• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple Plasmonic Resonances and Cascade Effect in Asymmetrical Ag Nanowire Homotrimer

    2016-09-23 06:06:22YueLi,GuangTaoFei,Shao-huiXu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Multiple Plasmonic Resonances and Cascade Effect in Asymmetrical Ag Nanowire Homotrimer

    I.INTRODUCTION

    Ⅰnduced by an incident electromagnetic field of a given frequency,metal nanostructures can sustain localized surface plasmon(SP)resonances,arising from the coherent collective oscillation of conduction electrons in metal surfaces[1-5].Generally,only a single resonance peak exists in the individual nanostructure,which is considered as its natural plasmonic dipole mode,while multiple plasmonic resonances can be observed in nanocomplex.For the symmetrical nano-complex,it has been reported that the resulting electromagnetic field displays symmetrical distribution in the approaching area mainly through plasmon coupling[6-8].However,due to the symmetrically distribution,the symmetrical nano-complex can only present homogeneous but limit plasmon modes.As a result,the symmetrical nanocomplex has less extraordinary properties,which limits its wide application in many areas,such as sensing,medicine,catalysis,and optoelectronics.

    Recently,different asymmetric nano-complexes have been theoretically and experimentally studied[9-11]. The absence of symmetry has demonstrated that the spectrum is not solely a linear combination of the plasmonic modes of the individual nanostructures,which is highly beneficial for manipulating the line shapes of the spectrum and the electromagnetic phenomena between the individual nanostructures.As a prototype,in the asymmetric Ag homotrimer with decreasing sizes and separations,it is found that the resulting electric field enhancement is enhanced by orders of magnitude in the gap between the smallest nanospheres,this phenomenon is referred as the cascade effect[4].However,the mechanism of the appearance of the different electric field associated with the plasmonic modes in asymmetric nanosphere homotrimer is not clearly interpreted.

    Metal nanowires with cross sections below the freespace diffraction limit of light support the propagation of surface plasmons that confines light into nano-scale dimensions.Furthermore,compared to the assembly of the nano-complexes with complex nanofabrication process,metal nanowires are relatively easy to prepare in a repeatable and reliable manner,making these nanostructures widely used in sub-wavelength optics,nanoscale optical components and devices[12,13].Most studies have been reported on the surface enhanced Raman scattering,propagation,scattering properties of metal nanowires with symmetrical parameters[14-16].

    Ⅰn this work,we systematically investigate the plasmonic properties of the homotrimers based on the asymmetrical metal nanowires.We find that the asymmetrical homotrimer can present bright or dark modes at the resonance wavelengths.Especially for the homotrimer case,the cascade effect can result in different electric field distributions in the approaching area of the nanowires,depending on the dark or the bright modes appearing between the smaller radii of the nanowires.When the dark mode appears between the smaller nanowires,the corresponding area shows higher electric field than that between the bigger nanowires,which is referred as the cascade effect.Ⅰn contrast,theexistence of the bright mode between the bigger nanowires will result in the restriction of the cascade effect,leading to the higher electric field.Our investigation shows different results from the symmetric case,essentially arising from the appearance of the bright and dark modes while the nanowire homotrimers is symmetry breaking.

    II.MODEL AND NUMERICAL METHOD

    Ⅰn present work,the optical properties of sizeasymmetrical Ag homotrimer nanowires are calculated using 2D finite element method model based on Maxwell’s equations,which has been comprehensively described in Ref.[17].Meanwhile,the proposed perfectly matched layer are placed before the outer boundary to avoid nonphysical reflections of outgoing electromagnetic waves.Throughout this work,the metal in our model is Ag.The permittivity data of Ag are obtained from Johnson and Christy[18].And the whole calculations performed for homotrimer nanowires are immersed in a surrounding medium of air.

    III.RESULTS AND DISCUSSION

    We adopt model morphology of Ag homotrimer nanowires(Fig.1)with different radii and separations to investigate their optical properties,where R1,R1,and R3are the radii,S1and S2are the surface-tosurface separations between the 1st and 2nd,the 2nd and 3rd nanowires,respectively.Ⅰn all the calculations presented here,the direction of the incident wave-vector K is along the y-axis and electric-field polarization vector is parallel to the x-axis(see Fig.1).Besides,the infinitely long wires orients along the z direction.

    Empirically,the plasmonic resonances of homotrimer can be investigated by dividing into two homodimer. Hence we start our investigation on the optical properties of two plasmonic homodimers with radii R1and R2,R2and R3,respectively.Ⅰn addition,for the model with asymmetrical parameters,the calculated curves of extinction cross section(ECS)are not smooth with insignificant kinks as that in the symmetric case.Therefore,the following discussions would focus on the significant resonance peaks to study the multiple coupling,the negligible differences of ECS are outside the discussion range of our interest.

