• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    2016-09-23 06:06:26Li-zhenGan,KuiXie
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    I.INTRODUCTION

    Ⅰn recent years,renewable energies have been attracting a great deal of interests because they have huge potentials to solve the energy and environmental issues[1,2].Reversible solid oxide cell(RSOC)is a device that can efficiently store renewable electricity in the form of chemical fuels through the solid oxide electrolysis cell(SOEC)process and reversibly generate electricity by the solid oxide fuel cell(SOFC)conversion process. SOFC has many advantages including high efficiency,long-term stability,fuel flexibility,low emissions,and low cost[3-5].SOEC is the reverse mode of SOFC and inherits most SOFC advantages.RSOC can operate at higher temperatures with favourable kinetics for energy conversion in a large scale.RSOC combines the SOFC and SOEC and has been considered as an alternative energy storage system and/or a possible system for smart grid[6].

    For a RSOC stack,the roundtrip efficiency has been considered as one of the key factors to evaluate the performance of electricity storage/generation in the reversible system.Ⅰt has been widely accepted that a roundtrip efficiency with 80%is well adapted to the commercialization requirements.Ⅰt has been reported that a roundtrip efficiency in the range of 70%-86%is achieved with LSGM-electrolyte cell stack at low current densities at 600-650?C[7].The system heat significantly changes the operation temperatures in the range of-50?C to 200?C and thermal management is therefore extremely important in the roundtrip cycles.Ⅰt should be noted that the thermal management is a complicated system engineering that can remarkably increase the roundtrip efficiencies.However,the reversible heat storage is still a challenge at 800-1000?C though some thermal managements combining the electricity storage/generation with heating/cooling system.

    Heat storage using phase-change metals with high heat capacity is an attractive option for high temperature thermal energy storage,especially at temperatures above 800?C[8].Under specific circumstances,the heat storage or release can be rapid,efficient and largescale when a phase change material undergoes a phase transition from solid to solid,solid to liquid,or vice versa.Ⅰt can store and release heat when being held constant at the phase transition temperature,and its reversible phase changing processes allow for repeated use.More importantly,the operation temperature can be easily extended to as high as 1000?C to well adapt the operation temperature of solid oxide cell system. These advantages allow phase change metal tanks to be used as an advanced heat storage system for high temperature RSOC stacks.Copper or silver with high heat capacity,as common heat storage metals,can be readily intergraded into RSOC system to increase the roundtrip efficiencies.

    Ⅰn this work,a tubular RSOC stack combined with silver metal tank for heat storage is theoretically dem-onstrated.The charging and discharging processes have been modelled in relation to operation temperatures,system pressure,and state of charge.The roundtrip efficiency of electricity storage/generation is then studied.

    II.THE ELECTROCHEMICAL SIMULATION

    A.Open circuit voltage

    The chemical reaction in RSOC is as follows:

    which indicates the electricity generation/storage with H2/H2O in fuel electrode and air in oxygen electrode. The open circuit voltage(OCV)hence can be calculated by the Nernst equation(Eq.(1)and Eq.(2)):

    Fuel cell mode:

    Electrolysis cell mode:

    where R,T,n,and F correspond to the universal gas constant(8.3145 J/(mol·K)),the system temperature in K,the number of electrons(n=2),and the Faraday constant(96485 C/mol),respectively.pH2O,pH2,and pO2are the partial pressures of steam,hydrogen,and oxygen,respectively.Ⅰt can be seen that a higher stage of charge would be effective to increase the OCV values.The Gibb’s free energy,for the reaction of H2and O2can be calculated via the relationship of EΘand enthalpy and entropy:

    B.Ohmic resistance

    The schematic of the reversible tubular fuel electrodesupported solid oxide cell is shown in Fig.S1(supplementary materials)and the parameters of the components are shown in Table S1.The sequence flow of current through the interconnector,fuel electrode,electrolyte and the air electrode,and the current path of each component are clearly specified in Table S1 and S2 (supplementary materials).The resistance calculation for fuel electrode,air electrode,electrolyte,and interconnector,has been reported elsewhere[9].The total ohmic resistance for RSOC is obtained by Eq.(4):

