李香琴, 劉天慶, 劉小紅
?
PVDF-g-PNIPAAm 溫敏膜用于Hela細(xì)胞黏附生長與脫附
李香琴, 劉天慶, 劉小紅
(大連理工大學(xué) 干細(xì)胞與組織工程實(shí)驗(yàn)室, 遼寧 大連 116024)
傳統(tǒng)的酶解法用于細(xì)胞收獲容易導(dǎo)致細(xì)胞膜蛋白損傷,致使細(xì)胞功能缺失,而具有溫敏特性的材料表面用于細(xì)胞培養(yǎng)時(shí),可采用降溫脫附法收獲細(xì)胞,從而有效維護(hù)細(xì)胞的功能。研究將Hela細(xì)胞分別接種于常規(guī)空白培養(yǎng)板、PVDF膜以及四種不同PVDF-g-PNIPAAm溫敏膜上,考察Hela細(xì)胞的黏附生長與降溫脫附行為。培養(yǎng)過程中,觀察細(xì)胞生長形態(tài),檢測(cè)細(xì)胞生長活率;收獲時(shí),觀察細(xì)胞在從不同基底表面降溫脫附行為,并對(duì)降溫脫附法和胰酶消化法收獲的細(xì)胞分別進(jìn)行死活染色,計(jì)算細(xì)胞活率。結(jié)果表明,Hela細(xì)胞在不同基底表面均能正常黏附、鋪展與生長;在四種不同PVDF-g-PNIPAAm溫敏膜(M21, M32, M11, M23)上,M32與M11較更適宜細(xì)胞黏附與生長;當(dāng)溫度降低時(shí)Hela細(xì)胞不能從常規(guī)空白培養(yǎng)板及PVDF膜上自動(dòng)脫附,但均能從四種溫敏膜上自動(dòng)脫附,脫附速率為M11>M32>M21>M23;降溫脫附法比胰酶消化法收獲的細(xì)胞活率更高,分別為(95±3.47)%與(81±2.26)%。PVDF-g-PNIPAAm溫敏膜用于Hela細(xì)胞培養(yǎng)與收獲的研究,為下一步采用溫敏性PVDF-g-PNIPAAm中空纖維膜生物反應(yīng)器大規(guī)模擴(kuò)增并無損傷收獲細(xì)胞奠定了基礎(chǔ)。
聚 N-異丙基丙烯酰胺;聚偏氟乙烯;溫敏表面;細(xì)胞培養(yǎng);降溫脫附
1 前 言
動(dòng)物細(xì)胞培養(yǎng)可用于生產(chǎn)具有重要醫(yī)用價(jià)值的酶、疫苗、生長因子和單抗等,但由于其原始來源數(shù)量不足,需要進(jìn)行體外大規(guī)模擴(kuò)增后才能用以制備主細(xì)胞庫或工作細(xì)胞庫的細(xì)胞,而利用生物反應(yīng)器則是實(shí)現(xiàn)細(xì)胞體外大規(guī)模擴(kuò)增的主要方法。但對(duì)于貼壁依賴性細(xì)胞而言,如何在擴(kuò)增后將其從材料表面有效地收獲則成為一個(gè)重要的問題[1, 2]。酶解法是目前最常用的方法[3],但這種方法會(huì)破壞細(xì)胞之間以及細(xì)胞與細(xì)胞外基質(zhì)(extracellular matrix, ECM)之間的連接蛋白,導(dǎo)致細(xì)胞膜蛋白損傷致使細(xì)胞功能缺失[4~6],削弱它們的醫(yī)用價(jià)值。因此有必要減少酶解法的使用頻次或者選用其它的方法收獲細(xì)胞。
溫敏性材料聚N-異丙基丙烯酰胺(poly (N-isopropylacrylamide), PNIPAAm)的研發(fā)為解決上述問題提供了新的思路。貼壁依賴性細(xì)胞在材料表面上黏附生長時(shí)對(duì)材料表面的性質(zhì)具有一定的選擇性,而PNIPAAm會(huì)隨溫度的改變呈現(xiàn)不同的整體構(gòu)型和表面潤濕性[7],37℃時(shí),其表面呈弱疏水性,適于細(xì)胞黏附和生長;當(dāng)溫度低于其最低臨界溶解溫度(lower critical solution temperature, LCST)32℃時(shí),表面呈親水性并發(fā)生溶脹,從而使細(xì)胞脫附[8,9]。由于PNIPAAm在溶脹狀態(tài)下過于柔軟,難以定型,通常都是將其接枝到基底材料上,克服其柔軟性的同時(shí),還可以使其修飾后的基底也表現(xiàn)出明顯的溫度響應(yīng)性。
Yamada等人[10]率先在聚苯乙烯(TCPS)培養(yǎng)板上接枝PNIPAAm用于牛肝細(xì)胞的培養(yǎng),并采用降溫脫附法成功收獲了細(xì)胞。隨后,越來越多的科研團(tuán)隊(duì)采用不同的方法將PNIPAAm用于不同基底表面[11~17]或聚合物[18~31]進(jìn)行溫敏改性,考察不同細(xì)胞在所制備的溫敏材料表面能否采用降溫脫附法有效回收,以及回收后細(xì)胞能否保持其原有的特性,或者是建立由回收的細(xì)胞片層構(gòu)建工程組織的概念等。這些研究顯然為無損傷收獲細(xì)胞提供了實(shí)驗(yàn)依據(jù),但都只是限于培養(yǎng)器皿中靜態(tài)條件下細(xì)胞的培養(yǎng)與增殖,得到的細(xì)胞數(shù)量有限,無法滿足臨床或生產(chǎn)生物制劑的需要。