• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Thermoelectric Properties of Two-Dimensional MoS2/MoSe2Heterostructures

    2016-09-23 06:06:19Tian-minWu,Rui-xueXu,XiaoZheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期
    關鍵詞:異丁烷對二甲苯戊烷

    ?

    Electronic Structures and Thermoelectric Properties of Two-Dimensional MoS2/MoSe2Heterostructures

    I.INTRODUCTION

    Thermoelectric materials are considered to have great potential for power generation,energy saving,and environmental protection[1-5].Various thermoelectric semiconductor materials,such as chalcogenides[6,7],zintl phases[8],clatharates[9],complex oxides[10],and skutterudites[11,12]have been developed to convert the waste heat into electricity.The efficiency of thermoelectric device is measured by the material-dependent figure of merit(ZT=S2σT/κ)[13].Here,S is the Seebeck coefficient,σ is the electrical conductivity,and κ=κe+κlatis the thermal conductivity(κeand κlatrepresent the electronic and lattice thermal conductivity contributions,respectively).Ⅰn general,the figure of merit(ZT)can be enhanced by improving the power factor(S2σ)or decreasing the thermal conductivity(κ) of material.The search of materials of high thermoelectric performance is confronted with the challenge that electronic conductivity and Seebeck coefficient have opposite dependencies on the materials parameters:electronic conductivity(σ)increases as the doping level is improved,but higher doping level leads to lower Seebeck coefficient.Various theoretical and experimental methods have been introduced to enhance the value of ZT[14-26].For instance,rattler atoms implanted into open structures like clatharates[27]and skutturides[28] have been introduced to have low-frequency phonons near the acoustic branches,thus enhancing the phonon scattering to reduce the lattice thermal conductivity of the materials.

    Two-dimensional(2D)transition-metaldichalcogenide semiconductors such as MoS2and MoSe2have significant potential as the ideal thermoelectric materials,since they possess low thermal conductivity along the direction perpendicular to the lattice layers[29-33]. Despite this advantage,ZT values of transition-metal dichalcogenides(TMDCs)are still low due to the difficulty of enhancing the power factor[34-37].To solve this problem,we propose the use of 2D heterostructures systems such as MoS2/MoSe2,which are formed by stacking two different TMDCs layers together.Based on density functional theory(DFT)calculations,we demonstrate that such 2D heterostructures materials possess many improved thermoelectric properties as compared with their parental pristine materials.

    II.COMPUTATIONAL METHODS

    First-principlescalculationsofbulkandbilayer MoS2/MoSe22D heterostructures system are conducted using DFT methods implemented in the Vienna ab initio simulation package(VASP)[38].The projector-augmented-wave pseudopotentials and the generalized gradient approximation of Perdew,Burke,and Ernzerhof(PBE)for exchange-correlation functional are adopted in our simulations[39].Furthermore,van der Waals interactions are taken into account by us-ing the semiempirical correction of Grimme(DFT-D3) [40].The energy cutoff for a plane-wave expansion is set to 500 eV.All atomic coordinates are relaxed until the atomic forces have declined to 0.01 eV/?A,enforcing a total energy convergence criterion of 1×10-5eV.A vacuum slab larger than 15?A is added to avoid interaction between adjacent images of the bilayer structure.

    Temperature-and doping-dependent electronic transport properties,including electronic conductivity and Seebeck coefficient,are computed by using the semiclassical Boltzmann transport theory[41,42].The constant scattering time approximation is adopted,which is valid if the electron relaxation time does not very strongly with the energy on a scale of kBT,and the rigid band approaches as implemented in the BoltzTraP code [43].By using a Fourier expansion[44,45],while maintaining the crystal symmetry[46],the BoltzTrap code fits the ab initio electronic band structure to an analytic function.Since the transport properties can be very sensitive to the Brillouin zone(BZ)sampling,especially for low doping levels and low temperatures,we calculate the electronic structures required for the transport calculations with very dense k-meshes(43×43×11 for the hexagonal BZ of bulk 2D heterostructures,and 43×43×5 for the trigonal BZ of the bilayer structure).

    Thetemperature-dependentanddoping-leveldependent thermoelectric transport tensors,such as electronic conductivity σαβ(T,μ),Seebeck coefficient Sαβ(T,μ),and thermal conductivity(electronic part κel

    αβ)tensors are calculated as follows[43]:

    Here,α and β are the tensor indices,? is the volume of the unit cell,e is the charge of the electron,f0(T,ε,μ) is the Fermi distribution function,andμis the Fermi level.The conductivity tensor σαβ(ε)(transport distributions)can be expressed analytically as[43]:

    which can be expressed using k-depedent conductivity tensor as[43]:

    where i is the band index,k is the reciprocal vector,N is a normalization depending on the number of k points sampled in the BZ,τi,kis the electronic relaxation time,and υα(i,k)is the i component of band velocity▽kε(k)with ε being the band energies.As demonstrated in the above formula,temperature-dependent transport properties can be calculated from the Fermi distribution function,and one can achieve the dopinglevel dependent transport properties by adjusting the Fermi levelμwhich is directly associated with doping concentration[43].

    The electron relaxation time τ characterizing the average time between two consecutive electron scattering events is a crucial parameter for calculating the thermoelectric properties,such as the electrical conductivity(σ)and the electronic thermal conductivity(κe),since just the ratio of these conductivity to the relaxation time(σ/τ and κe/τ)can be achieved by using the BoltzTrap code.The value of τ is usually obtained by fitting the calculated ratio of σ/τ to measure electrical conductivity data.However,such experimental data for the MoS2/MoSe22D heterostructures have so far remained unavailable.Therefore,in this work we focus on the ratio of thermal properties to the electron relaxation time rather than on the properties themselves.