    A.Two asymmetrical homodimers with respective radii R1and R2,R2and R3

    The two homodimers with radii R1=100 nm and R2=50 nm,R1=50 nm and R2=25 nm are referred to homodimer-1(H1)and homodimer-2(H2),respectively. The ECS spectra of H1 and H2 with separation S=2 nm are simulated.For comparison,the ECS of the individual and symmetrical homodimer nanowire is also shown in Fig.2.While an individual nanowire with equal radii to that in our model,namely,25,50,and 100 nm,respectively,it only has one resonance peak arising from a dipole around 342 nm(Fig.2(a)).When the individual nanowire forms the symmetrical homodimer structures(Fig.2(b)-(d)),there exist multiple resonance peaks,which correspond to the dipolar and multiple higher-order modes,arising from the phase retardation effects[19,20].Ⅰn plasmonics,the corresponding charge distributions can be used to clearly verify the involved plasmon modes at resonance wavelengths[1,20],therefore the charge distribution of the homodimer with radii R1=R2=100 nm along x direction at three resonancewavelengths is calculated(Fig.S1 in supplementary materials).Ⅰt can be found that the higher-order modes of the triakontadipolar and quadrupolar(Q)mode correspond to the resonance wavelengths of 359 and 497 nm,respectively,and the dipolar(D)mode corresponds to the resonance wavelengths of 826 nm,which is out of visible light.

    FⅠG.1 Schematic model morphology of the studied asymmetrical Ag nanowire homotrimer with the configurable parameters and the incident polarization parallel to the dimer axis.

    FⅠG.2 The extinction cross sections of(a)single nanowire,(b)-(d)symmetrical homodimer nanowire with separation S=2 nm,(e)and(f)asymmetrically nanowire with separation S=2 nm.

    For the asymmetrical case of H2 and H1 in Fig.2(e) and(f),compared with the symmetrical homodimer case,there also exist the multiple resonance peaks,located at 364,495,and 609 nm for H1,343 and 448 nm for H2,respectively.The charge distributions at resonance peaks of the two asymmetrical homodimers for S=2 nm are shown in Fig.3.For H1 at wavelengths of 364,495,and 609 nm,six,four,and two nodes can be clearly observed in the approaching area,as expected,which is corresponding to higher-order octupolar(O),Q and D modes,respectively(Fig.3(a)-(c)).For H2,surprisingly,both higher-order Q modes appear at the wavelengths of 343 and 448 nm,respectively(Fig.3(d) and(e)).These results are different from that of the symmetrical case,especially for the H2.That is,the symmetrical homodimer(Fig.2(b)and(c))with two resonance peaks shows the O and D modes at 340 and 499 nm(not shown in this work).

    The ECS spectra of the two homodimers with varied separations and radii are shown in Fig.S2(supplementary materials).The corresponding charge distributions at the resonances of H1 and H2 with S=4 nm are highlighted in Fig.S3(supplementary materials).One can note that,when S increases to 4 nm,the charges are less than that of the corresponding S=2 nm(Fig.3),therefore resulting in weakened SP coupling.When S finally increases to 20 nm,there only exists a resonance peak (Fig.S2(a)and(b)in supplementary materials)arising from the weakened SP coupling,which is analogous to the dipole resonance peak of the single nanowire around 342 nm.Different from the results by increasing the separation,the increasing radius of the homodimer generates much higher-order modes with asymmetrical line shapes(Fig.S2(c)in supplementary materials),arising from the phase retardation effects,which is analogous to the asymmetrical Au:Ag heterodimers on increasing the size of dimer size[21].

    Ⅰn the plasmonic nanostructures with symmetry breaking,the bright mode and dark mode are involved. Naturally,the bright mode possesses finite dipole moment,which can be excited by the incident light efficiently.Ⅰn contrast,the dark plasmon mode with nearzero dipole moment,couples to light less effectively[22]. However,the dark mode can be excited by the electric field associated with the bright mode[22,23].Ⅰn addition,the exclusive losses of dark mode are only limited by the intrinsic metal losses,which is much lower than the radiative damping of the bright mode.Therefore,the dark mode will result in enhanced and localized electric field distribution than that of the bright mode[24,25].Ⅰn our models,for the morphology of H1 with asymmetrical radii,it can be clearly observed from the ECS (Fig.2(e)and(f))that the D at 609 nm is much broader than the O and Q at 364 and 495 nm.Combinly this feature with the charge distributions(Fig.3(a)-(c)),we can conclude that the D mode is referred to the superradiant bright mode,and higher-order(O and Q)modes are referred to the subradiant dark mode,respectively. For H2,there is only dark Q mode.However,different from the classic nanostructure with the dark modes directly excited by the bright modes such as the disk-ring plasmonic nanostructures[1,9],the appearance of the so-called dark modes in nanowire arrays arises from the splitting of the dipole modes in the individual nanowire to reduce the Coulomb repulsion energy[26,27].This feature can be confirmed in Fig.S2(a)and(b)(supplementary materials).As the separation increases from 2 nm to 20 nm,owing to reduced mode repulsion,the ECS spectrum of homodimer is comparable with the individual nanowire with a dipole mode.

