic carbon species in photosynthesis by Chlorella pyrenoidosa.Plant Physiol 65:774-779

    Waele JD,Plan L,Audra P(2009)Recent developments in surface and subsurface karst geomorphology:an introduction.Geomorphology 106:1-8

    Wang R,Wu Y,Hang H,Liu Y,Xie T,Zhang K,Li H(2014)Orychophragmus violaceus L.,a marginal land-based plant for biodiesel feedstock:heterogeneous catalysis,fuel properties,and potential.Energ Convers Manag 84:497-502

    Wu YY,Xing DK (2012)Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae.Photosynthetica 50:587-594

    Wu YY,Wu XM,Li PP,Zhao YG,Li XT,Zhao XZ(2005)Comparison of photosynthetic activity of Orychophragmus violaceus and oil-seed rape.Photosynthetica 43:299-302

    Yan J,Li J,Ye Q,Li K(2012)Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin,southwest China. Chem Geol 304:1-9

    18 September 2015/Revised:30 November 2015/Accepted:29 December 2015/Published online:12 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    91久久精品国产一区二区三区| 在线看a的网站| 男女那种视频在线观看| 亚洲欧美日韩另类电影网站 | 日日摸夜夜添夜夜添av毛片| 亚洲,欧美,日韩| 国产精品国产av在线观看| 亚洲人成网站在线观看播放| 国产色婷婷99| 亚洲av不卡在线观看| 97精品久久久久久久久久精品| 久久久久网色| 国产视频首页在线观看| 又爽又黄a免费视频| 亚洲精品日本国产第一区| 一区二区三区乱码不卡18| 日韩三级伦理在线观看| 久久久久久久久大av| 成年版毛片免费区| 97在线视频观看| 久久久久久久久大av| 日韩大片免费观看网站| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 91久久精品国产一区二区三区| av在线播放精品| 久久97久久精品| 天天躁日日操中文字幕| 国产精品久久久久久av不卡| 亚洲欧美中文字幕日韩二区| 九九爱精品视频在线观看| 天堂俺去俺来也www色官网| 最近2019中文字幕mv第一页| 美女高潮的动态| 国产免费又黄又爽又色| 又黄又爽又刺激的免费视频.| 97超碰精品成人国产| 伦理电影大哥的女人| 免费av不卡在线播放| 美女脱内裤让男人舔精品视频| 高清午夜精品一区二区三区| 亚洲电影在线观看av| 午夜日本视频在线| 免费高清在线观看视频在线观看| 国产黄色免费在线视频| 最新中文字幕久久久久| 26uuu在线亚洲综合色| 久久精品久久久久久噜噜老黄| 午夜激情久久久久久久| 亚洲av一区综合| 国产综合精华液| 黄色怎么调成土黄色| 97热精品久久久久久| 久久97久久精品| 99久国产av精品国产电影| av女优亚洲男人天堂| 欧美成人一区二区免费高清观看| 简卡轻食公司| 国产精品国产三级国产专区5o| 久久精品国产亚洲网站| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 亚洲av在线观看美女高潮| 国产成人a区在线观看| 日韩 亚洲 欧美在线| 五月天丁香电影| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 成人国产av品久久久| 亚洲三级黄色毛片| 麻豆久久精品国产亚洲av| 国产男人的电影天堂91| 2021少妇久久久久久久久久久| 久久精品国产a三级三级三级| 色视频www国产| 女人十人毛片免费观看3o分钟| 欧美性猛交╳xxx乱大交人| 国产亚洲午夜精品一区二区久久 | 国产精品99久久99久久久不卡 | 国产黄a三级三级三级人| 国产男女内射视频| 精品一区在线观看国产| 一边亲一边摸免费视频| 一边亲一边摸免费视频| 欧美日韩视频高清一区二区三区二| 性插视频无遮挡在线免费观看| 最近2019中文字幕mv第一页| av在线老鸭窝| 寂寞人妻少妇视频99o| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 女人十人毛片免费观看3o分钟| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 少妇人妻精品综合一区二区| 看免费成人av毛片| 亚洲伊人久久精品综合| 