    III.RESULTS AND DISCUSSION

    A.Crystal structure

    The monolayer structure of MoS2and MoSe2,consists of a single(S/Se)-Mo-(S/Se)layer with space group P6m2(187),which has no inversion symmetry. While the bulk MoS2and MoSe2has a 2H-polytype structure in the P63/mmc space group(194).Ⅰts supercell consists of two(S/Se)-Mo-(S/Se)layers separated along the z axis,and the two layers are bound by van der Waals interactions.Furthermore,due to the increasing radius of the chalcogen atoms,the optimized values of lattice constants for mo?nolayer alongin-plan?e direction increase from a=3.162A in MoS2to3.320A in MoSe2.Ⅰn general the lattice mismatch may lead to stacking disorder or Moir′e Pattern superstructures.However,the intrinsic lattice mismatch between the layer of MoS2and MoSe2is as small as 0.158?A. Moreover,the explicit consideration of such a small lattice mismatch would require the use of very large supercell and thus make the calculation rather expensive. Therefore,in our simulations for the 2D heterostructures,the same lattice constant is adopted for the both types of layers(MoS2and MoSe2).

    The optimized MoS2/MoSe22D heterostructures for bulk system in our calculation has the lattice parameter of a=3.248 and 3.250?A for bilayer,which is consistent with the other theoretical results[47-49].As in Fig.1,the Mo atoms of MoSe2monolayer sit on the top of the chalcogen atoms S of MoS2monolayer,and those monolayer which constructs the heterostructures shows a lateral shift.Due to the van der Waals binding,the Moatoms between different layers are separated by 6.36?A in both bulk and bilayer systems.To further study the electronic properties and thermoelectric properties of bulk and bilayer MoS2/MoSe2heterostructures,their band structures and density of states(DOS)are calculated.woqujieninmen

    FⅠG.1 Atomic structure of bulk and bilayer MoS2/MoSe22D heterostructures.The Se,Mo,and S atoms are represented by orange,blue,and yellow colors,respectively.The red box represents the unit cell used in our simulations.

    FⅠG.2 Electronic band structures(left)and DOS(right) calculated by using PBE along the high-symmetry lines for (a)bulk and(b)bilayer MoS2/MoSe2heterostructures.

    B.Electronic structure

    Electronic band structures and DOS for bulk and bilayer MoS2/MoSe22D heterostructures are presented in Fig.2.For the bulk 2D heterostructures,as demonstrated in Fig.2(a),an indirect band gap of 0.546 eV is observed with the valence band maximum at the Γ point and the conduction band minimum at the K point,which is consistent with the theoretical results reported by Changhoon et al.[47].The electronic band structure along high symmetry point of in-plane and crossplane direction shows a great anisotropy due to the 2D heterostructures constructed by van der Waals binding,and the band gap of the in-plane bands(Γ-M-K-Γ)is much smaller than cross-plane one(Γ-A).Bilayer 2D heterostructures,on the other hand,also show an indirect band gap of 0.695 eV with both the valance band maximum at the Γ point and conduction band minimum at the high symmetry K point,which is consistent with other theoretical results[49].Furthermore,both the bulk and bilayer systems show a strong asymmetric feature between the valence and conduction bands. Although GGA-PBE is known to underestimate band gaps of semiconductors,the resulting electronic structure are considered to be reasonably accurate for subsequent computation of thermoelectric properties.

    C.Thermoelectric properties

    To enlarge ZT,the material should have a larger power factor S2σ and smaller κ(κ=κe+κlat).Figure 3 depict the in-plane and cross-plane power factor divided by the relaxation time τ,S2σ/τ,of the bulk MoS2/MoSe2heterostructures under doping(both pand n-type),with the temperature ranging from 300 K to 1200 K.Here,τ is the relaxation time that is not directly determined by the band structure,but depends on the temperature,the doping level,and also the sample details(such as defect types and concentrations) [43].Note that we compare S2σ/τ instead of S2σ,because the relaxation time is difficult to calculate and the electronic conductivity has not been measured experimentally.As demonstrated in Fig.3,S2σ/τ is enhanced as the carrier concentration increases at each temperature.Ⅰts maximum value is nearly within the carrier concentration range of 1020-1021cm-3for each temperature,which also implies that high carrier concentration could enhance the power factor.As shown in Fig.3,for bulk heterostructures,the p-type doping at in-plane direction shows the largest power factor S2σ/τ at temperature 1200 K.To better reflect the thermoelectric performance of bulk 2D MoS2/MoSe2heterostructures,the theoretical results of pristine bulk MoSe2at the hole carrier concentration of 5×1020cm-3are adopted [36].As demonstrated in TableⅠ,although the pristine MoSe2shows a slightly higher S2σ/τ at 1200 K,the bulk MoS2/MoSe2heterostructures shows an overall better thermoelectric performance along the in-plane direction.Despite the difference in relaxation time between these two crystals,such a comparison provides an overall assessment for their thermoelectric performances.