雖然也有研究者將微載體表面包覆PNIPAAm后進(jìn)行貼壁細(xì)胞培養(yǎng)與收獲[32, 33]方面的研究,以便日后用于反應(yīng)器中大規(guī)模培養(yǎng)細(xì)胞,但流體剪切力或微載體間的碰撞會(huì)對(duì)細(xì)胞造成損傷;微載體還會(huì)吸附培養(yǎng)液成分及代謝產(chǎn)物,容易造成細(xì)胞聚集或受到代謝產(chǎn)物毒害作用等。而中空纖維膜生物反應(yīng)器[34]用于細(xì)胞培養(yǎng)時(shí),可以通過纖維膜管內(nèi)灌流并充氧與膜管外壁供細(xì)胞黏附生長的方法,避免剪切力對(duì)細(xì)胞的傷害;同時(shí)營養(yǎng)物質(zhì)與代謝產(chǎn)物還可以通過半透膜得以及時(shí)供給與排除;對(duì)于血清等大分子營養(yǎng)物,則可從管外灌入。因此,若能將溫敏膜材料與生物反應(yīng)器結(jié)合起來,得到溫敏性中空纖維膜生物反應(yīng)器用于細(xì)胞大規(guī)模擴(kuò)增,當(dāng)溫度降低時(shí)便可實(shí)現(xiàn)細(xì)胞無損傷收獲從而最大限度保持細(xì)胞功能的目的。在已有的溫敏膜材料中,聚偏氟乙烯(Polyvinylidene fluoride, PVDF)接枝PNIPAAm的方法比較簡(jiǎn)單易操作[35, 36],但所制備的PVDF-g-PNIPAAm溫敏膜目前都還只是用于水處理方面的研究[35, 36],未見用于細(xì)胞大規(guī)模擴(kuò)增方面的報(bào)道。
基于上述分析,本文在靜態(tài)條件下于培養(yǎng)皿內(nèi)采用PVDF-g-PNIPAAm溫敏膜培養(yǎng)Hela細(xì)胞,考察細(xì)胞在PVDF-g-PNIPAAm溫敏膜上的黏附生長與降溫脫附行為,并將降溫脫附法與傳統(tǒng)胰酶消化法收獲細(xì)胞的效果進(jìn)行比較,為下一步采用溫敏性PVDF-g-PNIPAAm中空纖維膜生物反應(yīng)器大規(guī)模擴(kuò)增并無損傷收獲細(xì)胞奠定基礎(chǔ)。
2 材料與方法
2.1 材料
2.1.1 藥品與材料
浸沒沉淀相轉(zhuǎn)化法獲得的PVDF膜及四種PVDF-g-PNIPAAm溫敏膜[33,35]M21,M32,M11和M23(PVDF粉末與NIPAAm單體反應(yīng)質(zhì)量比分別為2:1,3:2,1:1和2:3);FBS (Hyclone,美國);DMEM,雙抗(青霉素/鏈霉素,100×),MTT,Calcein-AM,PI均購自美國SIGMA公司;EDTA和Trypsin購自美國GIBCO公司;其它試劑均為分析純。
2.1.2 儀器
倒置相差顯微鏡(IX70-131, Olympus Optical co. Ltd.,日本);顯微攝像/圖像分析系統(tǒng)(Sony, DXC-390P/CMS800, Cold Spring Corporation,日本);離心機(jī)(Z323,HERM,德國);超純水機(jī)(Millipore-Q-Synthesis, Millipore, 美國);CO2培養(yǎng)箱(Hera cell,Kendro Laboratory Products,德國);酶標(biāo)儀(ELx800,BioTech,美國);電熱干燥箱(MC 02200124,寧波自動(dòng)化儀表研究所);其它所用玻璃儀器均購自北京欣維爾玻璃儀器有限公司。
2.1.3 細(xì)胞
Hela細(xì)胞購自上海哈靈生物科技有限公司,在DMEM+10%FBS常規(guī)培養(yǎng)液中常規(guī)培養(yǎng)并傳代以備用。
2.2 方法
2.2.1 膜預(yù)處理
將膜MPVDF,M21,M32,M11和M23剪至24孔板大小的形狀,用殼聚糖-醋酸水溶液將其粘貼至24孔板底面上,干燥24 h,超純水浸泡24 h,75%酒精浸泡三次,每次1 h;無菌干燥,紫外滅菌4 h,待用。
2.2.2 Hela細(xì)胞在PVDF-g-PNIPAAm溫敏膜上的黏附生長
將Hela細(xì)胞以5×104cells×mL-1分別接種于粘貼不同膜(實(shí)驗(yàn)組)及未粘貼膜的24孔板(對(duì)照組)中,置37℃、5%CO2、飽和濕度的培養(yǎng)箱內(nèi)培養(yǎng)。24 h和72 h后分別于倒置顯微鏡下觀察細(xì)胞的生長狀態(tài)并拍片。在各組細(xì)胞分別生長至24,48,72 h時(shí),采用胰酶消化并計(jì)數(shù),得到細(xì)胞增殖率。
2.2.3 細(xì)胞活率檢測(cè)