国产黄色视频一区二区在线观看| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 日本欧美国产在线视频| 免费av观看视频| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃 | 国产在线男女| 国产综合懂色| 18禁裸乳无遮挡动漫免费视频 | 亚洲欧美中文字幕日韩二区| 国产亚洲av嫩草精品影院| 建设人人有责人人尽责人人享有的 | 你懂的网址亚洲精品在线观看| 国产黄频视频在线观看| 各种免费的搞黄视频| 汤姆久久久久久久影院中文字幕| 亚洲国产高清在线一区二区三| 国产精品无大码| 国产成人福利小说| 嫩草影院入口| 精品人妻熟女av久视频| 亚洲人成网站在线观看播放| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 性色avwww在线观看| 中文在线观看免费www的网站| 免费观看av网站的网址| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| av天堂中文字幕网| 亚洲国产欧美人成| 国产爽快片一区二区三区| av.在线天堂| 国产成人福利小说| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线 | 免费观看性生交大片5| av线在线观看网站| 亚洲精品乱码久久久久久按摩| 嫩草影院新地址| 国产在线一区二区三区精| 身体一侧抽搐| 国产高清有码在线观看视频| 男人添女人高潮全过程视频| 日产精品乱码卡一卡2卡三| av在线播放精品| 国产 一区 欧美 日韩| 交换朋友夫妻互换小说| 欧美激情在线99| 老女人水多毛片| 久久热精品热| 午夜老司机福利剧场| 精品一区二区三卡| 黄片wwwwww| 婷婷色综合www| 人妻 亚洲 视频| 深夜a级毛片| 亚洲国产最新在线播放| 中文资源天堂在线| 亚洲av免费在线观看| 久久久久性生活片| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 日本-黄色视频高清免费观看| 久久久精品欧美日韩精品| 在线亚洲精品国产二区图片欧美 | 国产乱来视频区| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 麻豆久久精品国产亚洲av| 国产综合精华液| videos熟女内射| 日日啪夜夜撸| 99久国产av精品国产电影| 亚洲无线观看免费| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线 | 国产成人aa在线观看| 国产欧美亚洲国产| 久久久精品欧美日韩精品| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 国产黄片视频在线免费观看| 秋霞伦理黄片| 久久久久久久久大av| 国产中年淑女户外野战色| 色综合色国产| 嫩草影院精品99| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 日本av手机在线免费观看| 观看免费一级毛片| 美女主播在线视频| 在线免费观看不下载黄p国产| 亚洲成色77777| 国产一区二区亚洲精品在线观看| 精品人妻一区二区三区麻豆| 国产乱人视频| 男插女下体视频免费在线播放| 国产精品人妻久久久久久| 久久久久久伊人网av| 人妻系列 视频| 国产熟女欧美一区二区| 国产av国产精品国产| 国产免费又黄又爽又色| 99热网站在线观看| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 视频中文字幕在线观看| 成人综合一区亚洲| 精品久久久久久电影网| 欧美3d第一页| 亚洲av国产av综合av卡| 亚洲va在线va天堂va国产| 欧美日本视频| 成人国产av品久久久| 久久精品国产自在天天线| 国产淫片久久久久久久久| 成人免费观看视频高清| 深爱激情五月婷婷| 精品久久久久久久人妻蜜臀av| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 久久热精品热| 国产老妇伦熟女老妇高清| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 国产精品伦人一区二区| 国产亚洲5aaaaa淫片| 午夜福利视频1000在线观看| 亚洲色图av天堂| 成人特级av手机在线观看| 日日啪夜夜爽| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 最近中文字幕2019免费版| 综合色丁香网| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人 | 欧美性感艳星| 久久久欧美国产精品| 一级毛片 在线播放| 蜜桃亚洲精品一区二区三区| 婷婷色麻豆天堂久久| 大香蕉97超碰在线| av福利片在线观看| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 夫妻午夜视频| 成人一区二区视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 日本欧美国产在线视频| 九九在线视频观看精品| a级毛片免费高清观看在线播放| 