    Along the cross-plane direction,the n-type doping shows a greater power factor S2σ/τ than p-type one. However,since in TMDCs the relaxation time of inplane direction is two orders of magnitude larger than the cross-plane one[36,37],the in-plane electrical conductivity is typically two orders magnitude larger than the cross-plane electrical conductivity.Then,the power factor along in-plane direction is expected to be two orders of magnitude larger than the cross-plane counterpart,since both of them have similar Seebeck coefficient values.Additionally,the DOS close to the valence band edge is much larger than those near the conduction band edge,which suggests that p-type doping could have a better thermoelectric performance[50].Therefore,we will focus on the p-type doping bulk heterostructures,and discuss the temperature-dependent and dopinglevel-dependent Seebeck coefficient,the electric conductivity and the thermal conductivity individually.

    FⅠG.3Ⅰn-plane(a,c)and cross-plane(b,d)temperature-dependent power factor divided by the scattering time(PF/τ)as a function of p-and n-type doping concentration for bulk MoS2/MoSe22D heterostructures.

    TABLEⅠTemperaturedependentpowerfactordivided with relaxation time(S2σ/τ)for bulk MoSe2and MoS2/MoSe22D heterostructures along the in-plane direction at the hole carrier concentration of 5×1020cm-3.

    The p-type doping in-plane and cross-plane Seebeck coefficients as functions of carrier concentration are shown in Fig.4(a)and(b).Similar to the other TMDCs [36,37],the bulk 2D heterostructures has a large Seebeck coefficient.At a fixed carrier concentration,for both in-plane and cross-plane directions,the Seebeck coefficient of bulk 2D heterostructures slightly increases as the temperature is increasing.This phenomenon mainly originates from the Fermi broadening as the temperature rises,and then it leads to an increasing effective density of states at the top of valence band [51].Consistent with the known thermoelectric behavior for the other TMDCs[36,37],the maximum value of Seebeck coefficient for each temperature shifts to high doping level and decrease as temperature is increased for both cross-and in-plane direction.The calculated tiny band gap for bulk 2D heterostructures(0.546 eV),as mentioned above,likely lead to the bipolar effect at low doping carrier concentration which make the Seebeck coefficient decreases with decreasing doping concentration,opposite to the usual situation[52].As temperature is higher than 900 K,the Seebeck coefficient along the in-plane direction presents a sign reversal at low doping level,which is attributed to the increasing negative contribution of thermally excited electrons to the Seebeck coefficient under the bipolar-transport conditions[53].While the Seebeck coefficient along the cross-plane direction does not show a sign reversal and more stable with the doping concentration increasing at low doping level,indicating that the system along cross-plane direction shows a weak bipolar effect originated by the large band gap along this direction.This anisotropy can also be observed by the electrical conductivity divided by the relaxation time(σ/τ)as a function of doping concentration.As demonstrated in Fig.4 (c)and(d),the conductivity divided by the relaxation time(σ/τ)of in-plane is about one order higher than the cross-plane one,revealing that the thermally excited carrier concentration along the in-plane direction is significantly higher than cross-plane one.Furthermore,in the 900-1200 K temperature range,the electrical conductivity divided by the relaxation time(σ/τ) does not depend strongly on the doping concentration at low doping level,since the thermally excited carriers dominate transport[53].To overcome the contribution by the thermally excited carrier concentration,the higher doping concentration is required as temperature is higher.As the doping concentration above the onset of bipolar transport,the electrical conductivity divided by the relaxation time(σ/τ)increases substantially with the increasing doping concentration.

    The electronic band structure also supports this viewpoint,as the band gap of in-plane(along high symmetry point Γ-M-K-Γ)is much smaller than the crossplane one(Γ-A).The electrical thermal conductivities divided by the relaxation time(κe/τ)along the in-plane and cross-plane directions are depicted in Fig.4(e)and (f),respectively.Although the electronic contribution to the thermal conductivity is small,compared with the lattice thermal conductivity,the electronic thermal conductivity also illustrates the anisotropy of thermal conductivity between cross-plane and in-plane.The power factor of in-plane is considerably larger than the crossplane one,especially since the relaxation time of crossplane is much smaller than the in-plane one.Furthermore,the electronic thermal conductivity divided by the relaxation time(κe/τ)at a fixed carrier concentrations for both in-plane and cross-plane increases as temperature rising,mainly because of more intense electron scattering as temperature increasing.According to the Wiedemann-Franz law[43],

    FⅠG.4Ⅰn-plane(a,c,e)and cross-plane(b,d,f)temperature-and p-type doping concentration-dependent Seebeck coefficient,electronic conductivity divided by the scattering time(σ/τ),and electronic thermal conductivity divided by the scattering time(κe/τ)of bulk MoS2/MoSe2heterostructures,respectively.

    the electronic thermal conductivity is proportional to the temperature of system.Meanwhile,since thermal conductivity is proportional to the electronic conductivity that is highly anisotropic,there is a significantdifference between the in-plane and cross-plane components.

    Compared with the bulk heterostructures,the bilayer heterostructures show a much lower power factor (S2σ/τ)as demonstrated in Fig.5.Since the band gap of bilayer 2D heterostructures is larger than the bulk one,the electronic conductivity of bilayer heterostructures is much smaller than that of the bulk,see Fig.6 (a)and(b).Furthermore,since the bulk and bilayer heterostructures have similar Seebeck coefficients,as demonstrated in Fig.6(c)and(d),the bulk heterostructures should have a better thermoelectric performance than those of bilayer one.While the electrical thermal conductivity is smaller than the bulk one,as presented in Fig.6(e)and(f).For p-type doping,the bilayer heterostructures show a similar thermoelectric performance to the monolayer one[36].

    FⅠG.5 Temperature-dependent power factor divided by the scattering time(PF/τ)of bilayer MoS2/MoSe22D heterostructures as function of n-and p-type doping concentration.