將Hela細(xì)胞以5×104cells×mL-1分別接種至實(shí)驗(yàn)組和對(duì)照組,連同各自的空白組置37℃、5%CO2、飽和濕度的培養(yǎng)箱內(nèi)培養(yǎng)。MTT法分別檢測(cè)細(xì)胞生長至24,48,72 h時(shí)的OD值,按下式(a)計(jì)算細(xì)胞活率:
式中,Control與Control blank分別為對(duì)照組中含細(xì)胞孔與不含細(xì)胞孔的吸光度值;Experiment與Experimental blank分別為實(shí)驗(yàn)組中含細(xì)胞孔與不含細(xì)胞孔的吸光度值。
2.2.4 Hela細(xì)胞在PVDF-g-PNIPAAm溫敏膜上的脫附
待對(duì)照組與實(shí)驗(yàn)組細(xì)胞生長至80%~90%融合后,取出孔板,置20℃環(huán)境中吸出培養(yǎng)基,加入新鮮溫度約為15℃的冷培養(yǎng)基,觀察細(xì)胞脫附過程并拍片,篩選出細(xì)胞較易脫附的溫敏膜,用以日后比較降溫脫附法與傳統(tǒng)胰酶消化法收獲細(xì)胞時(shí)的效果。
將各組降溫脫附下來的細(xì)胞采用胰酶處理并計(jì)數(shù),未脫附的細(xì)胞用胰酶消化下來后計(jì)數(shù),按下式(b)計(jì)算細(xì)胞的脫附率:
2.2.5 降溫脫附法與胰酶消化法收獲的細(xì)胞死活染色
對(duì)照孔內(nèi)的細(xì)胞采用胰酶消化法收獲,溫敏膜孔內(nèi)的細(xì)胞采用降溫脫附法,將兩種方法收集的細(xì)胞均用PBS重懸后置新的孔板內(nèi),每孔加入500 μL 細(xì)胞死活染色工作液(2 μmol×L-1Caclein-AM+4 μmol×L-1PI),置37℃、5%CO2、飽和濕度培養(yǎng)箱中孵育15 min,PBS反復(fù)漂洗幾次,倒置熒光顯微鏡下觀察細(xì)胞死活,拍片。
在熒光顯微鏡下,死細(xì)胞呈紅色,活細(xì)胞呈綠色,二者之和為總細(xì)胞數(shù),綠色細(xì)胞數(shù)與總細(xì)胞數(shù)之比為細(xì)胞活率。將兩種方法收獲的細(xì)胞死活染色照片均隨機(jī)選取10個(gè)視野,采樣計(jì)算每個(gè)視野中這一比值,取其平均值,可得到細(xì)胞的活率。
2.2.6 統(tǒng)計(jì)學(xué)分析
每組實(shí)驗(yàn)重復(fù)三次,采用Origin 7.5軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,所有數(shù)據(jù)以“均值±標(biāo)準(zhǔn)方差”表示,組間比較采用單因素方差分析和檢驗(yàn)。< 0.05時(shí)認(rèn)為有顯著性差異。
3 結(jié) 果
3.1 膜表面形貌分析
圖1為MPVDF、M21、M32、M11、M23的掃描電鏡照片。由圖1可以看出,所制備的MPVDF與四種PVDF-g-PNIPAAm膜表面均呈現(xiàn)蜂窩狀孔結(jié)構(gòu),大孔內(nèi)套著小孔,孔徑大小在1~10 μm。觀察圖1A~1E可知,膜表面孔徑隨著NIPAAm反應(yīng)比的增加而增大,這主要是由于NIPAAm鏈段的致孔作用所致。
3.2 膜表面接觸角分析
對(duì)接枝改性后的膜分別測(cè)定了25℃和37℃下的靜態(tài)接觸角,結(jié)果如表1所示??梢?,沒有接枝PNIPAAm的PVDF膜在25℃和37℃時(shí)的接觸角基本相同,均為91°左右,表現(xiàn)為疏水性;而將PVDF接枝PNIPAAm后形成的四種PVDF-g-PNIPAAm膜,即M21、M32、M11和M23在37℃時(shí)其靜態(tài)接觸角均大于90°,表現(xiàn)為疏水性;當(dāng)溫度降至25℃時(shí),這四種膜的靜態(tài)接觸角也隨之降低,均小于90°,表現(xiàn)為親水性??梢?,經(jīng)PNIPAAm接枝改性所制備的四種PVDF-g-PNIPAAm膜均具有溫度敏感的特性,在溫度改變時(shí)膜表面能發(fā)生親/疏水性轉(zhuǎn)變。
表1 25℃和37℃下各膜表面的靜態(tài)接觸角(°)
Table 1 Water contact angles of different membranes at 25℃ and 37℃ (°)
圖2為Hela細(xì)胞接種至不同表面24,72 h后的生長圖片??梢钥闯觯?xì)胞在這幾種表面上均能正常黏附、鋪展并增殖,說明PVDF-g-PNIPAAm溫敏膜細(xì)胞相容性良好。其中,在MPVDF、M21、M32表面生長至24 h就出現(xiàn)片層狀生長狀態(tài),而在M11和M23表面培養(yǎng)至72 h后才出現(xiàn)片層狀生長。如圖2F所示,與其它表面相比,24 h內(nèi)M23表面細(xì)胞黏附數(shù)量明顯較少。