    C.Activation overpotential

    The activation overpotential is the electrode surface overpotential and controlled by the kinetics at electrode surface.Ⅰt is the external energy required to overcome the maximum activation energy barrier to maintain electrode reaction.The Butler-Volmer equations [10,11]is used in the RSOC system.The activation polarization of the fuel electrode(ηact,f)and that of air electrode(ηact,a)can be expressed via mathematical transformation as indicated in Eq.(5)and(6):

    where J is the current density,and J0,aor J0,fis a crucial parameter and depends on the electrode microstructure and operation conditions.The exchange current density can be calculated by Eq.(7)for the fuel electrode and Eq.(8)for the air electrode.The pre-exponential factors γfand γaare for fuel and air electrodes,respectively[12].Eact,fand Eact,aare the activation energies of fuel electrode and air electrode,respectively.The pO2and pH2Ois the partial pressure of gas O2and H2O,p is the total pressure.

    D.Concentration overpotential

    Ⅰn the reversible process,the concentration polarization simulations are performed both in fuel cell and electrolysis cell modes,respectively.Ⅰn fuel cell mode,the concentration overpotentials of fuel electrode (ηconc,fuel,f)and air electrode(ηconc,fuel,a)can be calculated by Eq.(9)and Eq.(10),respectively[11,12]:

    Here,lfand lastand for the thickness of fuel and air electrode,respectively,pais the gas pressure at theair electrode.DHe

    2ffand DOe2ffare the effective diffusion coefficients for hydrogen and oxygen,respectively [13],while the related parameters are shown in Table S3(supplementary materials).Ⅰn the electrolysis cell mode,the concentration overpotentials of air (ηconc,elec.,a)and fuel electrodes(ηconc,elec.,f),can be calculated by Eq.(11)and Eq.(12),respectively[14,15].

    where DHe2ffOis the effective diffusion coefficients of steam,μis the dynamic viscosity of oxygen and the calculation can be referred with the related data displayed in Table S3 and S4(supplementary materials) [16,17].

    E.Cell voltage

    The types of voltage loss in the RSOC are ohmic loss,activation and concentration polarizations.The ohmic loss for each component is calculated using the Ohm’s law and then the voltage drop is given as:

    Once the ohmic overpotential is known,the cell voltages can be obtained by Eq.(14)for fuel cell mode and Eq.(15)for electrolysis cell mode:

    F.Heat simulation

    Ⅰn this section,the heat simulation was carried out to investigate the system balance.The heat mainly comes from the reaction losses by conduction when the cells work,which,therefore,changes the system temperatures.Using the mathematical method,the dependence of system temperature on time is calculated by Eq.(16)for fuel cell mode and Eq.(17)for electrolysis cell mode[18]:

    where qris the electrochemical heat of the system heat,qohmicis the heat from the ohmic resistance,qlossis the heat loss through the system.mcellis the mass of cell,and the total heat capacity of the cell is Cpcell.Ⅰn the model,the heat storage of the metal phase change is used,so Mheatis the mass of metal and Cpheatis its heat capacity.The values are in Table S5(supplementary materials).Ⅰn this work,the RSOC system is assumed to be in an insulated box in which temperature is fairly constant,

    where A is the surface area of the box in m2,λ is the thermal conductivity in W/(m·K),l is the thickness of the box in m,and Tiand Toare the temperatures of inside and the outside box,respectively.

    The heat capacity of various gases,Cpi,m,in modelling system as a function of temperature can be calculated by Eq.(19),i represents the various gases,and the related data are recorded in Table S6(supplementary materials).Ⅰn the RSOC system,the gas is assumed to be ideal:

    The heat storage,χ,is the percentage of silver metal that has melted of the total metal in the heat storage. The procedures of heat absorption and release are similar and can be calculated as follows:

    When the change of metal phase begins,the χ changes,however,the temperature of the system remain constant.When the time equals 0,χ is 0%,when all the metal has melted,χ equals 100%and the temperature of system rises again.The qr,qohmic,and qlossare the heat generation or loss from reaction,ohmic resistance and system heat loss,respectively.The Eheatis the total energy stored by the metal phase change.On the contrary,when the system is in the electrolysis cell mode,the metal cools down so that the heat is released from it and absorbed by the electrolysis reaction.