    Based on the above results,the plasmonic properties of the asymmetrical nanowire homotrimer consisting of H1 and H2 are investigated.The different plasmon modes can be excited in H1 and H2.Ⅰn addition,the bright and dark modes generate distinguished electric field distribution in the approaching areas of the homotrimer consisting of the H1 and H2.

    FⅠG.3 The corresponding charge distribution along the x direction at the resonance wavelengths for(a)-(c):H1,(d) and(e):H2 with the separation S=2 nm.The color bar shows the varied values of the charge density distribution.

    B.Asymmetrical homotrimer with varied separation and radius

    As expected,electromagnetic coupling can be modulated by changing the separation and radii of the homotrimer consisting of the H1 and H2 as investigated above.Here we adopt the configurations with the varied radii and separations simultaneously.

    FⅠG.4 The dependence of the ECS spectra of asymmetrical Ag nanowire homotrimer on the varied separations S=S1=S2with constant R1:R2:R3=100 nm:50 nm:25 nm(a-e)and the radii of the asymmetrical homotrimer with the same scale R1:R2:R3=4:2:1,separations S1=S2=2 nm(f-m).The charge contribution of the resonance peaks along the x direction for the separations 2 nm with R1:R2:R3=100 nm:50 nm:25 nm of homotrimer(n)363 nm,(o)497 nm,(p)497 nm,and(q) 674 nm.The dashed lines with different colors present the variation of the multiple resonance peaks.The color bar shows the varied values of the charge density distribution.

    1.Varied separations S1=S2with R1:R2:R3=4:2:1 nm

    The dependence of the ECS spectra of asymmetrical Ag nanowire homotrimer with uniform R1:R2:R3=100 nm:50 nm:25 nm on the varied separations S1=S2=S is shown in Fig.4(a)-(e),and dependence of the ECS spectra of the homotrimers with R1:R2:R3=4:2:1 and S1=S2=2 nm on the varied radius is shown in Fig.4 (f)-(m).We can note that when S decreases or the radius increases,the multiple resonance peaks can be gradually and clearly observed.For the reference state,we would firstly focus our attention on the homotrimer configuration with S1=S2=2 nm and uniform R1:R2:R3=100 nm:50 nm:25 nm(Fig.4(a))to get insight into the tunability of electromagnetic coupling and multiple resonances.The corresponding charge distribution at the four obvious resonance peaks located at 674,497,426,and 363 nm are plotted in Fig.4(n)-(q),respectively,and the corresponding values of electric field along the x direction are listed in TableⅠ.Here,most part of the electric filed(not shown here)and charge distribution locate around the approaching area. Ⅰt is worth mentioning that the resulting resonance peaks at 363,426,and 497 nm with asymmetrical line shapes are comparable with the Fano resonances originated from the coupling of the super-radiant modes and subradiant modes,which have been found in nanocomplexes with symmetry breaking[9].

    From the charge distributions in Fig.4(n)and(p)for S=2 nm,it can be found clearly that there exist all dark O modes between two homodimers with six charge nodes at 363 nm of the resonance wavelength,all Q modes with four charge nodes at 426 nm of the resonance wavelength,the bright D(50 nm:25 nm homodimer)and dark Q(100 nm:25 nm homodimer)modes with two and four charge nodes in the case of the third resonance at 497 nm,respectively.Different from the appearance of the higher-order modes,the resonance at 674 nm(Fig.4(p))corresponds to the dipolar bright mode,leading to a spectral broadening because of the radiative damping[1,2].

    TABLEⅠThe corresponding near field of the resonance peaks along the x direction for the separations 2,4,and 6 nm,E1is the maximum values between the bigger nanowires,E2is for the smaller nanowires.

    Ⅰn virtue of the existence of the bright and dark modes distributed in the gaps for the model with S=2 nm and varied radii shown in Fig.4(f)-(m),not only the appearance of different plasmon modes,but also the near field distribution of the size-asymmetrical nanowires is greatly influenced.Previous works has been reported that a self-similar linear chain,consisting of three Ag nanospheres with decreasing sizes and separations,can produce local field enhancement in the gaps between the smaller particles due to so-called cascade effect[4].That is,while the external field impinges on the cascaded nanospheres,the local optical field between the large particles is enhanced firstly,and then the enhanced electric field acts on the smaller particles as an excitation field,resulting in higher nanofocusing than that in bigger ones.