    FⅠG.6 Temperature dependent Seebeck coefficient(a,b),electronic conductivity divided by the scattering time σ/τ(c,d),and electronic thermal conductivity divided by the scattering time κe/τ(e,f)of bilayer MoS2/MoSe2heterostructures as a function of n-and p-type doping concentration,respectively.

    IV.CONCLUSION

    Based on the electrical band structure calculated from first principles,the thermoelectric properties of bulk and bilayer 2D MoS2/MoSe2heterostructures have been analyzed by using the semi-classical Boltzmann transport theory.Both n-type and p-type doping have been addressed for bulk and bilayer heterostructures,employing the rigid band approximation and constant scattering time approximation.Due to a smaller band gap and more dense DOS close to the valence band edgethan those near the conduction band edge,the thermoelectric performance of bulk 2D MoS2/MoSe2heterostructures turns out to be superior to pristine bulk MoSe2along the in-plane direction for p-type doping at a wide temperature range.Furthermore,with a larger band gap,the bilayer heterostructures show a much lower electronic conductivity than those of bulk heterostructures,which also induces that it shows a weaker thermoelectric performance than bulk one.Although the power factor of bilayer heterostructures is lower than those of bulk heterostructures,it shows a similar thermoelectric performance to the monolayer MoSe2for p-type doping at each temperature.Therefore,we safely conclude that such 2D heterostructures materials possess much improved thermoelectric properties as compared with their parental pristine materials,especially for bulk one.As reported by Li et al.[54],the thermal lattice conductivity considered the spin-orbit coupling(SOC)effect is higher than those value not considered.Furthermore,the band shape and the band gap which make a great influence on the calculation of thermoelectric properties could be changed as the SOC effect is introduced,thus the SOC effect should be taken into account.However,the SOC is not considered in the present work,because of the limited computational resources at our disposal.The influence of the SOC on the thermoelectric properties is to be addressed in our future work.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.21203178,No.21373201,No.21433014,No.21233007,No.21303175,and No.21322305),the Science and Technological Ministry of China(No.2011YQ09000505),the“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDB10040304 and No.XDB100202002),and the Fundamental Research Funds for the Central Universities(No.2340000074).The computational resources are provided by the Supercomputing Center of University of Science and Technology of China.

    [1]M.S.Dresselhaus,G.Chen,M.Y.Tang,R.G.Yang,H.Lee,D.Z.Wang,Z.F.Ren,J.P.Fleurial,and P. Gogna,Adv.Mater.19,1043(2007).

    [2]K.Biswas,J.He,Ⅰ.D.Blum,C.Wu,T.Hogan,D.N. Seidman,V.P.Dravid,and M.G.Kanatzidis,Nature 489,414(2012).

    [3]K.P.Pernstich,B.R¨ossner,and B.Batlogg,Nat. Mater.7,321(2008).

    [4]W.J.Liang,A.Ⅰ.Hochbaum,M.Fardy,O.Rabin,M. J.Zhang,and P.D.Yang,Nano Lett.9,1689(2009).

    [5]G.J.Snyder and E.S.Toberer,Nat.Mater.7,105 (2008).

    [6]C.Wood,Rep.Prog.Phys.51,459(1988).

    [7]L.E.Shelimova,O.G.Karpinskii,P.P.Konstantinov,E.S.Avilov,M.A.Kretova,and V.S.Zemskov,Ⅰnorg. Mater.40,451(2004).

    [8]S.M.Kauzlarich,S.R.Brown,and G.J.Snyder,Dalton Trans.2099(2007).

    [9]G.S.Nolas,G.A.Slack,and S.B.Schujman,In Recent Trends in Thermoelectric Materials Research I,T.M. Tritt,Ed.,Semiconductors and Semimetals,San Diego,CA:Academic Press,255(2001).

    [10]K.Koumoto,Ⅰ.Terasaki,and R.Funahashi,MRS Bull. 31,206(2006).

    [11]G.S.Nolas,D.T.Morelli,and T.M.Tritt,Annu.Rev. Mater.Sci.29,89(1999).

    [12]C.Uher,In Recent Trends in Thermoelectric Materials Research I,T.M.Tritt,Ed.,Semiconductors and Semimetals,San Diego,CA:Academic Press,139 (2001).

    [14]G.A.Slack and D.M.Rowe,CRC Handbook of Thermoelectrics.Boca Raton:CRC Press,40(1995).

    [15]L.D.Hicks and M.S.Dresselhaus,Phys.Rev.B 47,12727(1993).

    [16]L.D.Hicks and M.S.Dresselhaus,Phys.Rev.B 47,16631(1993).

    [17]Y.Wu,R.Fan,and P.Yang,Nano Lett.2,83(2002).

    [18]R.Yang,G.Chen,and M.S.Dresselhaus,Phys.Rev. B 72,125418(2005).

    [19]C.J.Vineis,A.Shakouri,A.Majumdar,and M.G. Kanatzidis,Adv.Mater.22,3970(2010).

    [20]A.Ⅰ.Boukai,Y.Bunimovich,J.Tahir-Kheli,J.K.Yu,W.A.GoddardⅠⅠⅠ,and J.R.Heath,Nature 451,168 (2008).

    [21]X.Tang,W.Xie,H.Li,W.Zhao,Q.Zhang,and M. Niino,Appl.Phys.Lett.90,012102(2007).