將圖2所示的細(xì)胞生長至不同時(shí)間胰酶消化計(jì)數(shù)后得到細(xì)胞的增殖率,如圖3所示。可見,除常規(guī)培養(yǎng)板外,細(xì)胞接種至其它五種不同基底表面24 h內(nèi)并沒有翻倍增殖,而是經(jīng)過一個(gè)逐漸適應(yīng)的過程后增殖能力才明顯提高;待培養(yǎng)至72 h時(shí),細(xì)胞在這幾種基底表面上均能增殖4~5倍,這也說明了PVDF-g-PNIPAAm溫敏膜細(xì)胞相容性良好,適宜用作細(xì)胞培養(yǎng)的基底材料。
3.4 細(xì)胞活率檢測(cè)
圖 4 為培養(yǎng)至24,48,72 h后,不同基底表面上Hela細(xì)胞的活率。可見,培養(yǎng)至24 h時(shí),MPVDF、M21、M32、M11和M23上細(xì)胞活率均顯著性低于MControl孔板表面,同時(shí)四種溫敏膜除M11外其它三種溫敏膜上細(xì)胞活率均顯著性低于MPVDF組;隨著培養(yǎng)時(shí)間的延長,細(xì)胞逐漸適應(yīng)了這一生長環(huán)境,其生存能力得到了一定提高,到72 h時(shí),在M32和M11上的細(xì)胞活率分別達(dá)(91.58±4.43)%與(88.25±6.09)%,與MControl及MPVDF組相比均無顯著性差異。
3.5 Hela細(xì)胞在不同基底表面上的降溫脫附
實(shí)驗(yàn)分別觀察了不同基底表面上Hela細(xì)胞的降溫脫附過程,如圖5所示。可見,MControl和MPVDF在加入冷培養(yǎng)基后120 min內(nèi)細(xì)胞形態(tài)無明顯變化,細(xì)胞無法從膜上自動(dòng)脫附;而四種PVDF-g-PNIPAAm溫敏膜在溫度降低時(shí)均可實(shí)現(xiàn)細(xì)胞不同程度的自動(dòng)脫附。如M21表面細(xì)胞降溫脫附較慢,加入冷培養(yǎng)基后30 min細(xì)胞形態(tài)才開始出現(xiàn)變化,細(xì)胞形態(tài)由多角形向圓形回縮,至150 min細(xì)胞才完全變成圓形從膜上脫附下來;M32表面細(xì)胞脫附較M21快一些,加入冷培養(yǎng)基后,30 min細(xì)胞形態(tài)即發(fā)生明顯變化,至120 min時(shí),細(xì)胞基本上全部變成圓形從膜上脫附;M11表面上細(xì)胞脫附明顯較快,加入冷培養(yǎng)基后5 s內(nèi)細(xì)胞即開始回縮,30 s內(nèi)細(xì)胞變圓從膜上脫附,在膜邊緣輕輕吹打,60 s內(nèi)細(xì)胞均可以從膜上脫附下來;M23表面細(xì)胞脫附最慢,雖然在剛加入冷培養(yǎng)基1 min內(nèi)就有個(gè)別細(xì)胞形態(tài)發(fā)生了變化,但直至90 min視野范圍內(nèi)細(xì)胞才逐漸變圓,且直至150 min時(shí)細(xì)胞仍維持此狀態(tài),只有少量細(xì)胞從膜上脫附。
將圖5所示的Hela細(xì)胞脫附過程進(jìn)行定量分析,可以得到細(xì)胞的脫附率,如表2所示??梢钥闯?,采用降溫脫附法在常規(guī)培養(yǎng)板及PVDF膜上無法實(shí)現(xiàn)收獲細(xì)胞的目的;而采用本文所制備的四種PVDF-g-PNIPAAm溫敏膜則可在不同程度上使細(xì)胞自動(dòng)脫附。M21、M32、M11及M23表面PNIPAAm摩爾百分含量經(jīng)計(jì)算后分別為8.03%,11.03%,18.55%和22.56%,細(xì)胞的脫附速率為M11> M32> M21> M23??梢姡琈21、M32及M11這三種膜表面上隨著PNIPAAm含量的增加,細(xì)胞脫附速率逐漸增快;但當(dāng)PNIPAAm含量超過一定數(shù)值時(shí),其脫附速率反而降低,如四種溫敏表面上M23表面PNIPAAm含量最高,但細(xì)胞在其表面的脫附速率卻最慢;而在PNIPAAm接枝量為18.55%的M11表面,細(xì)胞能較快地自動(dòng)脫附。
表2 Hela細(xì)胞在不同基底表面上的降溫脫附率(%)
Table 2 Detachment rates of Hela cells on different surfaces by lowering temperature (%)
由此看來,PVDF粉末與NIPAAm單體反應(yīng)質(zhì)量比為1:1時(shí)獲得的M11表面用于Hela細(xì)胞培養(yǎng)時(shí),細(xì)胞粘附生長、活率與脫附都比較令人滿意,能夠達(dá)到無損傷收獲細(xì)胞的目的。因此,選擇溫敏性表面M11與常規(guī)空白培養(yǎng)板來考察降溫脫附法與傳統(tǒng)胰酶消化法收獲細(xì)胞時(shí)的效果。
3.6 降溫脫附法與胰酶消化法收獲的Hela細(xì)胞死活染色