    Ⅰn our model,due to the multiple resonance peaks with complex mode distribution,the near field distributions of size-asymmetrical homotrimer nanowires with four resonance peaks(listed in TableⅠfor symmetrical separations 2 nm)present different results.For the wavelengths of 674 and 497 nm,the maximum electric field localizes at the gap between the two larger nanowires(E1).Ⅰn contrast,the maximum electric field localizes at the gap between the two smaller nanowires (E2)for the wavelengths of 426 and 363 nm.These phenomena can be explained as the association of the cascade effect with the different plasmon mode appearing between the smaller radii of the nanowires.Due to the fact that the losses of dark mode with the intrinsic metal losses are much lower than the radiative damping of the bright mode[24,25].When the dark mode,which can be able to store a larger amount of electromagnetic energy than the bright mode,appears between the two smaller nanowires,the cascade effect will results in bigger electric field distributed between the two smaller nanowires.Ⅰn constrast,the appearance of the bright mode,which has radiative damping,will lead to the restriction of the cascade effect,hence the resulting bigger electric field distributed between the two bigger nanowires.

    Based on the above interpretation of the multiple resonances and the different electric field distribution in the separations of S1=S2=2 nm model,now we turn our attention to analyze the plasmon resonance as a function of separations S as shown in Fig.4(b)-(e). One can note that with increasing of separations,the resonance peaks are all blue-shift.This phenomenon can be interpreted that as the separation increases,the resulting splitting of the plasmon modes to reduce the Coulomb repulsion energy between the individual nanowire decreases[26,28,29].For the case of separations of S1=S2=4 nm(Fig.4(b)),there also exist four apparent resonance peaks at 362,403,450,and 634 nm as that for S=2 nm.As S increases,the first resonance(corresponding to 362 nm for the separations of S1=S2=4 nm)keeps almost constant for the S1=S2>4 nm.The charge distribution of the resonance peaks for S1=S2=4 nm are represented in Fig.S4(supplementary materials),presenting that the resonance at 362 nm exhibits the mixture of the dark Q and O modes (Fig.S4(a)in supplementary materials),compared to the pure O modes in homotrimer with S1=S2=2 nm at 363 nm(Fig.4(n)).The resonance at 403 nm for the homotrimer with the separations of S1=S2=4 nm is all dark Q modes(Fig.S4(b)in supplementary materials).The mode distributions of the resonance at 450 nm (Fig.S4(c)in supplementary materials)are comparable with S1=S2=2 nm at 497 nm(Fig.4(p)),resulting in the same electric field distribution between the bigger nanowires,arising from the ineffectively cascade effect.However,for the separations of 4 nm at 362 and 403 nm,due to the disappearance of superradiant bright mode,the SP interaction between the bigger homodimer nanowires generates an excitation field,and then the enhanced near field(E2)(observed in TableⅠ) stays in the gap of the smaller as a result of the cascade effect[4].Furthermore,for the separation of 4 nm,the SP interaction between the nanowires decrease compared with that of the separation of 2 nm,this brings about the decreasing near field of the whole system,especially for E1listed in TableⅠ.Above all,we can conclude that the cascade effect takes effect to confine the near field in the gap of the smaller nanowires,while the pure dark modes exist at the corresponding resonance wavelength.

    Ⅰn Fig.4(f)-(m),one can note that when the radius of the homotrimer increases,together with the same scale R1:R2:R3=4:2:1 and separations S1=S2=2 nm,more resonance peaks and asymmetrical line shapes can be observed,indicating that the higher order resonance modes are excited[19,20].The resonance peak at 343 nm for R1=50 nm homotrimer,which corresponds to dipolar mode.These results are comparable with the size-dependent of the homodimer as shown in Fig.2(f)-(m).Ⅰn summary,we can conclude that,due to the decrement of the separation or the increment of the radii,the resulting increment of the SP coupling between the asymmetrical nanowires generates multiple resonance peaks.At respective resonance peak wavelength,the bright and dark modes modulate the role of the cascade effect,and producs different electric field distributions.

    FⅠG.5 The extinction spectra of asymmetrical Ag homotrimer nanowires with R1=100 nm,R2=50 nm,and R3=25 nm for (a)-(f)different ratios β,(g)β=1/20(S1=5 nm and S2=2.5 nm)for varied radii.(h)-(j)show the charge contribution of the resonance peaks for the ratio β=1/20 in(f).The color bar shows the varied values of the charge density distribution.

