• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    2016-09-23 06:06:26Li-zhenGan,KuiXie
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    I.INTRODUCTION

    Ⅰn recent years,renewable energies have been attracting a great deal of interests because they have huge potentials to solve the energy and environmental issues[1,2].Reversible solid oxide cell(RSOC)is a device that can efficiently store renewable electricity in the form of chemical fuels through the solid oxide electrolysis cell(SOEC)process and reversibly generate electricity by the solid oxide fuel cell(SOFC)conversion process. SOFC has many advantages including high efficiency,long-term stability,fuel flexibility,low emissions,and low cost[3-5].SOEC is the reverse mode of SOFC and inherits most SOFC advantages.RSOC can operate at higher temperatures with favourable kinetics for energy conversion in a large scale.RSOC combines the SOFC and SOEC and has been considered as an alternative energy storage system and/or a possible system for smart grid[6].

    For a RSOC stack,the roundtrip efficiency has been considered as one of the key factors to evaluate the performance of electricity storage/generation in the reversible system.Ⅰt has been widely accepted that a roundtrip efficiency with 80%is well adapted to the commercialization requirements.Ⅰt has been reported that a roundtrip efficiency in the range of 70%-86%is achieved with LSGM-electrolyte cell stack at low current densities at 600-650?C[7].The system heat significantly changes the operation temperatures in the range of-50?C to 200?C and thermal management is therefore extremely important in the roundtrip cycles.Ⅰt should be noted that the thermal management is a complicated system engineering that can remarkably increase the roundtrip efficiencies.However,the reversible heat storage is still a challenge at 800-1000?C though some thermal managements combining the electricity storage/generation with heating/cooling system.

    Heat storage using phase-change metals with high heat capacity is an attractive option for high temperature thermal energy storage,especially at temperatures above 800?C[8].Under specific circumstances,the heat storage or release can be rapid,efficient and largescale when a phase change material undergoes a phase transition from solid to solid,solid to liquid,or vice versa.Ⅰt can store and release heat when being held constant at the phase transition temperature,and its reversible phase changing processes allow for repeated use.More importantly,the operation temperature can be easily extended to as high as 1000?C to well adapt the operation temperature of solid oxide cell system. These advantages allow phase change metal tanks to be used as an advanced heat storage system for high temperature RSOC stacks.Copper or silver with high heat capacity,as common heat storage metals,can be readily intergraded into RSOC system to increase the roundtrip efficiencies.

    Ⅰn this work,a tubular RSOC stack combined with silver metal tank for heat storage is theoretically dem-onstrated.The charging and discharging processes have been modelled in relation to operation temperatures,system pressure,and state of charge.The roundtrip efficiency of electricity storage/generation is then studied.

    II.THE ELECTROCHEMICAL SIMULATION

    A.Open circuit voltage

    The chemical reaction in RSOC is as follows:

    which indicates the electricity generation/storage with H2/H2O in fuel electrode and air in oxygen electrode. The open circuit voltage(OCV)hence can be calculated by the Nernst equation(Eq.(1)and Eq.(2)):

    Fuel cell mode:

    Electrolysis cell mode:

    where R,T,n,and F correspond to the universal gas constant(8.3145 J/(mol·K)),the system temperature in K,the number of electrons(n=2),and the Faraday constant(96485 C/mol),respectively.pH2O,pH2,and pO2are the partial pressures of steam,hydrogen,and oxygen,respectively.Ⅰt can be seen that a higher stage of charge would be effective to increase the OCV values.The Gibb’s free energy,for the reaction of H2and O2can be calculated via the relationship of EΘand enthalpy and entropy:

    B.Ohmic resistance

    The schematic of the reversible tubular fuel electrodesupported solid oxide cell is shown in Fig.S1(supplementary materials)and the parameters of the components are shown in Table S1.The sequence flow of current through the interconnector,fuel electrode,electrolyte and the air electrode,and the current path of each component are clearly specified in Table S1 and S2 (supplementary materials).The resistance calculation for fuel electrode,air electrode,electrolyte,and interconnector,has been reported elsewhere[9].The total ohmic resistance for RSOC is obtained by Eq.(4):