圖6為MControl表面上利用胰酶消化法與M11表面上利用降溫脫附法收獲的細(xì)胞死活染色照片。Calcein-AM活細(xì)胞染色結(jié)果(圖6A, 6C)顯示,兩種方法均能收獲較多的活細(xì)胞,但降溫脫附法收獲時(shí)細(xì)胞更易成團(tuán)脫落,細(xì)胞外基質(zhì)保存較完整些;PI死細(xì)胞染色結(jié)果(圖6B, 6D)表明,降溫法收獲的細(xì)胞中死細(xì)胞較少,細(xì)胞活性較高。通過采樣計(jì)算綠色細(xì)胞數(shù)與總細(xì)胞數(shù)之比,得到兩種方式收獲的細(xì)胞活率,胰酶消化法約為(81±2.26)%,降溫脫附法約為(95±3.47)%??梢?,降溫脫附法比胰酶消化法在收獲細(xì)胞上具有明顯的優(yōu)勢(shì)。
4 討 論
細(xì)胞與材料間的黏附是以蛋白質(zhì)為介導(dǎo)而發(fā)生的,材料表面的親/疏水性以及多孔結(jié)構(gòu)會(huì)影響材料表面對(duì)蛋白質(zhì)的吸附,因此也會(huì)直接影響到細(xì)胞在材料表面的粘附與脫附行為。一般疏水性的表面更容易吸附蛋白質(zhì),親水性太強(qiáng)或疏水性太強(qiáng)的表面均不利于細(xì)胞的粘附和增殖,只有具有適度親/疏水性能的表面才適宜細(xì)胞的粘附、生長與脫附,即存在著一個(gè)親/疏水的平衡值,且培養(yǎng)細(xì)胞種類不同,該平衡值也各不相同。同時(shí)有研究發(fā)現(xiàn)[37],在基底材料表面引入多孔結(jié)構(gòu)不僅能為細(xì)胞偽足提供更多的黏附位點(diǎn),加強(qiáng)細(xì)胞與材料表面間的相互作用,而且多孔結(jié)構(gòu)有利于細(xì)胞營養(yǎng)物質(zhì)與代謝產(chǎn)物的運(yùn)輸與交換,利于細(xì)胞的黏附與生長;同時(shí)孔結(jié)構(gòu)又利于水的滲透,降溫時(shí)能促進(jìn)細(xì)胞脫附。
所制備的四種PVDF-g-PNIPAAm溫敏膜以及PVDF膜的表面均呈蜂窩狀多孔結(jié)構(gòu),適宜細(xì)胞在其表面黏附生長。四種溫敏多孔結(jié)構(gòu)中同時(shí)存在親水部分和疏水部分,不同溫度下兩者會(huì)競(jìng)爭(zhēng)性地與水分子作用,在37℃時(shí),高分子鏈段收縮,疏水作用占主體,利于細(xì)胞的黏附、鋪展和增殖;當(dāng)溫度低于LCST(約32℃)時(shí),高分子鏈段伸展,親水作用占主體,在多孔結(jié)構(gòu)與細(xì)胞間形成水化層并發(fā)生溶脹,促使細(xì)胞從材料表面自動(dòng)脫附。其中,M23表面24 h內(nèi)細(xì)胞黏附數(shù)量較少,脫附時(shí)細(xì)胞又較難脫附,這主要是由于PVDF與NIPAAm單體進(jìn)行共聚反應(yīng)時(shí),小分子單體NIPAAm的濃度相對(duì)較高,因空間位阻以及大分子鏈段卷曲等因素的影響,NIPAAm單體之間自聚的傾向大于其向PVDF大分子接枝的傾向[38],致使其表面PNIPAAm的接枝鏈較長,含量較高,表面負(fù)電荷密度過大,細(xì)胞膜表面存在的酸性粘多糖多帶有羧基、磺酸基等負(fù)電荷,因而細(xì)胞與材料表面之間電荷排斥作用增強(qiáng),并最終阻礙細(xì)胞在表面的粘附、鋪展與生長。與其它三種溫敏膜表面相比,M23表面上PNIPAAm含量較高,其接枝鏈長度與密度都較大且有可能相互纏繞,從而會(huì)導(dǎo)致溫度降低時(shí),表面由疏水性向親水性構(gòu)型轉(zhuǎn)變所需時(shí)間較長,因而細(xì)胞脫附速率也較慢。Takahashi等[39]通過實(shí)驗(yàn)證明,PNIPAAm的接枝鏈長度與密度均會(huì)影響細(xì)胞在材料表面的黏附與脫附行為,接枝鏈的鏈長與接枝密度超過一定閾值的材料表面不利于細(xì)胞的黏附、生長及脫附。
PVDF-g-PNIPAAm溫敏膜中含有的PVDF對(duì)細(xì)胞是沒有毒性的,而一定濃度的NIPAAm單體及其聚合物PNIPAAm對(duì)細(xì)胞則有一定的毒性作用[40],并且在將NIPAAm單體接枝到PVDF分子鏈上的共聚反應(yīng)過程中,需要引入引發(fā)劑及其它一些有機(jī)溶劑,制備成膜后,會(huì)有少量毒性物質(zhì)殘留在膜上,從而對(duì)細(xì)胞造成一定的毒害作用,所以在接種初期細(xì)胞的活率明顯低于在常規(guī)培養(yǎng)板上的生長活率。由于制備的溫敏膜表面結(jié)構(gòu)以及表面PNIPAAm的含量各不相同,因此短時(shí)間內(nèi)細(xì)胞在不同膜表面的黏附狀態(tài)及活率也有所差異;但隨著培養(yǎng)時(shí)間的延長,細(xì)胞會(huì)逐漸適應(yīng)這一生長環(huán)境,其生存能力也得到一定的提高,到72h時(shí)細(xì)胞在M32和M11上的細(xì)胞活率分別達(dá)到(91.58±4.43)%與(88.25±6.09)%,與常規(guī)培養(yǎng)板以及PVDF膜表面上的細(xì)胞活率均無顯著差異。