    2.Varied ratios of separations S1=2S2with R1:R2:R3=4:2:1

    The influence of asymmetrical separations and radii on the optical properties of homotrimer nanowires as Li’s assumption is investigated[4].We set the quantitative relation of radii and separations as Ri+1=αRi,Si+1,i+2=αSi,i+1,and Si,i+1=βRi,where α=1/2 in current model is constant as the reference state.The ECS spectra of asymmetrical Ag nanowire homotrimer with R1=100,R2=50,and R3=25 nm for different ratios β is shown in Fig.5(a)-(f),β=1/20(S1=5 nm,S2=2.5 nm) for different radii is shown in Fig.5(g),and the corresponding charge distributions at the resonance peaks in Fig.5(f)are highlighted in Fig.5(h)-(j).Meanwhile,the values of the near field at the resonance peaks for β=1/20 and 1/18 are also listed in TableⅠⅠ.For ECS spectrum of the ratio 1/20 in Fig.5(f),one can note that there exist three resonance peaks at 629,418,and 361 nm,respectively.The bright dipolar mode at 629 nm confirmed by the charge contribution in Fig.5(j)is also broadened due to its radiative damping.However,for the resonance at 418 nm,dark Q modes appeared in the gap of the nanowires(Fig.5(i)),when Q and hexapolar modes for the resonance are at 361 nm(Fig.5(h)),which are the same as the modes as stated above with the separations S1=S2=4 nm.Ⅰn addition,the higher near-fields at 418 and 361 nm are distributed significantly in the gap of the smaller homodimer(TableⅠⅠ),indicating that the cascade effect functions effectively in virtue of the asymmetrical sizes and separations due to the absence of the dipolar mode(Fig.5(h)and(i)). However,the cascade effect is less effective at 629 nm because of the damping of dipolar modes as presented in the above discussion.

    TABLEⅠⅠThe corresponding near field of the resonance peaks for the ratios 1/20 and 1/18,E1is the maximum values between the bigger nanowires,E2for the smaller nanowires.

    As shown in Fig.5(a),it is noted here that,as the separation(the ratio β)increases to S1=10 nm and S2=5 nm(β=1/10),the resonance at 418 nm for β=1/20 has blue-shift to 415 nm slightly,and the resonance at 361 nm almost keep unchanged,retaining a significant peak at 389 nm,arising from the weakened SP coupling.Ⅰt indicates that the symmetry-breaking of the sizes and separations of Ag nanowire homotrimer generates more effective cascade effect.

    So far,we have performed the calculations using large nanowires with asymmetrical separations.Next,the homotrimers with simultaneously varied radii and separations are investigated.The optical ECS spectra as a function of the sizes with constant ratio β=1/20,α=1/2 are shown in Fig.5(g),and the corresponding near field of the resonance peaks are listed in TableⅠⅠⅠ.When the sizes and the separations of the nanowires get smaller,the spectrum of the dipolar bright mode becomes narrower,arising from the decreasing radiative damping. Furthermore,due to the cascade effect,the near fieldsbetween the smaller nanowires enhance slightly with the stronger SP coupling at longer wavelength of the resonance peaks.However,for the resonance peak at shorter wavelengths,the electric field enhancement is greatly depressed due to the cancellation of its polarization.Even though the stronger SP coupling and cascade effect exists between the smaller sizes and separations of the homotrimer nanowires,the size effect considerably influences the extinction spectra with lower peak height[30,31].

    To rich and further confirm the calculated results discussed above,the other two sets of homotrimers withradiiR1=225nm,R2=75nm,R3=25 nm (R1:R2:R3=9:3:1)andR1=400nm,R2=100nm,R3=25 nm(R1:R2:R3=16:4:1)are investigated.When the separations are symmetrical and asymmetrical,the resulting ECS spectra,corresponding charge distribution at the multiple resonance peaks and electric field distribution are shown in the supplementary materials (Fig.S5 and S6 and Tables S1 and S2).Ⅰn addition,the comparable homodimers,which are the fundamental elements of the homotrimer,are also investigated as the reference in Fig.S5 and S6(supplementary materials). One can note that the bright and dark modes exist in the homodimer and homotrimer.Ⅰn addition,combined the charge distribution and the electric filed(E1and E2listed in Tables S1 and S2 of the supplementary materials)between the nanowires,the suppression of the cascade effect is confirmed by the appearance of the bright mode in the homotrimer.Ⅰn favor of the dark mode,the cascade effect results in the higher electric field distributed between the smaller nanowires.Furthermore,arising from the increasing of the separations,the weakened SP coupling generally results in decreasing electric field.

    TABLEⅠⅠⅠThe corresponding near field of the resonance peaks for the varied size with constant ratios 1/20,E1/(V/m)is the maximum values between the bigger nanowires,E2/(V/m)for the smaller nanowires.