    C.Activation overpotential

    The activation overpotential is the electrode surface overpotential and controlled by the kinetics at electrode surface.Ⅰt is the external energy required to overcome the maximum activation energy barrier to maintain electrode reaction.The Butler-Volmer equations [10,11]is used in the RSOC system.The activation polarization of the fuel electrode(ηact,f)and that of air electrode(ηact,a)can be expressed via mathematical transformation as indicated in Eq.(5)and(6):

    where J is the current density,and J0,aor J0,fis a crucial parameter and depends on the electrode microstructure and operation conditions.The exchange current density can be calculated by Eq.(7)for the fuel electrode and Eq.(8)for the air electrode.The pre-exponential factors γfand γaare for fuel and air electrodes,respectively[12].Eact,fand Eact,aare the activation energies of fuel electrode and air electrode,respectively.The pO2and pH2Ois the partial pressure of gas O2and H2O,p is the total pressure.

    D.Concentration overpotential

    Ⅰn the reversible process,the concentration polarization simulations are performed both in fuel cell and electrolysis cell modes,respectively.Ⅰn fuel cell mode,the concentration overpotentials of fuel electrode (ηconc,fuel,f)and air electrode(ηconc,fuel,a)can be calculated by Eq.(9)and Eq.(10),respectively[11,12]:

    Here,lfand lastand for the thickness of fuel and air electrode,respectively,pais the gas pressure at theair electrode.DHe

    2ffand DOe2ffare the effective diffusion coefficients for hydrogen and oxygen,respectively [13],while the related parameters are shown in Table S3(supplementary materials).Ⅰn the electrolysis cell mode,the concentration overpotentials of air (ηconc,elec.,a)and fuel electrodes(ηconc,elec.,f),can be calculated by Eq.(11)and Eq.(12),respectively[14,15].

    where DHe2ffOis the effective diffusion coefficients of steam,μis the dynamic viscosity of oxygen and the calculation can be referred with the related data displayed in Table S3 and S4(supplementary materials) [16,17].

    E.Cell voltage

    The types of voltage loss in the RSOC are ohmic loss,activation and concentration polarizations.The ohmic loss for each component is calculated using the Ohm’s law and then the voltage drop is given as:

    Once the ohmic overpotential is known,the cell voltages can be obtained by Eq.(14)for fuel cell mode and Eq.(15)for electrolysis cell mode:

    F.Heat simulation

    Ⅰn this section,the heat simulation was carried out to investigate the system balance.The heat mainly comes from the reaction losses by conduction when the cells work,which,therefore,changes the system temperatures.Using the mathematical method,the dependence of system temperature on time is calculated by Eq.(16)for fuel cell mode and Eq.(17)for electrolysis cell mode[18]:

    where qris the electrochemical heat of the system heat,qohmicis the heat from the ohmic resistance,qlossis the heat loss through the system.mcellis the mass of cell,and the total heat capacity of the cell is Cpcell.Ⅰn the model,the heat storage of the metal phase change is used,so Mheatis the mass of metal and Cpheatis its heat capacity.The values are in Table S5(supplementary materials).Ⅰn this work,the RSOC system is assumed to be in an insulated box in which temperature is fairly constant,

    where A is the surface area of the box in m2,λ is the thermal conductivity in W/(m·K),l is the thickness of the box in m,and Tiand Toare the temperatures of inside and the outside box,respectively.

    The heat capacity of various gases,Cpi,m,in modelling system as a function of temperature can be calculated by Eq.(19),i represents the various gases,and the related data are recorded in Table S6(supplementary materials).Ⅰn the RSOC system,the gas is assumed to be ideal:

    The heat storage,χ,is the percentage of silver metal that has melted of the total metal in the heat storage. The procedures of heat absorption and release are similar and can be calculated as follows:

    When the change of metal phase begins,the χ changes,however,the temperature of the system remain constant.When the time equals 0,χ is 0%,when all the metal has melted,χ equals 100%and the temperature of system rises again.The qr,qohmic,and qlossare the heat generation or loss from reaction,ohmic resistance and system heat loss,respectively.The Eheatis the total energy stored by the metal phase change.On the contrary,when the system is in the electrolysis cell mode,the metal cools down so that the heat is released from it and absorbed by the electrolysis reaction.

    FⅠG.1 The OCV of the RSOC system versus(a)temperature and(b)pressure in the state of charge(1%-99%).

    FⅠG.2 Activation overpotentials in RSOC at 1 atm and 95%state of charge for the(a)fuel electrode and(b)air electrode,respectively.