    FⅠG.1 The OCV of the RSOC system versus(a)temperature and(b)pressure in the state of charge(1%-99%).

    FⅠG.2 Activation overpotentials in RSOC at 1 atm and 95%state of charge for the(a)fuel electrode and(b)air electrode,respectively.

    Here,Mmetalis the molar mass of silver metal,and Eheatis the total energy stored by the metal phase change.The Hfusion,heatis the enthalpy of fusion for the metal.

    III.RESULTS AND DISCUSSION

    Figure 1(a)shows the OCV of the RSOC system with the state of charge varying from 1%to 99%at different temperatures ranging from 800?C to 1000?C.The state of charge is defined as the mole fraction of hydrogen in the hydrogen/steam mixture at the fuel electrode in the system while the total operation pressure has always been considered as 1.0 atm.As anticipated,the OCV decreases at higher temperatures,which is consistent with results obtained in a previous work[19].However,the OCV is significantly enhanced from 0.8 V to 1.1 V with the state of charge increases from 10%to 90% at 800?C,as shown in Fig.1(b).Ⅰncreasing operation pressure is expected to enhance the OCVs,however,the OCV only improves from 0.8 V to 0.85 V with system pressure increasing from 1 atm to 10 atm at the state of charge of 20%at 800?C.The state of charge is an more important factor that affects the OCV and influences the RSOC system equilibrium.

    Figure S3 shows the ohmic resistance of each component of a single RSOC cell.The main ohmic resistance is from the electrolyte,indicating the ionic transport limitation in reversible cells.Figure 2 illustrates the dependence of activation overpotential on both temperature and current for fuel electrode and air electrode,respectively.A remarkable increase in electrode overpotential is observed against current at 800?C.This implies that a large current significantly increases the electrode overpotentials at lower temperatures.However,a linear relationship is observed between the overpotential and current at 1000?C,which indicates that a higher current is favourable to improve electrode activation.Ⅰn addition,the fuel electrode polarization resistance is larger than that of air electrode.The optimization of fuel electrode to decrease polarization resistance would be therefore effective to enhance fuel electrode performance.

    The pre-exponential factor is proportional to the length of triple phase boundary which can be determined by the size of grain,radius of pore,and porosity[20].The influences of various pre-exponential factors on overpotentials is shown in Fig.S2(supplementary materials).A porous electrode with sufficient triple phase boundary would be beneficial to electrode activity with lower pre-exponential factor.Figures 3 and 4 present the dependence of concentration overpotentials on pressures and temperatures in fuel cell mode and electrolysis mode,respectively.Although,the concentration overpotential is less dependent on temperatureat higher pressure,it still improves at a higher temperature.The higher system pressure makes the concentration gradients smaller and not to be the main factor affecting concentration overpotentials.The concentration overpotential of fuel electrode in electrolysis cell mode is greater than that in fuel cell mode(see Fig.S3 and S4 in supplementary materials).This may be attributed to the larger Knudsen diffusion factor of hydrogen than that of steam under operation conditions.The currents also affect the concentration overpotentials of both electrodes either in fuel cell mode or electrolysis cell mode. The dependence of concentration overpotential on the currents and pressures in fuel cell and electrolysis cell mode at different temperature are also demonstrated in Fig.S5 and S6(supplementary materials),respectively.

    Figure 5 presents the I-V curves in the RSOC system,where the negative currents and the positive currents correspond to electrolysis cell mode and fuel cell mode,respectively.Ⅰt is observed that the activation overpotential is the small primary source of voltage loss due to the thin electrodes.Apparently,the cell voltage losses from ohmic resistance is negligible owing to the low resistivity of materials and short current path. This means the improvement of electrode activity is the main challenge that restricts the cell performances.