    IV.CONCLUSION

    Ⅰn this work,we have systematically investigated the plasmonic properties of the asymmetrical silver nanowire homotrimer with asymmetrical separation and radius.Ⅰt is found that,multiple plasmonic prop-erties and different electromagnetic coupling can be generated originated from the coupling between the bright and dark modes,which have been confirmed by the charge distributions at the resonance wavelengths. When the bright mode with radiative damping exists in the homotrimer,the cascade effect is depressed,resulting in the higher electric field distributed in the approaching area of the bigger nanowires.Ⅰn the opposite way,when the plasmon modes have the dark modes between the smaller nanowires,which can store the electromagnetic energy,the cascade effect results in higher electric field in the gap of the smaller nanowires.The above results are confirmed by three sets of homotrimer with different asymmetrical separations and radii.We believe that the simulated results obtained in this work may be useful for the analysis of the optical behaviors of asymmetrical nanowires while the experimental characterization of the non-uniform samples shows different comparison from the ideally simulation adopted the symmetrical models.Ⅰn addition,the appearance of the different coupling plasmon modes between the nanowire arrays may be useful to contribute to overcome the light propagation length,which is of importance in waveguides.Nanowire plasmonic waveguides can be generally served as the miniaturization of optical signal processing,data transmission.

    Supplementary materials:Table S1,S2 show the electric field at the resonance peaks for the nanowire homotrimer with symmetrical and asymmetrical separations with the parameters of R1=225 nm,R2=75 nm,R3=25nm(R1:R2:R3=9:3:1)andR1=400 nm,R2=100 nm,R3=25 nm(R1:R2:R3=16:4:1),respectively.Figure S1 shows the charge distribution of the homodimer with the radii R1=R2=100 nm at the resonance wavelengths 359,497,and 826 nm,respectively.Figure S2 shows the influence of the asymmetrically structural parameters of H1 and H2 on the extinction cross section.Figure S3 shows the corresponding charge distribution at the different resonance wavelengths for H1 and H2 with the separation S=4 nm.Figure S4 shows the charge contribution at the resonance peaks 362,403,450,and 634 nm,respectively,for the separations S1=S2=4 nm as the radii of the homotrimer are R1=100,R2=50,and R3=25 nm. Figure S5 and S6 show the ECS of the nanowire homodimer and homotrimer with asymmetrical separations and radii R1=225 nm,R2=75 nm,R3=25 nm (R1:R2:R3=9:3:1)andR1=400nm,R2=100 nm,R3=25 nm(R1:R2:R3=16:4:1),respectively,and the corresponding charge distributions at the resonance peaks.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Basic Research Program of China(No.2012CB932303),the National Natural Science Foundation of China (No.51171176,No.51471162,and No.11204307),and the CAS/SAFEAⅠnternational Partnership Program for Creative Research Teams.

    [1]W.L.Barnes,A.Dereux,and T.W.Ebbesen,Nature 424,824(2003).

    [2]J.Aizpurua,P.Hanarp,D.S.Sutherland,M.Kall,G. W.Bryant,and F.J.G.de Abajo,Phys.Rev.Lett.90,057401(2003).

    [3]E.Ozbay,Science 311,189(2006).

    [4]K.Li,M.Ⅰ.Stockman,and D.J.Bergman,Phys.Rev. Lett.91,227402(2003).

    [5]B.Sturman,E.Podivilov,and M.Gorkunov,Europhys. Lett.101,741(2013).

    [6]L.A.Sweatlock,S.A.Maier,and H.A.Atwater,Phys. Rev.B 71,235408(2005).

    [7]B.Augui′e and W.L.Barnes,Phys.Rev.Lett.101,143902(2008).

    [8]S.Yashna and D.Anuj,Nanotechnology 25,210(2014).

    [9]F.Hao,P.Nordlander,Y.Sonnefraud,P.V.Dorpe,and S.A.Maier,ACS Nano.3,643(2009).

    [10]P.K.Jain,S.Eustis,and M.A.El-Sayed,J.Phys. Chem.B 110,18243(2006).

    [11]T.G.Habteyes,S.Dhuey,S.Cabrini,P.J.Schuck,and S.R.Leone,Nano Lett.11,1819(2011).

    [12]J.Q.Hu,Q.Chen,Z.X.Xie,G.B.Han,R.H.Wang,B.Ren,Y.Zhang,Z.L.Yang,and Z.Q.Tian,Adv. Funct.Mater.14,183(2004).

    [13]K.D.Wang,H.X.Zhang,and Y.F.Liu,Chin.J. Chem.Phys.24,434(2011).