    Here,Mmetalis the molar mass of silver metal,and Eheatis the total energy stored by the metal phase change.The Hfusion,heatis the enthalpy of fusion for the metal.

    III.RESULTS AND DISCUSSION

    Figure 1(a)shows the OCV of the RSOC system with the state of charge varying from 1%to 99%at different temperatures ranging from 800?C to 1000?C.The state of charge is defined as the mole fraction of hydrogen in the hydrogen/steam mixture at the fuel electrode in the system while the total operation pressure has always been considered as 1.0 atm.As anticipated,the OCV decreases at higher temperatures,which is consistent with results obtained in a previous work[19].However,the OCV is significantly enhanced from 0.8 V to 1.1 V with the state of charge increases from 10%to 90% at 800?C,as shown in Fig.1(b).Ⅰncreasing operation pressure is expected to enhance the OCVs,however,the OCV only improves from 0.8 V to 0.85 V with system pressure increasing from 1 atm to 10 atm at the state of charge of 20%at 800?C.The state of charge is an more important factor that affects the OCV and influences the RSOC system equilibrium.

    Figure S3 shows the ohmic resistance of each component of a single RSOC cell.The main ohmic resistance is from the electrolyte,indicating the ionic transport limitation in reversible cells.Figure 2 illustrates the dependence of activation overpotential on both temperature and current for fuel electrode and air electrode,respectively.A remarkable increase in electrode overpotential is observed against current at 800?C.This implies that a large current significantly increases the electrode overpotentials at lower temperatures.However,a linear relationship is observed between the overpotential and current at 1000?C,which indicates that a higher current is favourable to improve electrode activation.Ⅰn addition,the fuel electrode polarization resistance is larger than that of air electrode.The optimization of fuel electrode to decrease polarization resistance would be therefore effective to enhance fuel electrode performance.

    The pre-exponential factor is proportional to the length of triple phase boundary which can be determined by the size of grain,radius of pore,and porosity[20].The influences of various pre-exponential factors on overpotentials is shown in Fig.S2(supplementary materials).A porous electrode with sufficient triple phase boundary would be beneficial to electrode activity with lower pre-exponential factor.Figures 3 and 4 present the dependence of concentration overpotentials on pressures and temperatures in fuel cell mode and electrolysis mode,respectively.Although,the concentration overpotential is less dependent on temperatureat higher pressure,it still improves at a higher temperature.The higher system pressure makes the concentration gradients smaller and not to be the main factor affecting concentration overpotentials.The concentration overpotential of fuel electrode in electrolysis cell mode is greater than that in fuel cell mode(see Fig.S3 and S4 in supplementary materials).This may be attributed to the larger Knudsen diffusion factor of hydrogen than that of steam under operation conditions.The currents also affect the concentration overpotentials of both electrodes either in fuel cell mode or electrolysis cell mode. The dependence of concentration overpotential on the currents and pressures in fuel cell and electrolysis cell mode at different temperature are also demonstrated in Fig.S5 and S6(supplementary materials),respectively.

    Figure 5 presents the I-V curves in the RSOC system,where the negative currents and the positive currents correspond to electrolysis cell mode and fuel cell mode,respectively.Ⅰt is observed that the activation overpotential is the small primary source of voltage loss due to the thin electrodes.Apparently,the cell voltage losses from ohmic resistance is negligible owing to the low resistivity of materials and short current path. This means the improvement of electrode activity is the main challenge that restricts the cell performances.

    Ⅰn this work,a metal with phase change is utilized to store and reuse the heat generated in reversible system. The heat stored in phase-change metal in fuel cell mode and then reused in electrolysis mode strongly influences the energy storage capability of the RSOC system.The modelling assumed that the reversible system is located in an insulating box at current 1 A and total gas pressure 1 atm.The maximum temperature is set at 962?C,in order to prevent the damage of the system.The temperature slowly increases as the heat generated from the chemical reaction.The generated heat competes with the heat loss in system and finally reaches an optimum at 962?C after 838 s at which the fuel cell mode switches to electrolysis mode to avoid the overheat of the reversible system.The cooling procedure in electrolysis cell mode with 962?C as the starting temperature.The temperature decreases to 800?C after 731 s,and the electrolysis reaction stoped and switched back to fuel cell mode.The temperature change is demonstrated in Fig.S7(supplementary materials),while the metal tank for heat storage is demonstrated in Fig.S8 (supplementary materials).