    Ⅰn this work,a metal with phase change is utilized to store and reuse the heat generated in reversible system. The heat stored in phase-change metal in fuel cell mode and then reused in electrolysis mode strongly influences the energy storage capability of the RSOC system.The modelling assumed that the reversible system is located in an insulating box at current 1 A and total gas pressure 1 atm.The maximum temperature is set at 962?C,in order to prevent the damage of the system.The temperature slowly increases as the heat generated from the chemical reaction.The generated heat competes with the heat loss in system and finally reaches an optimum at 962?C after 838 s at which the fuel cell mode switches to electrolysis mode to avoid the overheat of the reversible system.The cooling procedure in electrolysis cell mode with 962?C as the starting temperature.The temperature decreases to 800?C after 731 s,and the electrolysis reaction stoped and switched back to fuel cell mode.The temperature change is demonstrated in Fig.S7(supplementary materials),while the metal tank for heat storage is demonstrated in Fig.S8 (supplementary materials).

    FⅠG.4 Relationship between temperature,pressure and concentration overpotential in(a)fuel electrode and(b)air electrode at 1 A current and 95%state of charge in the electrolysis mode.

    FⅠG.5 Voltage of RSOC system versus current at 1 atm,950?C and with the state of charge 95%.

    Figure 6 shows the state of charge,the heat storage percentage and temperature as a function of time in cycling process.The maximum temperature holds constant at 962?C as the phase change of metal absorbs the generated heat.The state of charge decreases from 95%to 5%in fuel cell mode,and then the operation mode switches to electrolysis cell mode.The SOC could not reach 95%anymore because the heat loss is irreversible;however,it gets to 87.5%,which implies that the cycling efficiency is 92.1%.Ⅰn fuel cell mode,the system temperature increases with the hydrogen consumption and reaches 962?C,at which the metal begins to melt and absorbs the generated heat. Subsequently,the state of charge reduces to 5%at which the operation mode switched to electrolysis cell while 72.6%melted metal begins to release the absorbed heat to promote steam electrolysis.The system temperature returns to the initial state when the first cycle is completed with the exothermic steam electrolysis process terminated.The roundtrip efficiency for the first to the fifth cycle are 92.1%,84.2%,76.3%,68.4%,and 60.5%,respectively.The recycle and utilization of exhaust heat is the advantage of solid oxide cells because of the high operation temperature.For example,coupling the solid oxide cell with heat sources like nuclear plants would be a useful way to recycle exhaust heat in addition to the heat storage in the system.

    FⅠG.6 Cycling performance of RSOC for the storage and utilization of electricity at 1 A per cell at the beginning conditions of 1 atm,800?C,and 95%state of charge.

    IV.CONCLUSION

    Ⅰn this work,a phase-change metal has been utilized to reversibly store and use system heat in an oxide conducting solid oxide electrolzyer.The electrochemical energy-conversion process has been modelled versus the operation conditions including temperature,pressure and state of charge.The roundtrip efficiency reaches as high as 92.1%for electricity storage and generation in the RSOC system.Other phase-change metal like copper can be utilized to store heat to enhance roundtrip efficiency while different melting point would affect the temperature equilibrium of solid oxide cell system.The RSOC system is an effective and efficient platform for the storage and generation of renewable electricity.

    Supplementary materials:Tables S1,S2,S3,S4,S5,and S6 show the RSOC component parameters,input parameters,equation parameters,viscosity coefficients,heat simulation parameters and heat capacity coefficients,respectively.Figures S1,S2,S3,S4,S5,S6,S7,and S8 show the RSOC configuration,steam electrolysis energy balance,ohimic resistance of RSOC component,activationoverpotential,concentration overpotential with pressure and temperature,concentration overpotential with pre-exponential factors,system temperature and phase-change metal tank configuration,respectively.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.21303037 and No.91545123).

    [1]K.Barnham,K.Knorr,and M.Mazzer,Nat.Mater. 11,908(2012).

    [2]G.Gahleitner,Ⅰnt.J.Hydrogen.Energy 38,2039 (2013).

    [3]S.Kakac,A.Pramuanjaroenkij,and X.Y.Zhou,Ⅰnt. J.Hydrogen Energy 32,761(2007).

    [4]T.Papadam,G.Goula,andⅠ.V.Yentekakis,Ⅰnt.J. Hydrogen Energy 37,16680(2012).

    [5]M.Andersson,H.Paradis,J.L.Yuan,and B.Sunden,Ⅰnt.J.Energ.Res.35,1340(2011).

    [6]P.Aguiar,C.S.Adjiman,and N.P.Brandon,J.Power Sources 138,120(2004).