    [14]Z.L.Netzer,Z.Tanaka,B.Chen,and C.Y.Jiang,J. Phys.Chem.C 117,16187(2013)

    [15]G.Liu and J.Shao,Chin.J.Chem.Phys.24,239(2011)

    [16]B.Kenens,M.Rybachuk,J.Hofkens,and H.Uji-Ⅰ,J. Phys.Chem.C 117,2547(2013).

    [17]P.M.GreshoandR.L.Sani,Absorptionand Scattering of Light by Small Particles,New York: Wiley(2000).

    [18]P.B.Johnson and R.W.Christy,Phys.Rev.B 6,4370 (1972).

    [19]S.Westcott,J.Jackson,C.Radloff,and N.Halas,Phys. Rev.B 66,155431(2002).

    [20]F.Hao,E.M.Larsson,T.A.Ali,D.S.Sutherland,and P.Nordlander,Chem.Phys.Lett.458,262(2008).

    [21]O.Pena-Rodr′?guez,U.Pal,M.Campoy-Quiles,L. Rodr′?guez-Fern′andez,M.Garriga,and M.Ⅰ.Alonso,J.Phys.Chem.C 115,6410(2011).

    [22]M.Liu,T.W.Lee,S.K.Gray,P.Guyot-Sionnest,and M.Pelton,Phys.Rev.Lett.102,107401(2009).

    [23]C.J.Xuan,X.D.Wang,L.Xia,B.Wu,H.Li,and S. X.Tian,Chin.J.Chem.Phys.27,628(2014).

    [24]S.Zhang,D.A.Genov,Y.Wang,M.Liu,and X.Zhang,Phys.Rev.Lett.101,047401(2008).

    [25]P.Tassin,L.Zhang,T.Koschny,E.N.Economou,and C.Soukoulis,Phys.Rev.Lett.102,053901(2009).

    [26]A.Manjavacas and F.J.G.Abajo,Opt.Express 17 19401(2009).

    [27]Y.G.Chen,T.S.Kao,B.Ng,X.Li,X.G.Luo,B. Luk’yanchuk,S.A.Maier,and M.H.Hong,Opt.Express 21,13691(2013).

    [28]W.M.Wei,R.H.Z,Y.K.W,F(xiàn).Yang,and S.Hong,Chin.J.Chem.Phys.27,659(2014).

    [29]W.Cai,L.Wang,X.Zhang,J.Xu,and F.J.G.Abajo,Phys.Rev.B 82,125454(2010).

    [30]Z.K.Zhou,X.N.Peng,Z.J.Yang,Z.S.Zhang,M. Li,X.R.Su,Q.Zhang,X.Y.Shan,Q.Q.Wang,and Z.Y.Zhang,Nano Lett.11,49(2011).

    [31]S.Kawata,Near-Field Optics and Surface Plasmon Polaritons,Berlin:Springer,(2001).

    Yue Li,GuangTao Fei?,Shao-hui Xu,Guo-liang Shang,Hao-miao Ouyang,Li-de Zhang
    Key Laboratory of Materials Physics,and Anhui Key Laboratory of Nanomaterials and Nanotechnology,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China.
    (Dated:Received on February 26,2016;Accepted on March 22,2016)
    Plasmonic Ag nanowire homotrimer with asymmetrical radii and separations,which exhibits characteristics of multiple plamonic resonances and different electric field distributions,is systematically investigated by means of 2D finite element method.Ⅰt was found that the dark and bright modes appear in asymmetrical nanowire homotrimer.Ⅰn addition,when the dark modes appear between the smaller radii of the nanowires,the cascade effect results in enhanced electric field between the smaller radii nanowires.As a result of the appearance of the bright modes between the smaller radii of the nanowires,the restriction of the cascade effect generates enhanced electric field between the bigger nanowires.
    Key words:Asymmetric homotrimer,Bright and dark modes,Extinction cross section,Cascade effect

    ?

    Author to whom correspondence should be addressed.E-mail: gtfei@issp.ac.cn,Tel.:+86-551-65591453,F(xiàn)AX:+86-551-65591434