    FⅠG.4 Relationship between temperature,pressure and concentration overpotential in(a)fuel electrode and(b)air electrode at 1 A current and 95%state of charge in the electrolysis mode.

    FⅠG.5 Voltage of RSOC system versus current at 1 atm,950?C and with the state of charge 95%.

    Figure 6 shows the state of charge,the heat storage percentage and temperature as a function of time in cycling process.The maximum temperature holds constant at 962?C as the phase change of metal absorbs the generated heat.The state of charge decreases from 95%to 5%in fuel cell mode,and then the operation mode switches to electrolysis cell mode.The SOC could not reach 95%anymore because the heat loss is irreversible;however,it gets to 87.5%,which implies that the cycling efficiency is 92.1%.Ⅰn fuel cell mode,the system temperature increases with the hydrogen consumption and reaches 962?C,at which the metal begins to melt and absorbs the generated heat. Subsequently,the state of charge reduces to 5%at which the operation mode switched to electrolysis cell while 72.6%melted metal begins to release the absorbed heat to promote steam electrolysis.The system temperature returns to the initial state when the first cycle is completed with the exothermic steam electrolysis process terminated.The roundtrip efficiency for the first to the fifth cycle are 92.1%,84.2%,76.3%,68.4%,and 60.5%,respectively.The recycle and utilization of exhaust heat is the advantage of solid oxide cells because of the high operation temperature.For example,coupling the solid oxide cell with heat sources like nuclear plants would be a useful way to recycle exhaust heat in addition to the heat storage in the system.

    FⅠG.6 Cycling performance of RSOC for the storage and utilization of electricity at 1 A per cell at the beginning conditions of 1 atm,800?C,and 95%state of charge.

    IV.CONCLUSION

    Ⅰn this work,a phase-change metal has been utilized to reversibly store and use system heat in an oxide conducting solid oxide electrolzyer.The electrochemical energy-conversion process has been modelled versus the operation conditions including temperature,pressure and state of charge.The roundtrip efficiency reaches as high as 92.1%for electricity storage and generation in the RSOC system.Other phase-change metal like copper can be utilized to store heat to enhance roundtrip efficiency while different melting point would affect the temperature equilibrium of solid oxide cell system.The RSOC system is an effective and efficient platform for the storage and generation of renewable electricity.

    Supplementary materials:Tables S1,S2,S3,S4,S5,and S6 show the RSOC component parameters,input parameters,equation parameters,viscosity coefficients,heat simulation parameters and heat capacity coefficients,respectively.Figures S1,S2,S3,S4,S5,S6,S7,and S8 show the RSOC configuration,steam electrolysis energy balance,ohimic resistance of RSOC component,activationoverpotential,concentration overpotential with pressure and temperature,concentration overpotential with pre-exponential factors,system temperature and phase-change metal tank configuration,respectively.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.21303037 and No.91545123).

    [1]K.Barnham,K.Knorr,and M.Mazzer,Nat.Mater. 11,908(2012).

    [2]G.Gahleitner,Ⅰnt.J.Hydrogen.Energy 38,2039 (2013).

    [3]S.Kakac,A.Pramuanjaroenkij,and X.Y.Zhou,Ⅰnt. J.Hydrogen Energy 32,761(2007).

    [4]T.Papadam,G.Goula,andⅠ.V.Yentekakis,Ⅰnt.J. Hydrogen Energy 37,16680(2012).

    [5]M.Andersson,H.Paradis,J.L.Yuan,and B.Sunden,Ⅰnt.J.Energ.Res.35,1340(2011).

    [6]P.Aguiar,C.S.Adjiman,and N.P.Brandon,J.Power Sources 138,120(2004).

    [7]C.H.Wendel,Z.Gao,S.A.Barnett,and R.J.Braun,J.Power Sources 283,329(2015).

    [8]T.Nomura,C.Zhu,N.Sheng,G.Saito,and T. Akiyama,Sci.Rep.5,9117(2015).

    [9]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    [10]S.Campanari and P.Ⅰora,J.Power.Sources 132,113 (2004).

    [11]S.H.Chan and Z.T.Xia,J.Appl.Electrochem.32,339(2002).

    [12]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Energ. Convers.Manage 48,1525(2007).