    [7]C.H.Wendel,Z.Gao,S.A.Barnett,and R.J.Braun,J.Power Sources 283,329(2015).

    [8]T.Nomura,C.Zhu,N.Sheng,G.Saito,and T. Akiyama,Sci.Rep.5,9117(2015).

    [9]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    [10]S.Campanari and P.Ⅰora,J.Power.Sources 132,113 (2004).

    [11]S.H.Chan and Z.T.Xia,J.Appl.Electrochem.32,339(2002).

    [12]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Energ. Convers.Manage 48,1525(2007).

    [13]E.H.Pacheco,D.Singh,P.N.Hutton,N.Patel,and M.D.Mann,J.Power.Sources 138,174(2004).

    [14]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Chem. Eng.Technol.29,636(2006).

    [15]M.Ni,M.K.H.Leung,and D.Y.C.Leung,J.Power. Sources 163,460(2006).

    [16]B.Todd and J.B.Young,J.Power Sources 110,186 (2002).

    [17]H.Y.Zhu,R.J.Kee,V.M.Janardhanan,O. Deutschmann,and D.G.Goodwin,J.Electrochem. Soc.152,A2427(2005).

    [18]K.Sedghisigarchi and A.Feliachi,ⅠEEE.T.Energy. Conver 19,423(2004).

    [19]X.J.Chen,Q.L.Liu,S.H.Chan,N.P.Brandon,and K.A.Khor,Electrochem.Commun.9,767(2007).

    [20]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    Li-zhen Gana,Kui Xieb?
    a.School of Mechanical and Automotive Engineering,Hefei University of Technology,Hefei 230009,China
    b.Key Lab of Design&Assembly of Functional Nanostructure,F(xiàn)ujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,F(xiàn)uzhou 350002,China
    (Dated:Received on October 10,2015;Accepted on January 6,2016)
    We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack.The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode.The state of charge(H2frication in cathode)effectively enhances the open circuit voltages(OCVs)while the system gas pressure in electrodes also increases the OCVs.On the other hand,a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations.With the aid of recycled system heat,the roundtrip efficiency reaches as high as 92%for the repeated electricity storage and generation.
    Key words:Reversible solid oxide cell,State of charge,Heat storage,Electricity storage,Electricity generation

    ?