免费黄色在线免费观看| 一区二区av电影网| 久热久热在线精品观看| 免费看a级黄色片| 婷婷色综合www| 久久久欧美国产精品| 久久久久国产网址| 亚洲电影在线观看av| 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 免费av观看视频| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频 | 国产伦理片在线播放av一区| 日韩伦理黄色片| 一二三四中文在线观看免费高清| 国产乱来视频区| 国产亚洲一区二区精品| 国产精品国产av在线观看| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 国产精品伦人一区二区| 99久久九九国产精品国产免费| 亚洲av.av天堂| 国产精品久久久久久精品电影小说 | 插阴视频在线观看视频| 亚洲三级黄色毛片| 只有这里有精品99| 亚洲,一卡二卡三卡| 亚洲图色成人| 国产男女超爽视频在线观看| 夫妻午夜视频| 成人一区二区视频在线观看| 一边亲一边摸免费视频| 成年女人在线观看亚洲视频 | 国产精品国产av在线观看| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| freevideosex欧美| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 久久国内精品自在自线图片| 精品国产露脸久久av麻豆| 国产成人a∨麻豆精品| 国产成人freesex在线| 欧美性猛交╳xxx乱大交人| 80岁老熟妇乱子伦牲交| 精品久久国产蜜桃| 男人添女人高潮全过程视频| 各种免费的搞黄视频| 又爽又黄a免费视频| 午夜福利高清视频| 精品午夜福利在线看| h日本视频在线播放| 国产一区二区三区av在线| 欧美日韩在线观看h| 久久久久久伊人网av| 亚洲四区av| 免费黄网站久久成人精品| 人人妻人人看人人澡| 两个人的视频大全免费| 我的老师免费观看完整版| 草草在线视频免费看| 91久久精品国产一区二区成人| 少妇 在线观看| 亚洲精品456在线播放app| 精品亚洲乱码少妇综合久久| 亚洲,欧美,日韩| 肉色欧美久久久久久久蜜桃 | 免费观看性生交大片5| 精品人妻熟女av久视频| 日韩电影二区| 久久久亚洲精品成人影院| 精品午夜福利在线看| 一级黄片播放器| 十八禁网站网址无遮挡 | 男女那种视频在线观看| 亚洲自拍偷在线| 亚洲综合精品二区| 色5月婷婷丁香| 亚洲精品色激情综合| 色视频www国产| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 美女cb高潮喷水在线观看| av在线亚洲专区| 欧美精品国产亚洲| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 久久精品久久精品一区二区三区| av在线老鸭窝| xxx大片免费视频| 真实男女啪啪啪动态图| 黑人高潮一二区| 九九爱精品视频在线观看| 永久网站在线| 99热网站在线观看| av国产久精品久网站免费入址| 干丝袜人妻中文字幕| 中文字幕人妻熟人妻熟丝袜美| 欧美激情久久久久久爽电影| 自拍偷自拍亚洲精品老妇| 精品少妇久久久久久888优播| 99热6这里只有精品| 国产欧美日韩精品一区二区| av天堂中文字幕网| 亚洲精品自拍成人| 直男gayav资源| 亚洲精品一区蜜桃| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 国产精品一及| 一二三四中文在线观看免费高清| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 69av精品久久久久久| 免费看av在线观看网站| 小蜜桃在线观看免费完整版高清| 亚洲色图av天堂| 精华霜和精华液先用哪个| 成人特级av手机在线观看| 秋霞在线观看毛片| 久久这里有精品视频免费| 男人舔奶头视频| 卡戴珊不雅视频在线播放| 老女人水多毛片| 国产真实伦视频高清在线观看| 成年人午夜在线观看视频| 国产精品一区二区三区四区免费观看| 夫妻午夜视频| 97在线人人人人妻| 中文欧美无线码| 麻豆成人午夜福利视频| 国产有黄有色有爽视频| 亚洲精品日本国产第一区| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 少妇人妻一区二区三区视频| 高清毛片免费看| 一级毛片 在线播放| 黄色欧美视频在线观看| 舔av片在线| 欧美人与善性xxx| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 国产亚洲精品久久久com| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 我要看日韩黄色一级片| 亚洲精品成人av观看孕妇| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 色播亚洲综合网| 狠狠精品人妻久久久久久综合| 在线看a的网站| 亚洲精品国产成人久久av| 97精品久久久久久久久久精品| 免费av观看视频| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 精品人妻视频免费看| 亚洲国产色片| 国产av码专区亚洲av| 