    春節(jié)期間,該站點的VOCs關鍵活性物種主要為丙烯、乙烯、間/對二甲苯、甲苯、正丁烷、異戊烷、異丁烷、反-2-丁烯、丙烷和1-丁烯。

    [22]B.Poudel,Q.Hao,Y.Ma,Y.Lan,A.Minnich,B.Yu,X.Yan,D.Wang,A.Muto,D.Vashaee,X.Chen,J. Liu,M.S.Dresselhaus,G.Chen,and Z.Ren,Science 320,634(2008).

    [23]T.Ⅰkeda,L.A.Collins,V.A.Ravi,F.S.Gascoin,S.M. Haile,and G.J.Snyder,Chem.Mater.19,763(2007).

    [24]R.Venkatasubramanian,E.Siivola,T.Colpitts,and B. O’Quinn,Nature 413,597(2001).

    [25]T.Ⅰkeda,S.M.Haile,V.A.Ravi.,H.Azizgolshani,F.Gascoin,and G.J.Snyder,Acta Mater.55,1227 (2007).

    [26]T.C.Harman,P.J.Taylor,M.P.Walsh,and B.E. LaForge,Science 297,2229(2002).

    [27]J.Dong,O.F.Sankey,and C.W.Myles,Phys.Rev. Lett.86,2361(2001).

    [28]V.Keppens,D.Mandrus,B.C.Sales,B.C.Chakoumakos,P.Dai,R.Coldea,M.B.Maple,D.A.Gajewski,E.J.Freeman,and S.Bennington,Nature 395,876 (1998).

    [29]L.H.Brixner,J.Ⅰnorg.Nucl.Chem.24,257(1962).

    [30]S.H.El-Mahalawy and B.L.Evans,Phys.Status Solidi B 79,713(1977).

    [31]E.Revolinsky and D.Beerntsen,J.Appl.Phys.35,2086(1964).

    [32]C.Muratore,V.Varshney,J.J.Gengler,J.J.Hu,J.E.Bultman,T.M.Smith,P.J.Shamberger,B.Qiu,X.Ruan,A.K.Roy,and A.A.Voevodin,Appl.Phys. Lett.102,081604(2013).

    [33]A.Mavrokefalos,N.T.Nguyen,M.T.Pettes,D.C. Johnson,and L.Shi,Appl.Phys.Lett.91,171912 (2007).

    [34]M.Kayyalha,L.Shi,andY.P.Chen,arXiv: 1505.05891(2015).

    [35]H.Kedar,W.Ying,Y.Yu,Z.Hanyu,W.Yuan,M. Joel,and Z.Xiang,arXiv:1505.06779(2015).

    [36]S.Kumar and U.Schwingenschl¨ogl,Chem.Mater.27,1278(2015).

    [37]A.N.Gandi and U.Schwingenschl¨ogl,Chem.Mater. 26,6628(2014).

    [38]G.Kresse and J.Furthm¨uller,Phys.Rev.B 54,11169 (1996).

    [39]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [40]S.Grimme and G.G.Semiempirical,J.Comput.Chem. 27,1787(2006).

    [41]J.M.Ziman,Principles of the Theory of Solids,Cambridge:Cambridge University Press(1972).

    [42]P.B.Allen,W.E.Pickett,and H.Krakauer,Phys.Rev. B 37,7482(1988).

    [43]G.Madsen and D.Singh,Comput.Phys.Commun. 175,67(2006).

    [44]R.N.Euwema,D.J.Stukel,T.C.Collins,J.S.Dewitt,and D.G.Shankland,Phys.Rev.178,1419(1969).

    [45]W.Jones and N.March,Theoretical Solid State Physics:Perfect Lattices in Equilibrium,Dover Books on Physics,New York:John Wiley&Sons,Ltd.,(1973).

    [46]D.D.Koelling and J.H.Wood,J.Comput.Phys.67,253(1986).

    [47]L.Changhoon,H.Jisook,W.Myung-Hwan,and H.S. Ji,Chem.Mater.25,3745(2013).

    [48]T.Humberto,L.Florentino,and T.Mauricio,Sci.Rep. 3,1549(2013).

    [49]N.Lu,H.Guo,L.Lei,J.Dai,L.Wang,W.N.Mei,X. Wu,and X.C.Zeng,Nanoscale 6,2879(2014).

    [50]Z.Lijun and J.S.David,Phys.Rev.B 81,245119 (2010).

    [51]Z.Gang and W.Dong,Sci.Rep.5,8099(2015).

    [52]S.Bao-Zhen,M.Zuju,H.Chao,and W.Kechen,RSC Adv.5,56382(2015).

    [53]G.Shi and E.Kioupakis,J.Appl.Phys.117,065103 (2015).

    [54]R.Li,X.Cheng,Q.Xie,Y.Sun,D.Li,Y.Li,and X. Chen,Sci.Rep.5,8466(2015).