在材料表面有效黏附對(duì)于貼壁細(xì)胞而言是一個(gè)重要過程,同樣從培養(yǎng)基底上有效脫附也是貼壁細(xì)胞繁衍后代和維持性狀的一個(gè)必要過程。常見的胰酶消化法能夠收獲大規(guī)模擴(kuò)增的細(xì)胞,但會(huì)破壞細(xì)胞間的連接蛋白以及整聯(lián)蛋白與纖維連接蛋白之間的連接,導(dǎo)致細(xì)胞膜蛋白的損傷致使細(xì)胞功能缺失;傳統(tǒng)的細(xì)胞刮刀法可以保留ECM的完整性,但細(xì)胞會(huì)變得支離破碎,同時(shí)這對(duì)于我們下一步要采用溫敏性PVDF-g-PNIPAAm中空纖維膜生物反應(yīng)器大規(guī)模擴(kuò)增細(xì)胞而言,細(xì)胞刮刀法顯然是不適用的;而降溫脫附法不僅可以使大部分的纖維連接蛋白隨細(xì)胞脫附,還可獲得較完整的細(xì)胞片層和ECM,有效降低其它傳統(tǒng)回收方法對(duì)細(xì)胞造成的傷害,保持細(xì)胞的功能,提高它們的醫(yī)用價(jià)值,而且降低溫度時(shí),細(xì)胞便可自動(dòng)從溫敏性PVDF-g-PNIPAAm中空纖維膜表面脫附,從而有效回收生物反應(yīng)器內(nèi)大規(guī)模擴(kuò)增的細(xì)胞。
5 結(jié) 論
本文通過對(duì)Hela細(xì)胞在PVDF-g-PNIPAAm溫敏膜上粘附、生長與脫附的研究,得出以下結(jié)論:
(1) Hela細(xì)胞在不同溫敏膜表面生長狀態(tài)不同,但均能正常粘附生長,培養(yǎng)72 h后均能增殖4~5倍,且在表面PNIPAAm摩爾百分含量分別為11.03%和18.55%的M32和M11上細(xì)胞活率較高,分別為(91.58±4.43)%與(88.25±6.09)%。
(2) 隨著PNIPAAm含量在M21、M32及M11這三種膜表面上的增加,細(xì)胞脫附速率逐漸增快,在M21與M32表面上分別降溫脫附150,120 min后脫附率可達(dá)100%,而在M11表面上60 s即可達(dá)100%;當(dāng)PNIPAAm含量超過22.56%(M23)時(shí),其脫附速率反而降低,降溫脫附150 min后脫附率只達(dá)5.5%;在四種不同溫敏膜表面上的脫附速率為M11> M32> M21> M23。
(3) 降溫脫附法與胰酶消化法均能收獲較多的活細(xì)胞,細(xì)胞活率分別為(95±3.47)%和(81±2.26)%,降溫脫附法收獲時(shí)細(xì)胞更易成團(tuán)脫落,細(xì)胞外基質(zhì)保存較完整,存在回收細(xì)胞的優(yōu)勢(shì)。
[1] Da Silva R M, Mano J F, Reis R L. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries [J]. Trends in Biotechnology, 2007, 25(12):577-583.
[2] JIANG Li-li (姜麗麗), LIU Tian-qing (劉天慶), SONG Ke-dong (宋克東),. Growth characteristics of human adipose-derived stem cells during long time culture (脂肪干細(xì)胞生長特性研究) [J]. J Chem Eng of Chinese Univ (高?;瘜W(xué)工程學(xué)報(bào)), 2014, 28(2): 275-281.
[3] Cooperstein M A, Canavan H E. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications [J]. Langmuir, 2009, 26(11):7695-7707.
[4] Canavan H E, Cheng X H, Graham D J,. Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods [J]. Journal of Biomedical Materials Research Part A, 2005, 75A(1): 1-13.
[5] Baskovich B, Sampson E M, Schultz G S,. Wound dressing components degrade proteins detrimental to wound healing [J]. International Wound Journal, 2008, 5(4): 543-551.