    [13]E.H.Pacheco,D.Singh,P.N.Hutton,N.Patel,and M.D.Mann,J.Power.Sources 138,174(2004).

    [14]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Chem. Eng.Technol.29,636(2006).

    [15]M.Ni,M.K.H.Leung,and D.Y.C.Leung,J.Power. Sources 163,460(2006).

    [16]B.Todd and J.B.Young,J.Power Sources 110,186 (2002).

    [17]H.Y.Zhu,R.J.Kee,V.M.Janardhanan,O. Deutschmann,and D.G.Goodwin,J.Electrochem. Soc.152,A2427(2005).

    [18]K.Sedghisigarchi and A.Feliachi,ⅠEEE.T.Energy. Conver 19,423(2004).

    [19]X.J.Chen,Q.L.Liu,S.H.Chan,N.P.Brandon,and K.A.Khor,Electrochem.Commun.9,767(2007).

    [20]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    Li-zhen Gana,Kui Xieb?
    a.School of Mechanical and Automotive Engineering,Hefei University of Technology,Hefei 230009,China
    b.Key Lab of Design&Assembly of Functional Nanostructure,F(xiàn)ujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,F(xiàn)uzhou 350002,China
    (Dated:Received on October 10,2015;Accepted on January 6,2016)
    We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack.The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode.The state of charge(H2frication in cathode)effectively enhances the open circuit voltages(OCVs)while the system gas pressure in electrodes also increases the OCVs.On the other hand,a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations.With the aid of recycled system heat,the roundtrip efficiency reaches as high as 92%for the repeated electricity storage and generation.
    Key words:Reversible solid oxide cell,State of charge,Heat storage,Electricity storage,Electricity generation

    ?