    Tian-min Wua,Rui-xue Xua,Xiao Zhenga?,Wei Zhuangb?
    a.Hefei National Laboratory for Physical Sciences at the Microscale&Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China
    b.State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China
    (Dated:Received on December 30,2015;Accepted on March 15,2016)
    Thermoelectric properties of bulk and bilayer two-dimensional(2D)MoS2/MoSe2heterostructures are investigated using density functional theory in conjunction with semiclassical Boltzmann transport theory.Ⅰt is predicted that the bulk 2D heterostructures could considerably enhance the thermoelectric properties as compared with the bulk MoSe2.The enhancement originates from the reduction in the band gap and the presence of interlayer van der Waals interactions.We therefore propose the 2D MoS2/MoSe2heterostructures as a possible candidate material for thermoelectric applications.
    Key words:Heterostructures,Thermoelectric property,Density functional theory,Boltzmann transport theory

    ?Authors to whom correspondence should be addressed.E-mail: xz58@ustc.edu.cn,wzhuang@fjirsm.ac.cn

    猜你喜歡
    異丁烷對二甲苯戊烷
    環(huán)戊烷產品萃取精餾及提純工藝分析
    碳五烷烴裂解制低碳烯烴反應性能的分析
    化工學報(2021年10期)2021-10-31 23:36:50
    C3/C4分離裝置異丁烷硫含量超標原因及對策
    煉油與化工(2021年3期)2021-07-06 11:12:52
    UOP公開一種生產高純度甲苯和對二甲苯的方法
    烷基化裝置中分餾塔的模擬計算與分析
    化工管理(2020年19期)2020-07-28 03:05:34
    2014—2019年我國對二甲苯回顧與展望
    LNG脫苯回收再利用異戊烷的應用探討
    和利時海南60萬噸/年對二甲苯(PX)項目
    自動化博覽(2017年2期)2017-06-05 11:40:39
    輕烴分離裝置混合戊烷深加工探索
    對二甲苯依賴進口與擴產困難之間的矛盾
    亚洲精华国产精华精| 国产91精品成人一区二区三区 | 一区二区三区激情视频| 国产高清视频在线播放一区 | 久久影院123| 欧美日韩av久久| av天堂在线播放| 99精品欧美一区二区三区四区| 国产福利在线免费观看视频| 国产亚洲欧美精品永久| 午夜日韩欧美国产| 真人做人爱边吃奶动态| 在线观看免费日韩欧美大片| 国产精品九九99| 国产欧美日韩精品亚洲av| 精品少妇黑人巨大在线播放| 宅男免费午夜| 人妻一区二区av| 亚洲av美国av| 亚洲精品美女久久av网站| 五月开心婷婷网| 精品久久久久久久毛片微露脸 | 永久免费av网站大全| 亚洲久久久国产精品| 国产在线免费精品| 国产亚洲欧美在线一区二区| 国产主播在线观看一区二区| 国产精品久久久人人做人人爽| 无遮挡黄片免费观看| 国产伦理片在线播放av一区| 少妇被粗大的猛进出69影院| 国产在线视频一区二区| 少妇裸体淫交视频免费看高清 | 精品国内亚洲2022精品成人 | www.999成人在线观看| 午夜福利免费观看在线| 久久人妻福利社区极品人妻图片| 免费观看av网站的网址| 啪啪无遮挡十八禁网站| 18在线观看网站| 一进一出抽搐动态| 精品人妻1区二区| 女人被躁到高潮嗷嗷叫费观| 狠狠精品人妻久久久久久综合| 亚洲国产看品久久| 久久99一区二区三区| 一本色道久久久久久精品综合| 午夜91福利影院| 韩国精品一区二区三区| 亚洲av日韩精品久久久久久密| 大香蕉久久成人网| 欧美精品av麻豆av| 国产精品一二三区在线看| 久久天堂一区二区三区四区| 桃红色精品国产亚洲av| 亚洲国产精品一区三区| 国产成人欧美| 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 日日爽夜夜爽网站| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人| 国产精品欧美亚洲77777| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 成人av一区二区三区在线看 | 人妻人人澡人人爽人人| 啦啦啦免费观看视频1| 天堂中文最新版在线下载| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 亚洲第一av免费看| 这个男人来自地球电影免费观看| 看免费av毛片| 国产精品影院久久| 狠狠狠狠99中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| a级毛片黄视频| 日韩精品免费视频一区二区三区| 母亲3免费完整高清在线观看| 午夜久久久在线观看| 欧美精品亚洲一区二区| 久久久久精品人妻al黑| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 18禁观看日本| 免费观看av网站的网址| 国产精品免费大片| 蜜桃国产av成人99| 亚洲九九香蕉| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 十八禁高潮呻吟视频| 精品国产乱码久久久久久男人| 中文字幕色久视频| 国产精品免费视频内射| 国产一区二区三区综合在线观看| 日韩有码中文字幕| www日本在线高清视频| 日韩精品免费视频一区二区三区| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 国产精品av久久久久免费| 各种免费的搞黄视频| 老司机影院成人| 欧美黑人精品巨大| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲| 99国产精品一区二区蜜桃av | 老司机午夜福利在线观看视频 | 美女视频免费永久观看网站| 午夜福利在线免费观看网站| www.