    Author to whom correspondence should be addressed.E-mail: kxie@fjirsm.ac.cn

    麻豆一二三区av精品| 性欧美人与动物交配| 女生性感内裤真人,穿戴方法视频| 成人三级黄色视频| 国产三级在线视频| 大香蕉久久网| 伊人久久精品亚洲午夜| 亚洲av不卡在线观看| 一本精品99久久精品77| h日本视频在线播放| 精品人妻视频免费看| 国产亚洲91精品色在线| 国产真实乱freesex| 国产久久久一区二区三区| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 性插视频无遮挡在线免费观看| 一级av片app| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 淫秽高清视频在线观看| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费| 丰满的人妻完整版| 俺也久久电影网| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看 | 亚洲国产欧洲综合997久久,| 午夜a级毛片| 欧美一区二区精品小视频在线| 12—13女人毛片做爰片一| 国产高潮美女av| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 国产一区亚洲一区在线观看| 偷拍熟女少妇极品色| 六月丁香七月| av女优亚洲男人天堂| 久久久国产成人精品二区| 午夜久久久久精精品| 亚洲人成网站在线观看播放| 国产黄片美女视频| 久久精品人妻少妇| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 免费大片18禁| av卡一久久| 夜夜爽天天搞| 亚洲七黄色美女视频| 在现免费观看毛片| 秋霞在线观看毛片| 国产精品一二三区在线看| 高清毛片免费看| 99精品在免费线老司机午夜| 寂寞人妻少妇视频99o| 在线免费观看的www视频| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 乱人视频在线观看| 一级黄片播放器| 亚洲中文日韩欧美视频| av国产免费在线观看| 校园人妻丝袜中文字幕| 男人狂女人下面高潮的视频| 亚洲色图av天堂| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 免费看a级黄色片| 搞女人的毛片| 国产亚洲精品综合一区在线观看| 亚洲色图av天堂| 亚洲精品在线观看二区| 久久久成人免费电影| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 久久午夜亚洲精品久久| 可以在线观看的亚洲视频| 夜夜夜夜夜久久久久| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| 精品福利观看| 3wmmmm亚洲av在线观看| 国产国拍精品亚洲av在线观看| 欧美zozozo另类| 一本久久中文字幕| 51国产日韩欧美| 久久久久精品国产欧美久久久| 看黄色毛片网站| 中文亚洲av片在线观看爽| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 久久久精品欧美日韩精品| 我要搜黄色片| 最后的刺客免费高清国语| 免费在线观看成人毛片| 亚洲精品国产成人久久av| 亚洲天堂国产精品一区在线| 久久人妻av系列| 精品久久久久久久久久久久久| 成人高潮视频无遮挡免费网站| 亚洲电影在线观看av| 91久久精品电影网| 亚洲精品日韩av片在线观看| 色哟哟·www| 久久久国产成人免费| 久久久久久久久久久丰满| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 亚洲七黄色美女视频| 国产精品一区www在线观看| 日本爱情动作片www.在线观看 | 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 国内精品美女久久久久久| 日本免费一区二区三区高清不卡| 婷婷六月久久综合丁香| 天堂动漫精品| 午夜老司机福利剧场| 亚洲精品久久国产高清桃花| 99久久精品热视频| av在线蜜桃| 日产精品乱码卡一卡2卡三| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 色尼玛亚洲综合影院| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 一a级毛片在线观看| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式| 男女视频在线观看网站免费| 国产精品伦人一区二区| 日韩,欧美,国产一区二区三区 | 麻豆精品久久久久久蜜桃| 狂野欧美白嫩少妇大欣赏| 国产精品伦人一区二区| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 少妇的逼好多水| 99国产精品一区二区蜜桃av| 亚洲高清免费不卡视频| 免费看日本二区| 亚洲丝袜综合中文字幕| 18+在线观看网站| 国产成人精品久久久久久| 国产精品三级大全| 校园春色视频在线观看| 天天躁夜夜躁狠狠久久av| 日本免费a在线| 国产av一区在线观看免费| 成人永久免费在线观看视频| 熟妇人妻久久中文字幕3abv| 亚洲18禁久久av| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 我的女老师完整版在线观看| 成人av在线播放网站| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 久久久久性生活片| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 校园春色视频在线观看| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 国产激情偷乱视频一区二区| 99久久精品热视频| 亚洲精品久久国产高清桃花| 亚洲欧美精品综合久久99| 中文资源天堂在线| 精品不卡国产一区二区三区| 亚洲美女黄片视频| 久久精品影院6| 嫩草影院入口| 日本三级黄在线观看| 在线播放无遮挡| 亚洲中文字幕日韩| 国产 一区精品| 色吧在线观看| 少妇裸体淫交视频免费看高清| 精品人妻熟女av久视频| 久久久久免费精品人妻一区二区| 长腿黑丝高跟| 国产乱人偷精品视频| 久久热精品热| 日韩av在线大香蕉| 尾随美女入室| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品| 