    Author to whom correspondence should be addressed.E-mail: kxie@fjirsm.ac.cn

    啦啦啦 在线观看视频| 亚洲欧美一区二区三区国产| 欧美日韩精品网址| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 欧美精品av麻豆av| 老司机影院成人| 久久精品国产a三级三级三级| 两个人免费观看高清视频| 精品福利永久在线观看| 亚洲欧洲国产日韩| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 性高湖久久久久久久久免费观看| 观看av在线不卡| 中国国产av一级| 五月天丁香电影| 欧美日韩国产mv在线观看视频| 日韩av免费高清视频| av在线播放精品| 国产黄色视频一区二区在线观看| 男人添女人高潮全过程视频| 色综合欧美亚洲国产小说| 国产亚洲欧美精品永久| 亚洲国产欧美网| 国产乱来视频区| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线进入| 91国产中文字幕| 777米奇影视久久| 丝袜美足系列| 日日啪夜夜爽| 黑丝袜美女国产一区| 波多野结衣一区麻豆| 国产片内射在线| av视频免费观看在线观看| 大香蕉久久网| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 狂野欧美激情性bbbbbb| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 久久久久精品性色| 一区福利在线观看| 亚洲精品aⅴ在线观看| 免费不卡黄色视频| 高清欧美精品videossex| www.自偷自拍.com| 免费高清在线观看日韩| 一级毛片 在线播放| 国产成人免费无遮挡视频| 国产探花极品一区二区| 男的添女的下面高潮视频| 精品午夜福利在线看| netflix在线观看网站| 如何舔出高潮| 美女高潮到喷水免费观看| av在线观看视频网站免费| 如何舔出高潮| 久久久久精品人妻al黑| 99热国产这里只有精品6| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 99精品久久久久人妻精品| 一级毛片电影观看| 97精品久久久久久久久久精品| 一级爰片在线观看| 国产成人精品久久久久久| e午夜精品久久久久久久| 国产免费一区二区三区四区乱码| 91成人精品电影| 女性生殖器流出的白浆| 一区福利在线观看| 最新的欧美精品一区二区| 十分钟在线观看高清视频www| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 亚洲精品国产区一区二| 国产成人精品在线电影| 久久久国产一区二区| 在线 av 中文字幕| 宅男免费午夜| 久久精品久久久久久噜噜老黄| 日日爽夜夜爽网站| 日本91视频免费播放| 国产精品av久久久久免费| 亚洲男人天堂网一区| 国产不卡av网站在线观看| 美女大奶头黄色视频| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 色播在线永久视频| 亚洲国产看品久久| 国产黄色免费在线视频| 亚洲色图综合在线观看| 丁香六月天网| 日韩av不卡免费在线播放| 国产精品一区二区在线不卡| 999久久久国产精品视频| 欧美最新免费一区二区三区| 亚洲av福利一区| 亚洲精品日本国产第一区| h视频一区二区三区| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品国产av蜜桃| 老司机影院毛片| 色吧在线观看| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 桃花免费在线播放| 久热爱精品视频在线9| 亚洲欧美成人精品一区二区| 精品一区二区三区四区五区乱码 | 一区二区三区四区激情视频| 午夜福利视频在线观看免费| 久久久亚洲精品成人影院| 成人18禁高潮啪啪吃奶动态图| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91| 下体分泌物呈黄色| 捣出白浆h1v1| 久久久久视频综合| 青春草国产在线视频| 99re6热这里在线精品视频| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 免费黄网站久久成人精品| 黄色视频在线播放观看不卡| 日韩一卡2卡3卡4卡2021年| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 51午夜福利影视在线观看| 日韩制服骚丝袜av| 日本av手机在线免费观看| 超碰成人久久| 一区福利在线观看| 日本一区二区免费在线视频| 日本一区二区免费在线视频| 久久99热这里只频精品6学生| 亚洲精品国产av蜜桃| 日本一区二区免费在线视频| 美女福利国产在线| avwww免费| 丝袜人妻中文字幕| 精品午夜福利在线看| 一本久久精品| 午夜影院在线不卡| 国产av精品麻豆| 欧美日韩福利视频一区二区| 成年人午夜在线观看视频| 国产精品国产av在线观看| 日本色播在线视频| 欧美日韩国产mv在线观看视频| 久久婷婷青草| 天天躁夜夜躁狠狠久久av| 国产成人av激情在线播放| 久久热在线av| 婷婷色av中文字幕| 亚洲男人天堂网一区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看| 日韩不卡一区二区三区视频在线| 91精品伊人久久大香线蕉| 欧美av亚洲av综合av国产av | 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 欧美乱码精品一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 91精品国产国语对白视频| 国产成人系列免费观看| 国产精品无大码| 2018国产大陆天天弄谢| 老司机亚洲免费影院| 欧美成人精品欧美一级黄| 看免费成人av毛片| 成人国语在线视频| 天天躁日日躁夜夜躁夜夜| 秋霞伦理黄片| 在线观看免费日韩欧美大片| 一本大道久久a久久精品| 久久久久久人人人人人| 岛国毛片在线播放| 一区在线观看完整版| 男男h啪啪无遮挡| 巨乳人妻的诱惑在线观看| av有码第一页| 男人操女人黄网站| 91国产中文字幕| 一本久久精品| 九草在线视频观看| www.