精华液| 国产精品一二三区在线看| 日韩三级视频一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲va日本ⅴa欧美va伊人久久 | 18禁裸乳无遮挡动漫免费视频| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美成人综合另类久久久| 又黄又粗又硬又大视频| 午夜福利,免费看| 国产国语露脸激情在线看| 黄色毛片三级朝国网站| 国产成人系列免费观看| 1024视频免费在线观看| 免费av中文字幕在线| 一本久久精品| 飞空精品影院首页| 国产精品国产av在线观看| 久久精品人人爽人人爽视色| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 精品国产乱子伦一区二区三区 | 久久人妻熟女aⅴ| 精品久久久久久电影网| 久久午夜综合久久蜜桃| 在线 av 中文字幕| 亚洲少妇的诱惑av| 久久精品人人爽人人爽视色| 波多野结衣一区麻豆| 国产一区二区 视频在线| 亚洲一区中文字幕在线| 涩涩av久久男人的天堂| 亚洲av电影在线进入| 久久香蕉激情| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 日韩视频在线欧美| 性高湖久久久久久久久免费观看| 69精品国产乱码久久久| 国产高清videossex| 老司机在亚洲福利影院| 国产精品香港三级国产av潘金莲| 人成视频在线观看免费观看| 亚洲综合色网址| 国产日韩欧美视频二区| 精品免费久久久久久久清纯 | 超碰97精品在线观看| 免费高清在线观看日韩| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 叶爱在线成人免费视频播放| 国产一区二区 视频在线| 久久精品国产a三级三级三级| 永久免费av网站大全| 午夜免费鲁丝| 成年动漫av网址| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 老司机午夜福利在线观看视频 | 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 首页视频小说图片口味搜索| 国产av国产精品国产| 九色亚洲精品在线播放| 精品人妻1区二区| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 老司机深夜福利视频在线观看 | 免费高清在线观看视频在线观看| 女人精品久久久久毛片| 人人妻人人添人人爽欧美一区卜| 日韩 亚洲 欧美在线| 一个人免费看片子| 日韩三级视频一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲第一欧美日韩一区二区三区 | 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 精品人妻1区二区| 老司机影院毛片| 视频区图区小说| 日日摸夜夜添夜夜添小说| 国产精品久久久av美女十八| 一区在线观看完整版| 99国产精品一区二区三区| 99re6热这里在线精品视频| 欧美黄色淫秽网站| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 久久亚洲国产成人精品v| 性少妇av在线| 婷婷成人精品国产| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 午夜福利乱码中文字幕| 国产成人免费观看mmmm| 中文字幕制服av| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 亚洲第一青青草原| 国产男女内射视频| 日本91视频免费播放| 久久性视频一级片| 手机成人av网站| 亚洲精品国产精品久久久不卡| 美女扒开内裤让男人捅视频| 精品亚洲成a人片在线观看| 国产精品成人在线| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 免费在线观看日本一区| 黄片小视频在线播放| 一本—道久久a久久精品蜜桃钙片| 丰满饥渴人妻一区二区三| 成年美女黄网站色视频大全免费| 丝袜美足系列| 国产在线视频一区二区| 亚洲国产精品一区三区| 午夜免费观看性视频| 人人妻人人澡人人看| 九色亚洲精品在线播放| 久久99一区二区三区| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 多毛熟女@视频| 精品人妻一区二区三区麻豆| 女警被强在线播放| 丝袜在线中文字幕| 中国美女看黄片| 国产在视频线精品| 色94色欧美一区二区| 亚洲av电影在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 国产高清国产精品国产三级| 久久狼人影院| 久久久久视频综合| 丁香六月天网| 日韩一卡2卡3卡4卡2021年| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 窝窝影院91人妻| 午夜免费观看性视频| 女人精品久久久久毛片| 精品人妻1区二区| 免费观看a级毛片全部| 亚洲专区国产一区二区| 69av精品久久久久久 | 亚洲少妇的诱惑av| 69精品国产乱码久久久| 建设人人有责人人尽责人人享有的| 狠狠狠狠99中文字幕| 91大片在线观看| 欧美日韩亚洲高清精品| 成人亚洲精品一区在线观看| 老司机福利观看| 久久久久国产精品人妻一区二区| 宅男免费午夜| 99热国产这里只有精品6| 一本综合久久免费| 精品一品国产午夜福利视频| 91国产中文字幕| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 电影成人av| 色视频在线一区二区三区| 91字幕亚洲| 欧美xxⅹ黑人| av天堂久久9| 乱人伦中国视频| 久久99一区二区三区| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 大型av网站在线播放| 中文字幕最新亚洲高清| 成人av一区二区三区在线看 | 99国产精品一区二区三区| 久久av网站| 99热网站在线观看| 久热爱精品视频在线9| 亚洲性夜色夜夜综合| 亚洲情色 制服丝袜| 久久狼人影院| bbb黄色大片| 岛国在线观看网站| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 成年美女黄网站色视频大全免费| 91麻豆av在线| 韩国高清视频一区二区三区| 亚洲第一青青草原| 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 91麻豆精品激情在线观看国产 | 日韩一卡2卡3卡4卡2021年| 成年人午夜在线观看视频| 午夜福利,免费看| 亚洲av男天堂| 亚洲欧美日韩另类电影网站| videosex国产| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 国内毛片毛片毛片毛片毛片| 欧美另类一区| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 亚洲欧美清纯卡通| 国产av又大| 精品少妇一区二区三区视频日本电影| 亚洲精品自拍成人| 欧美成人午夜精品| 亚洲激情五月婷婷啪啪| 亚洲熟女毛片儿| 18在线观看网站| 侵犯人妻中文字幕一二三四区| 亚洲av欧美aⅴ国产| a级毛片黄视频| 在线看a的网站| 欧美国产精品va在线观看不卡| 91av网站免费观看| 国产精品熟女久久久久浪| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 天天操日日干夜夜撸| www日本在线高清视频| 日本a在线网址| 欧美 亚洲 国产 日韩一| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 国产免费福利视频在线观看| 午夜激情av网站| 一级片免费观看大全| 手机成人av网站| 老鸭窝网址在线观看| av免费在线观看网站| 亚洲激情五月婷婷啪啪| 激情视频va一区二区三区| 国产黄频视频在线观看| 蜜桃国产av成人99| 国产成人av教育| 亚洲全国av大片| 18禁黄网站禁片午夜丰满| 成年av动漫网址| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 视频区欧美日本亚洲| 亚洲av片天天在线观看| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 免费观看av网站的网址| 脱女人内裤的视频| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频 | 国产精品.