[6] Sun G, Gerecht S. Vascular regeneration: engineering the stem cell microenvironment [J]. Regenerative Medcine, 2009, 4(3): 435-447.
[7] Gil E S, Hudson S A. Stimuli-responsive polymers and their bioconjugates [J]. Progress in Polymer Science, 2004, 29(12): 1173-1222.
[8] Yang L, Pan F, Zhao X,. Thermoresponsive copolymer nanofilms for controlling cell adhesion, growth, and detachment [J]. Langmuir, 2010, 26(22): 17304-17314.
[9] Cole M A, Voelcker N H, Thissen H,. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions [J]. Biomaterials, 2009, 30(9): 1827-1850.
[10] Yamada N, Okano T, Sakai H,. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells [J]. Die Makromolekulare Chemie, Rapid Communications, 1990, 11(11): 571-576.
[11] Ide T, Nishida K, Yamato M,. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes [J]. Biomaterials, 2006, 27(4): 607-614.
[12] Yang J, Yamato M, Shimizu T,. Reconstruction of functional tissues with cell sheet engineering [J]. Biomaterials, 2007, 28(34): 5033-5043.
[13] Masuda S, Shimizu T, Yamato M,. Cell sheet engineering for heart tissue repair [J]. Advanced Drug Delivery Reviews, 2008, 60(2): 277-285.
[14] Williams B C, Tsuda Y, Isenberg B C,. Aligned cell sheets grown on thermo-responsive substrates with microcontact printed protein patterns [J]. Advanced Materials, 2009, 21(21): 2161-2164.
[15] Cooperstein M A, Canavan H E. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications [J]. Langmuir, 2010, 26(11): 7695-7707.
[16] Kumashiro Y, Fukumori K, Takahashi H,. Modulation of cell adhesion and detachment on thermo-responsive polymeric surfaces through the observation of surface dynamics [J]. Colloids and Surfaces B: Biointerfaces, 2013, 106: 198-207.
[17] Park B R, Nabae Y, Surapati M,. Poly (N-isopropylacrylamide)-modified silica beads with hyperbranched polysiloxysilane for three-dimensional cell cultivation [J]. Polymer Journal, 2013, 45(2): 210-215.
[18] Nie P P, He X L, Chen L. Temperature-sensitive chitosan membranes as a substrate for cell adhesion and cell sheet detachment [J]. Polymers for Advanced Technologies, 2012, 23(3): 447-453.
[19] Ricardo M P, Paula M, Carlos E,. Poly (N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation [J]. Biotechnology and Bioengineering, 2008, 101(6): 1321-1331.
[20] He X L, Wang J Y, Xiao F,. Syntheses of glcosylated thermo-responsive hydrogels and their interactions with HepG2CHLLS [J]. Acta Polymeric Sinica, 2009(12): 1274-1281.
[21] Wang J Y, Xiao F, Zhao Y P,. Cell proliferation and thermally induced cell detachment of galactosylated thermo-responsive hydrogels [J]. Carbohydrate Polymers, 2010, 82(3): 578-584.
[22] MA Dan (馬丹). Preparation of temperature-sensitive PNIPAAm-g-PDMS intelligent surface and its performace and applications incell culture (智能表面的制備、性能研究及在細(xì)胞培養(yǎng)中的應(yīng)用) [D]. Hangzhou (杭州): Zhejiang University(浙江大學(xué)), 2010.
[23] Li L H, Wu J D, Gao C Y. Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide) [J]. Science China Chemistry, 2011, 54(2): 334-342.
[24] Yang N, Chen L, Yang M K,. In vitro study of the interactions of galactosylated thermo-responsive hydrogels with cells [J]. Carbohydrate Polymers, 2012, 88(2): 509-516.
[25] Lin J B, Isenberg B C, Shen Y,. Thermo-responsive poly(N-isopropylacrylamide) grafted onto microtextured poly(dimethylsiloxane) aligned cell sheet engineering [J]. Colloids and Surfaces B: Biointerfaces, 2012, 99: 108-115.
[26] Pan G Q, Guo Q P, Ma Y,. Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets [J]. Angewandte Chemie International Edition, 2013, 52(27): 6907-6911.
[27] Nagase K, Hatakeyama Y, Shimizu T,. Hydrophobized thermoresponsive copolymer brushes for cell separation by multistep temperature change [J]. Biomacromolecules, 2013, 14(10): 3423-3433.
[28] Yuan W, Zhao N N, Yu B R,. Thermo-responsive gelatin-functionalized PCL film surfaces for improvement of cell adhesion and intelligent recovery of gene-transfected cells [J]. Science China Chemistry, 2011, 57(4): 586-595.
[29] Zhang Y, Ng S S, He T,. Effect of adhesive ligand on cell deadhesion kinetics on poly (N-isopropylacrylamide) [J]. Bio-Medical Materials and Engineering,2014, 24(2): 1433-1445.
[30] Sakuma M, Kumashiro Y, Nakayama M, et al. Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated hermo-responsive polymers [J]. Journal of Biomaterials Science-Polymer Edition, 2014, 25(5): 431-443.
[31] YANG Lei (楊磊). Construction of a new temperature-sensitive film and its applications in stem cells culture and harvest (新型溫敏膜的構(gòu)建及其培養(yǎng)收獲干細(xì)胞的研究) [D], Dalian (大連): Dalian University of Technology (大連理工大學(xué)), 2012.