熟女人妻精品国产| 亚洲一区中文字幕在线| a级片在线免费高清观看视频| 99热国产这里只有精品6| 午夜日韩欧美国产| 欧美黄色片欧美黄色片| 国产欧美日韩综合在线一区二区| 精品少妇一区二区三区视频日本电影 | 日日啪夜夜爽| 久久久久久久久久久久大奶| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 日韩精品有码人妻一区| 青春草国产在线视频| 岛国毛片在线播放| 国产精品 欧美亚洲| 午夜激情av网站| 亚洲av日韩精品久久久久久密 | 在线天堂最新版资源| 美女扒开内裤让男人捅视频| 欧美 日韩 精品 国产| 精品酒店卫生间| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱来视频区| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 少妇精品久久久久久久| 免费在线观看黄色视频的| 一区二区三区四区激情视频| 日韩电影二区| 日韩大码丰满熟妇| 9191精品国产免费久久| 熟妇人妻不卡中文字幕| 黄频高清免费视频| 天堂8中文在线网| 婷婷色av中文字幕| 男女下面插进去视频免费观看| 夫妻午夜视频| 精品免费久久久久久久清纯 | 成人国产麻豆网| 老司机亚洲免费影院| av在线老鸭窝| 国产熟女午夜一区二区三区| 91精品伊人久久大香线蕉| 亚洲视频免费观看视频| 亚洲七黄色美女视频| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 观看美女的网站| 欧美精品高潮呻吟av久久| 久久免费观看电影| 99久国产av精品国产电影| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久 | 亚洲天堂av无毛| 中文字幕人妻熟女乱码| 一区在线观看完整版| 久久ye,这里只有精品| 五月天丁香电影| 波多野结衣av一区二区av| 欧美亚洲日本最大视频资源| 欧美精品高潮呻吟av久久| 两个人免费观看高清视频| 一本一本久久a久久精品综合妖精| 国产av精品麻豆| 最近最新中文字幕免费大全7| 精品第一国产精品| 青春草国产在线视频| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 精品免费久久久久久久清纯 | 中文精品一卡2卡3卡4更新| 欧美日韩视频高清一区二区三区二| 卡戴珊不雅视频在线播放| 日本欧美视频一区| 亚洲七黄色美女视频| 精品国产一区二区久久| 在线看a的网站| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 丝袜美足系列| 一级黄片播放器| 老熟女久久久| 你懂的网址亚洲精品在线观看| 欧美日韩一区二区视频在线观看视频在线| 美女主播在线视频| 男女边吃奶边做爰视频| 色播在线永久视频| 亚洲精品自拍成人| 制服人妻中文乱码| 久久ye,这里只有精品| 毛片一级片免费看久久久久| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| www.熟女人妻精品国产| 国产黄色视频一区二区在线观看| 一级黄片播放器| 亚洲精品中文字幕在线视频| 精品一区二区三区av网在线观看 | 免费在线观看完整版高清| 青草久久国产| 精品第一国产精品| 晚上一个人看的免费电影| 中文字幕人妻丝袜一区二区 | 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 亚洲第一青青草原| 久久99一区二区三区| 中文字幕最新亚洲高清| 亚洲精品第二区| 欧美激情极品国产一区二区三区| 婷婷色麻豆天堂久久| 午夜91福利影院| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 国产精品国产av在线观看| 一区二区三区精品91| 9色porny在线观看| 熟妇人妻不卡中文字幕| 国产精品.久久久| 久久久久视频综合| 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 19禁男女啪啪无遮挡网站| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 又大又爽又粗| 丁香六月欧美| 日韩制服丝袜自拍偷拍| 久久人妻熟女aⅴ| 欧美中文综合在线视频| 久久久精品区二区三区| 亚洲,欧美精品.| 欧美精品一区二区大全| 成人影院久久| 欧美成人午夜精品| 欧美激情极品国产一区二区三区| 国产一区二区在线观看av| 久久久久精品性色| 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 国产精品三级大全| 免费看av在线观看网站| 精品一品国产午夜福利视频| 免费高清在线观看视频在线观看| 777米奇影视久久| 咕卡用的链子| 日韩精品免费视频一区二区三区| 麻豆av在线久日| 亚洲精品av麻豆狂野| 18禁动态无遮挡网站| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 国产成人av激情在线播放| 乱人伦中国视频| 丰满乱子伦码专区| 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 国产精品成人在线| 99久久综合免费| 两个人免费观看高清视频| bbb黄色大片| 精品少妇一区二区三区视频日本电影 | 国产色婷婷99| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 日韩中文字幕欧美一区二区 | 天堂8中文在线网| 亚洲精品在线美女| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 国产精品免费视频内射| 深夜精品福利| 久久这里只有精品19| 一本大道久久a久久精品| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 激情视频va一区二区三区| 国产亚洲av片在线观看秒播厂| 免费女性裸体啪啪无遮挡网站| 少妇人妻 视频| 老司机在亚洲福利影院| 久久久久久久久久久免费av| 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 国产97色在线日韩免费| 国语对白做爰xxxⅹ性视频网站| 久久毛片免费看一区二区三区| 久久精品国产亚洲av高清一级| 国产亚洲午夜精品一区二区久久| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 欧美日韩亚洲国产一区二区在线观看 | 精品卡一卡二卡四卡免费| 国产日韩欧美在线精品| 免费高清在线观看视频在线观看| 