日本黄大片高清| 国产黄色小视频在线观看| 国产在视频线在精品| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看| 免费av毛片视频| 三级毛片av免费| av天堂中文字幕网| 91在线精品国自产拍蜜月| 黄色欧美视频在线观看| 久久人人精品亚洲av| 中国美女看黄片| 成人精品一区二区免费| 丰满人妻一区二区三区视频av| 午夜激情欧美在线| 精品熟女少妇av免费看| 天美传媒精品一区二区| 久久久欧美国产精品| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 三级男女做爰猛烈吃奶摸视频| 天堂动漫精品| 日韩欧美国产在线观看| 久久久午夜欧美精品| 性色avwww在线观看| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 精品不卡国产一区二区三区| 欧美zozozo另类| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件 | 欧美绝顶高潮抽搐喷水| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 国产精品1区2区在线观看.| 久久欧美精品欧美久久欧美| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女| 国产高清视频在线观看网站| 午夜激情欧美在线| 午夜视频国产福利| 此物有八面人人有两片| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 久久中文看片网| 亚洲欧美日韩高清专用| 成人美女网站在线观看视频| 1000部很黄的大片| 国产成人福利小说| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 在线观看免费视频日本深夜| 日韩av不卡免费在线播放| 色综合色国产| av在线观看视频网站免费| 国产亚洲91精品色在线| 亚洲最大成人手机在线| 久久久久久久亚洲中文字幕| 午夜福利高清视频| 久久久久久大精品| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 国产精品国产高清国产av| 激情 狠狠 欧美| 黄色欧美视频在线观看| 亚洲av美国av| 欧美bdsm另类| 最近的中文字幕免费完整| 在线观看免费视频日本深夜| 亚洲高清免费不卡视频| 亚洲av五月六月丁香网| 一区二区三区四区激情视频 | 久久久久免费精品人妻一区二区| 女生性感内裤真人,穿戴方法视频| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区 | 啦啦啦啦在线视频资源| 人人妻,人人澡人人爽秒播| 男人的好看免费观看在线视频| 伦精品一区二区三区| 精品久久国产蜜桃| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 又爽又黄无遮挡网站| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 在线天堂最新版资源| 欧美在线一区亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 少妇裸体淫交视频免费看高清| 真人做人爱边吃奶动态| 国产精品日韩av在线免费观看| 乱码一卡2卡4卡精品| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 熟女电影av网| 午夜免费激情av| 黄色配什么色好看| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 我要搜黄色片| 欧美绝顶高潮抽搐喷水| 日本爱情动作片www.在线观看 | 一个人观看的视频www高清免费观看| 在线播放无遮挡| 久久久久久国产a免费观看| 欧美一级a爱片免费观看看| 国产精品av视频在线免费观看| 美女高潮的动态| 婷婷精品国产亚洲av在线| 能在线免费观看的黄片| 国产乱人视频| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 非洲黑人性xxxx精品又粗又长| 日韩欧美 国产精品| 99riav亚洲国产免费| 婷婷亚洲欧美| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 日韩成人伦理影院| 一级毛片久久久久久久久女| av在线亚洲专区| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 久久久久久久久久黄片| 国产精品一区二区免费欧美| 亚洲av美国av| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 亚洲在线观看片| 亚洲精品色激情综合| 久久人妻av系列| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 精品久久久久久久久久免费视频| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清在线视频| 国产一区二区在线av高清观看| 99热精品在线国产| 色综合站精品国产| 中国美白少妇内射xxxbb| 中国国产av一级| 赤兔流量卡办理| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 午夜日韩欧美国产| 99九九线精品视频在线观看视频| 亚洲性久久影院| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 噜噜噜噜噜久久久久久91| 国产亚洲精品综合一区在线观看| 亚洲av一区综合| av在线亚洲专区| 日韩欧美免费精品| 国产精品一区二区三区四区免费观看 | 亚洲人成网站高清观看| 国产精品一区二区三区四区久久| 国产av麻豆久久久久久久| 国产精品日韩av在线免费观看| 麻豆一二三区av精品| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 欧美性猛交黑人性爽| 真人做人爱边吃奶动态| 深爱激情五月婷婷| 国产毛片a区久久久久| 久久韩国三级中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 国产黄色视频一区二区在线观看 | 全区人妻精品视频| 国产精品嫩草影院av在线观看| 1000部很黄的大片| 秋霞在线观看毛片| 亚洲乱码一区二区免费版| 日本黄色片子视频| avwww免费| 欧洲精品卡2卡3卡4卡5卡区| 