[32] Barroso T, Viveiros R, Temtem Mr,. A combined strategy to surface-graft stimuli-responsive hydrogels using plasma activation and supercritical carbon dioxide [J]. ACS Macro Letters, 2012, 1(3): 356-360.
[33] Wadajkar A S, Santimano S, Tang L P,. Magnetic-based multi-layer microparticles for endothelial progenitor cell isolation, enrichment, and detachment [J]. Biomaterials, 2014, 35(2): 654-663.
[34] LI Xiang-qin (李香琴), LIU Tian-qing (劉天慶), ZHU Lin (朱琳),. Culture and expansion of mesenchymal stem cells in air-lift loop hollow fiber membrane bioreactor (氣升式環(huán)流中空纖維膜生物反應(yīng)器內(nèi)骨髓間充質(zhì)千細(xì)胞的培養(yǎng)與擴(kuò)增) [J]. J Chem Eng of Chinese Univ (高?;瘜W(xué)工程學(xué)報(bào)), 2008, 22(6): 985-991.
[35] LI Wan-chao (李萬超). Preparation of PVDF-g-PNIPAAm intelligent membrane and the study on the relationship between structure and properties of the membrane (PVDF-g-PNIPAAm智能膜的制備與結(jié)構(gòu)和性能關(guān)系研究) [D]. Tianjin(天津): Tianjin Polytechnic University (天津工業(yè)大學(xué)), 2009.
[36] BAI Jing-na (白靜娜), FENG Xia (馮霞), CHEN Li (陳莉),. Research on preparation and performance of temperature-sensitive antifouling poly (vinylidene fluoride)-graft-poly (N-isopropylacrylamide) (PVDF-g-PNIPAAm溫敏抗污染膜的制備及性能研究). Functional Materials (功能材料), 2012, 43(6): 794-797轉(zhuǎn)802.
[37] GE Quan-bo (葛泉波), HE Shu-lan (何淑蘭), MAO Jin-shu (毛津淑), et al. The Interaction between Biomaterials and Cells and Surface modification of Biomaterials (生物材料與細(xì)胞相互作用及表面修飾) [J]. Chemistry Report (化學(xué)通報(bào)), 2005, 68(1): 43-48.
[38] CHEN Li (陳莉), LU Er-li (陸爾力), WANG Wen-yu (王聞?dòng)?,. Synthesis and characterization of temperature-sensitive poly (vinylidene fluoride) membrane materials (溫敏型聚偏氟乙烯膜材料的合成及表征) [J]. Functional Materials (功能材料), 2007, 38(12): 1990-1992.
[39] Takahashi H, Nakayama M, Yamato M,. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest [J]. Biomacromolecules, 2010, 11(8): 1991-1999.
[40] Wadajkar A S, Koppolu B, Rahimi M,. Cytotoxic evaluation of N-Isopropylacrylamide monomers and temperature-sensitive poly (N-Isopropylacrylamide) nanoparticles [J]. Journal of Nanoparticle Research, 2009, 11(6): 1375-1382.
Thermal-Sensitive PVDF-g-PNIPAAm Membranes as a Substrate for Hela Cell Adhesion and Detachment
LI Xiang-qin, LIU Tian-qing, LIU Xiao-hong
(Stem Cell and Tissue Engineering Lab, Dalian University of Technology, Dalian 116024, China)
The traditional proteases for cell recovery can result in cell membrane protein damage, and lead to cell dysfunction and diseases. Alternatively, low temperature cell detachment from some thermal-sensitive surfaces can effectively maintain normal cell physiological functions. Hela cells were cultured on conventional culture plate, PVDF membrane and thermal-sensitive surface of PVDF-g-PNIPAAm to investigate their adhesion, growth and cooling detaching behaviors. Cell morphology was observed and cell viability was detected during cultivation. Cell cooling detachment behaviors from different substrate surfaces were observed, and the harvested cells by cooling detachment and trypsinization were stained by live/dead fluorescent dyes with cell viability calculated. The results show that Hela cell could adhere, spread and grow normally on different substrate surfaces, M32 and M11 as thermal-sensitive surfaces were more suitable for Hela cell adhesion and growth. Hela cell do not detach from conventional culture plate or PVDF membrane as temperature decreases, but it detaches from the thermal-sensitive surfaces and the detachment rates are in the order of M11> M32> M21> M23. Cell viability by cooling detachment is higher than that by trypsinization, with values of (95±3.47)% and (81±2.26)%, respectively. The research indicates that cooling detachment has better performance than trypsinization, which may help for cell expansion and harvest in large scale without damage in PVDF-g-PNIPAAm temperature sensitive hollow fiber membrane bioreactors.
PNIPAAm; PVDF; thermal-sensitive surface; cell culture; detachment by lowering temperature
1003-9015(2016)01-0112-09
Q 813.1
A
10.3969/j.issn.1003-9015.2016.01.017
2015-01-30;
2015-04-22。
國家自然科學(xué)基金項(xiàng)目(31170945)。
李香琴(1971-),女,遼寧大連人,大連理工大學(xué)講師,博士。通訊聯(lián)系人:劉天慶,E-mail:liutq@dlut.edu.cn