午夜91福利影院| 国产精品麻豆人妻色哟哟久久| 91aial.com中文字幕在线观看| 大片免费播放器 马上看| 国产 一区精品| 日韩大码丰满熟妇| 久久综合国产亚洲精品| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 19禁男女啪啪无遮挡网站| 各种免费的搞黄视频| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| 观看美女的网站| 国产精品香港三级国产av潘金莲 | 午夜福利乱码中文字幕| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 大香蕉久久网| 亚洲国产欧美在线一区| 久久久久久人人人人人| 国产成人精品无人区| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 一本大道久久a久久精品| 成年人免费黄色播放视频| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区| 亚洲婷婷狠狠爱综合网| 在线观看免费视频网站a站| 男人操女人黄网站| 曰老女人黄片| 色网站视频免费| 在线观看国产h片| 国产又爽黄色视频| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密 | 电影成人av| 国产一区二区 视频在线| 精品免费久久久久久久清纯 | 精品国产国语对白av| av在线app专区| 久久精品亚洲av国产电影网| 嫩草影院入口| 精品国产一区二区三区四区第35| 亚洲精华国产精华液的使用体验| 国产福利在线免费观看视频| 少妇人妻久久综合中文| 精品卡一卡二卡四卡免费| 搡老岳熟女国产| 国产极品天堂在线| 国产av国产精品国产| 国产成人系列免费观看| 最新的欧美精品一区二区| 激情五月婷婷亚洲| 亚洲成人一二三区av| 国产伦人伦偷精品视频| 黄色毛片三级朝国网站| 精品亚洲成a人片在线观看| 国产成人精品在线电影| 欧美日韩视频高清一区二区三区二| 欧美 日韩 精品 国产| 亚洲精品,欧美精品| 男男h啪啪无遮挡| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 亚洲av综合色区一区| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频| tube8黄色片| 成人黄色视频免费在线看| 少妇人妻精品综合一区二区| 久热这里只有精品99| 日韩一卡2卡3卡4卡2021年| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 亚洲av福利一区| 亚洲av成人不卡在线观看播放网 | 性少妇av在线| 色婷婷久久久亚洲欧美| 日本欧美视频一区| 一本—道久久a久久精品蜜桃钙片| 黄色毛片三级朝国网站| 一本一本久久a久久精品综合妖精| 成年女人毛片免费观看观看9 | 国产乱来视频区| 色精品久久人妻99蜜桃| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站| 国产精品久久久久成人av| 午夜福利在线免费观看网站| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 七月丁香在线播放| 久久人人爽人人片av| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 日韩一本色道免费dvd| 黄片播放在线免费| 国产又色又爽无遮挡免| 99香蕉大伊视频| 日韩中文字幕欧美一区二区 | 男女下面插进去视频免费观看| 免费在线观看视频国产中文字幕亚洲 | 美女午夜性视频免费| 一本色道久久久久久精品综合| av在线app专区| av在线观看视频网站免费| 久久精品久久久久久久性| 大香蕉久久成人网| 人妻人人澡人人爽人人| 在线天堂最新版资源| 丰满迷人的少妇在线观看| 久久久欧美国产精品| 婷婷色综合大香蕉| 老汉色∧v一级毛片| 国产成人精品在线电影| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 99热全是精品| 超色免费av| 亚洲欧美激情在线| 日本91视频免费播放| 国产精品久久久久久人妻精品电影 | 91老司机精品| 欧美精品高潮呻吟av久久| 成人国语在线视频| 亚洲精品国产区一区二| 欧美日韩福利视频一区二区| 国产爽快片一区二区三区| 99热网站在线观看| 无遮挡黄片免费观看| 少妇的丰满在线观看| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 一边摸一边做爽爽视频免费| 波野结衣二区三区在线| 欧美日韩国产mv在线观看视频| 国产有黄有色有爽视频| 我要看黄色一级片免费的| 黄频高清免费视频| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 两个人看的免费小视频| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 午夜av观看不卡| 自线自在国产av| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 欧美精品一区二区大全| 亚洲精品国产av成人精品| 国产探花极品一区二区| 国产免费一区二区三区四区乱码| av.在线天堂| 午夜福利影视在线免费观看| 午夜福利网站1000一区二区三区| 丁香六月欧美| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 国产免费一区二区三区四区乱码| 精品人妻熟女毛片av久久网站| 丰满少妇做爰视频| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 看十八女毛片水多多多| 精品少妇久久久久久888优播| 久久久久精品人妻al黑| 欧美精品av麻豆av| 18禁国产床啪视频网站| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久国产电影| 青草久久国产| 99久久人妻综合| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲 | 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 18在线观看网站| 成年人午夜在线观看视频| 亚洲精品视频女| 一区二区三区乱码不卡18| 欧美在线黄色| 亚洲精品美女久久久久99蜜臀 |