91麻豆精品激情在线观看国产| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 免费看av在线观看网站| 悠悠久久av| 日韩欧美精品免费久久| 伊人久久精品亚洲午夜| 人妻制服诱惑在线中文字幕| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 精品国内亚洲2022精品成人| 99久久精品热视频| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 在线国产一区二区在线| 亚洲18禁久久av| 直男gayav资源| 欧美日韩在线观看h| 国产片特级美女逼逼视频| 三级经典国产精品| 亚洲18禁久久av| 日韩成人av中文字幕在线观看 | 成人亚洲精品av一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品论理片| 国产一区二区在线av高清观看| 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 免费看av在线观看网站| 国产三级中文精品| 日韩欧美国产在线观看| 日韩一区二区视频免费看| 精品国产三级普通话版| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 国产黄色视频一区二区在线观看 | 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 午夜精品在线福利| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 十八禁国产超污无遮挡网站| 国产高清激情床上av| 欧美极品一区二区三区四区| 国产av在哪里看| 三级毛片av免费| 成人毛片a级毛片在线播放| 国产精华一区二区三区| 亚洲专区国产一区二区| 国模一区二区三区四区视频| av天堂中文字幕网| 18禁裸乳无遮挡免费网站照片| 国内精品一区二区在线观看| 天美传媒精品一区二区| 国产精品亚洲美女久久久| 一级毛片电影观看 | 亚洲综合色惰| 干丝袜人妻中文字幕| 一进一出抽搐gif免费好疼| 1024手机看黄色片| 一级黄色大片毛片| 欧美激情在线99| 91狼人影院| 久久久精品欧美日韩精品| 成人精品一区二区免费| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 精品乱码久久久久久99久播| 国产在视频线在精品| 日日撸夜夜添| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 亚洲经典国产精华液单| 日韩制服骚丝袜av| 极品教师在线视频| 日本与韩国留学比较| 国产精品一区www在线观看| 久久久久久九九精品二区国产| 可以在线观看的亚洲视频| ponron亚洲| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 色播亚洲综合网| 精品福利观看| 欧美成人a在线观看| 网址你懂的国产日韩在线| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 国产成人freesex在线 | 亚洲在线观看片| 国产亚洲91精品色在线| 青春草视频在线免费观看| 哪里可以看免费的av片| 精品久久久噜噜| АⅤ资源中文在线天堂| 黄色欧美视频在线观看| 99在线人妻在线中文字幕| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 国产精品电影一区二区三区| 色哟哟·www| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图| 男女那种视频在线观看| 五月玫瑰六月丁香| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 小蜜桃在线观看免费完整版高清| 露出奶头的视频| 91在线观看av| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| 综合色丁香网| 少妇熟女aⅴ在线视频| 嫩草影院新地址| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 18禁在线无遮挡免费观看视频 | 亚洲高清免费不卡视频| 在线观看66精品国产| 亚洲五月天丁香| 亚洲国产精品合色在线| 日韩强制内射视频| a级一级毛片免费在线观看| 听说在线观看完整版免费高清| 少妇的逼水好多| 欧美性猛交黑人性爽| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 欧美+日韩+精品| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| 日韩一区二区视频免费看| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看| 99riav亚洲国产免费| 日本黄色视频三级网站网址| 国产淫片久久久久久久久| 国产不卡一卡二| 99精品在免费线老司机午夜| 天天躁日日操中文字幕| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 97超级碰碰碰精品色视频在线观看| 97超视频在线观看视频| 欧美绝顶高潮抽搐喷水| 成人av在线播放网站| 国产伦精品一区二区三区视频9| 欧美高清成人免费视频www| 春色校园在线视频观看| 欧美日韩在线观看h| 大又大粗又爽又黄少妇毛片口| 91在线精品国自产拍蜜月| 国产爱豆传媒在线观看| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 亚洲中文字幕日韩| 精品日产1卡2卡| 久久久久久大精品| av.在线天堂| 午夜福利成人在线免费观看| 欧美性猛交黑人性爽| 熟女电影av网| 精品午夜福利视频在线观看一区| 国产成人福利小说| 小说图片视频综合网站| 国产单亲对白刺激| 久久久久久国产a免费观看| 国产视频一区二区在线看| 久久99热6这里只有精品| 欧美精品国产亚洲| 婷婷亚洲欧美| 麻豆精品久久久久久蜜桃| 十八禁网站免费在线| 国产精品国产高清国产av| 免费在线观看成人毛片| 日本精品一区二区三区蜜桃| 人妻制服诱惑在线中文字幕| 热99re8久久精品国产| 亚洲av美国av| 看十八女毛片水多多多| 日本黄色片子视频| 精品久久久久久久久av| 国产精品亚洲一级av第二区| 干丝袜人妻中文字幕| 精品久久国产蜜桃| 国产亚洲精品久久久久久毛片| 精品午夜福利视频在线观看一区| 淫秽高清视频在线观看| 国内精品美女久久久久久| 直男gayav资源| 嫩草影院新地址|