欧美zozozo另类| 特级一级黄色大片| 国产视频首页在线观看| 亚洲天堂国产精品一区在线| 99热国产这里只有精品6| 免费看av在线观看网站| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 草草在线视频免费看| 国产成人精品一,二区| 国产视频首页在线观看| 成年版毛片免费区| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 熟妇人妻不卡中文字幕| 国产久久久一区二区三区| 国产日韩欧美在线精品| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 成年女人在线观看亚洲视频 | 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 一个人看的www免费观看视频| 高清av免费在线| 亚洲成人一二三区av| 高清午夜精品一区二区三区| 国产精品爽爽va在线观看网站| 免费黄网站久久成人精品| 寂寞人妻少妇视频99o| av国产精品久久久久影院| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 特级一级黄色大片| 亚洲内射少妇av| 乱码一卡2卡4卡精品| freevideosex欧美| 国产在视频线精品| 尾随美女入室| av免费在线看不卡| 国产精品伦人一区二区| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 男女那种视频在线观看| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 欧美潮喷喷水| 国产 一区精品| 色婷婷久久久亚洲欧美| 老司机影院毛片| 99九九线精品视频在线观看视频| 成人美女网站在线观看视频| 一区二区三区精品91| 国语对白做爰xxxⅹ性视频网站| 小蜜桃在线观看免费完整版高清| 亚洲美女视频黄频| 韩国av在线不卡| 欧美区成人在线视频| 一级二级三级毛片免费看| 日本一本二区三区精品| 欧美日韩视频精品一区| 麻豆成人午夜福利视频| 成人亚洲欧美一区二区av| 综合色丁香网| 亚洲av中文字字幕乱码综合| 自拍欧美九色日韩亚洲蝌蚪91 | 丝袜脚勾引网站| 亚洲国产高清在线一区二区三| 亚洲人与动物交配视频| 日本wwww免费看| 久久久精品免费免费高清| 国产免费视频播放在线视频| 欧美精品人与动牲交sv欧美| 亚洲久久久久久中文字幕| 日本猛色少妇xxxxx猛交久久| 黄色配什么色好看| 丝袜脚勾引网站| 少妇丰满av| 可以在线观看毛片的网站| 欧美一区二区亚洲| 国产熟女欧美一区二区| 久久精品久久久久久久性| 少妇人妻久久综合中文| 亚洲精品一二三| 精品久久久精品久久久| 只有这里有精品99| 中文字幕人妻熟人妻熟丝袜美| 搡老乐熟女国产| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 一级毛片 在线播放| av在线亚洲专区| 高清欧美精品videossex| 国产精品无大码| 国产日韩欧美在线精品| 舔av片在线| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 国产熟女欧美一区二区| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 亚洲综合精品二区| 夫妻性生交免费视频一级片| 欧美激情在线99| 亚洲性久久影院| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 男女国产视频网站| 成人美女网站在线观看视频| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 国产精品福利在线免费观看| 51国产日韩欧美| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 精品酒店卫生间| 搡老乐熟女国产| 另类亚洲欧美激情| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 久久精品人妻少妇| 久久精品国产亚洲网站| 亚洲精品视频女| 日本黄色片子视频| 日韩伦理黄色片| 在线观看人妻少妇| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 蜜桃亚洲精品一区二区三区| 国产精品国产三级国产av玫瑰| 免费av观看视频| 色播亚洲综合网| 日韩欧美 国产精品| 久久99热6这里只有精品| 免费播放大片免费观看视频在线观看| 国产色爽女视频免费观看| 狂野欧美激情性xxxx在线观看| 白带黄色成豆腐渣| 成年人午夜在线观看视频| 亚洲天堂av无毛| 国产亚洲av片在线观看秒播厂| 综合色av麻豆| 欧美最新免费一区二区三区| 久久久久精品性色| 欧美bdsm另类| 国产探花在线观看一区二区| 精品少妇久久久久久888优播| 日本黄大片高清| 国产一级毛片在线| xxx大片免费视频| 在线精品无人区一区二区三 | av在线天堂中文字幕| 成人免费观看视频高清| 男人爽女人下面视频在线观看| 久久久久久九九精品二区国产| 欧美成人精品欧美一级黄| 精品午夜福利在线看| 欧美日本视频| 18禁在线无遮挡免费观看视频| 天天躁夜夜躁狠狠久久av|