久久久| 成人国语在线视频| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区 | 国产免费一区二区三区四区乱码| 欧美午夜高清在线| 爱豆传媒免费全集在线观看| 12—13女人毛片做爰片一| av网站免费在线观看视频| 丁香六月欧美| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 18禁观看日本| a在线观看视频网站| 欧美精品啪啪一区二区三区 | 亚洲av男天堂| 亚洲专区中文字幕在线| 亚洲美女黄色视频免费看| 水蜜桃什么品种好| 黄色视频,在线免费观看| 亚洲精品久久午夜乱码| 午夜免费观看性视频| 国产国语露脸激情在线看| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸 | 国产精品一二三区在线看| 满18在线观看网站| 9191精品国产免费久久| 久久久久精品人妻al黑| 免费久久久久久久精品成人欧美视频| 亚洲精品一区蜜桃| 国产欧美日韩一区二区精品| 久久久久国产精品人妻一区二区| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 久久久久精品人妻al黑| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 久久精品成人免费网站| 天堂俺去俺来也www色官网| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲少妇的诱惑av| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| 99国产精品99久久久久| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 男女床上黄色一级片免费看| 日日爽夜夜爽网站| 黄频高清免费视频| 欧美成人午夜精品| bbb黄色大片| 一个人免费看片子| 国产人伦9x9x在线观看| 国产精品.久久久| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 国产成人啪精品午夜网站| 免费少妇av软件| 99热网站在线观看| 嫩草影视91久久| 一进一出抽搐动态| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 久久久久国产精品人妻一区二区| 俄罗斯特黄特色一大片| 一级毛片电影观看| 午夜福利视频在线观看免费| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| av国产精品久久久久影院| 午夜福利,免费看| 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| 久久久国产一区二区| 日本wwww免费看| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 12—13女人毛片做爰片一| 中文字幕人妻熟女乱码| 在线亚洲精品国产二区图片欧美| 又大又爽又粗| 欧美精品亚洲一区二区| 美女大奶头黄色视频| 国产成人精品无人区| 国产成人免费无遮挡视频| 十八禁网站网址无遮挡| 午夜免费鲁丝| 91精品三级在线观看| 精品国内亚洲2022精品成人 | 亚洲天堂av无毛| 不卡一级毛片| 免费观看a级毛片全部| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 成人av一区二区三区在线看 | 99久久人妻综合| 极品人妻少妇av视频| 波多野结衣av一区二区av| 在线av久久热| 精品一区二区三卡| 一级片'在线观看视频| 国产真人三级小视频在线观看| 女警被强在线播放| 999精品在线视频| 18在线观看网站| 亚洲精品成人av观看孕妇| 精品福利永久在线观看| 99国产精品一区二区三区| 成年美女黄网站色视频大全免费| 我要看黄色一级片免费的| 黄频高清免费视频| 久久精品亚洲熟妇少妇任你| 黄频高清免费视频| 免费日韩欧美在线观看| 最近最新中文字幕大全免费视频| 在线 av 中文字幕| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 大香蕉久久成人网| 蜜桃国产av成人99| 午夜精品久久久久久毛片777| 中文字幕制服av| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| www.999成人在线观看| av不卡在线播放| 如日韩欧美国产精品一区二区三区| 欧美av亚洲av综合av国产av| 91老司机精品| 欧美xxⅹ黑人| 黄色 视频免费看| 午夜激情久久久久久久| 十八禁网站免费在线| www日本在线高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三卡| 啦啦啦视频在线资源免费观看| 亚洲黑人精品在线| 亚洲 国产 在线| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 精品少妇一区二区三区视频日本电影| 老司机午夜十八禁免费视频| 青春草视频在线免费观看| 久久ye,这里只有精品| 丝瓜视频免费看黄片| 国产在线视频一区二区| 精品国内亚洲2022精品成人 | 一区在线观看完整版| 久久久久国产精品人妻一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品免费视频内射| 日韩大码丰满熟妇| 丰满饥渴人妻一区二区三| 午夜精品久久久久久毛片777| 自线自在国产av| 欧美黄色淫秽网站| 久久狼人影院| 国产高清国产精品国产三级| 亚洲精品美女久久久久99蜜臀| 黄色毛片三级朝国网站| 黄色视频,在线免费观看| 女性被躁到高潮视频| 在线看a的网站| 亚洲五月色婷婷综合| 久久九九热精品免费| 狠狠精品人妻久久久久久综合| 99热网站在线观看| 日韩电影二区| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 国产成人a∨麻豆精品| 天天添夜夜摸| 国产视频一区二区在线看| 最新在线观看一区二区三区| 精品少妇黑人巨大在线播放| 国产精品熟女久久久久浪| 日本一区二区免费在线视频| 亚洲精品久久成人aⅴ小说| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 亚洲免费av在线视频| 亚洲成人国产一区在线观看| 91精品国产国语对白视频| 精品免费久久久久久久清纯 | 九色亚洲精品在线播放| 成人国产av品久久久| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 精品一区二区三区av网在线观看 | 久久精品成人免费网站| 波多野结衣av一区二区av| 黄色毛片三级朝国网站| 欧美日韩成人在线一区二区| 日韩 欧美 亚洲 中文字幕| 热re99久久国产66热| 两性夫妻黄色片| 人妻 亚洲 视频| 一本大道久久a久久精品| 国产极品粉嫩免费观看在线|