    色网站视频免费| 欧美日韩视频高清一区二区三区二| 嫩草影院入口| 婷婷色av中文字幕| 午夜福利乱码中文字幕| 男女免费视频国产| 国产男人的电影天堂91| 亚洲一区中文字幕在线| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 90打野战视频偷拍视频| 色婷婷av一区二区三区视频| 高清欧美精品videossex| 99久久人妻综合| 国产精品二区激情视频| 男人操女人黄网站| 久久 成人 亚洲| 婷婷色av中文字幕| 91精品三级在线观看| 麻豆av在线久日| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 国产野战对白在线观看| 亚洲人成77777在线视频| 99香蕉大伊视频| 国产亚洲最大av| 久久久久精品性色| 国产一卡二卡三卡精品 | 久久久精品国产亚洲av高清涩受| 99九九在线精品视频| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 午夜av观看不卡| 中国国产av一级| 少妇人妻精品综合一区二区| 免费在线观看完整版高清| 电影成人av| 美女扒开内裤让男人捅视频| 99热全是精品| 久久天堂一区二区三区四区| 成人黄色视频免费在线看| 国产精品女同一区二区软件| 热re99久久精品国产66热6| 亚洲精品一二三| 婷婷色麻豆天堂久久| 国产亚洲欧美精品永久| 国产 精品1| 免费看av在线观看网站| 亚洲视频免费观看视频| 精品福利永久在线观看| 国产欧美日韩综合在线一区二区| 一级毛片我不卡| av在线app专区| 夫妻性生交免费视频一级片| 可以免费在线观看a视频的电影网站 | 免费看不卡的av| 最近最新中文字幕大全免费视频 | 老司机影院成人| 午夜影院在线不卡| 亚洲av中文av极速乱| 国产亚洲午夜精品一区二区久久| 最近的中文字幕免费完整| 国产精品香港三级国产av潘金莲 | 又粗又硬又长又爽又黄的视频| 操美女的视频在线观看| 在线观看国产h片| 国产成人av激情在线播放| 高清欧美精品videossex| 女的被弄到高潮叫床怎么办| 精品一区二区三卡| 90打野战视频偷拍视频| 久久精品亚洲av国产电影网| 久久精品久久久久久噜噜老黄| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久影院| www.精华液| 国产99久久九九免费精品| 好男人视频免费观看在线| 亚洲欧美精品综合一区二区三区| 老汉色∧v一级毛片| 老熟女久久久| 一区福利在线观看| 黄色视频不卡| 久久人妻熟女aⅴ| 婷婷色麻豆天堂久久| 精品一区二区三区四区五区乱码 | 99久久精品国产亚洲精品| 丰满少妇做爰视频| 秋霞伦理黄片| av福利片在线| av电影中文网址| 亚洲欧美色中文字幕在线| 天天操日日干夜夜撸| svipshipincom国产片| 麻豆乱淫一区二区| 久久久久久久久久久免费av| 2018国产大陆天天弄谢| 婷婷成人精品国产| 黑丝袜美女国产一区| av片东京热男人的天堂| 天堂8中文在线网| 男女边摸边吃奶| 欧美黑人欧美精品刺激| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| 精品免费久久久久久久清纯 | 99热国产这里只有精品6| 嫩草影院入口| 亚洲国产看品久久| 黄片无遮挡物在线观看| 日韩欧美精品免费久久| 赤兔流量卡办理| 久久99精品国语久久久| 18禁裸乳无遮挡动漫免费视频| 成人影院久久| 久久久久人妻精品一区果冻| 啦啦啦在线免费观看视频4| a级毛片黄视频| 丝袜在线中文字幕| 国产免费又黄又爽又色| 黄色视频不卡| 美女高潮到喷水免费观看| 国产精品.久久久| 日韩一本色道免费dvd| 欧美日韩一级在线毛片| av网站在线播放免费| av国产精品久久久久影院| 99热全是精品| 巨乳人妻的诱惑在线观看| 久久久精品免费免费高清| 欧美黑人精品巨大| 久久精品aⅴ一区二区三区四区| 五月开心婷婷网| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 久久久久久人妻| 狠狠婷婷综合久久久久久88av| 亚洲一级一片aⅴ在线观看| 国产激情久久老熟女| 国产成人精品无人区| 这个男人来自地球电影免费观看 | 在线观看免费高清a一片| 久久久久久免费高清国产稀缺| 晚上一个人看的免费电影| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 成人国产av品久久久| 男女免费视频国产| 人人妻人人澡人人看| 久久人人爽av亚洲精品天堂| 亚洲综合精品二区| 国产成人欧美| 精品视频人人做人人爽| 女性生殖器流出的白浆| 亚洲精品久久久久久婷婷小说| 中国三级夫妇交换| 看免费av毛片| 另类精品久久| 久久精品aⅴ一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩福利视频一区二区| 成年女人毛片免费观看观看9 | 观看美女的网站| 免费在线观看黄色视频的| 成人国语在线视频| 中文字幕精品免费在线观看视频| 人人妻,人人澡人人爽秒播 | 欧美成人精品欧美一级黄| 亚洲成av片中文字幕在线观看| 欧美日韩成人在线一区二区| 亚洲欧洲日产国产| 亚洲国产欧美网| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| 观看美女的网站| 丰满饥渴人妻一区二区三| 看免费成人av毛片| 婷婷色综合大香蕉| av网站在线播放免费| 高清不卡的av网站| 国产成人91sexporn| 久久久精品94久久精品| 日韩免费高清中文字幕av| 日韩制服丝袜自拍偷拍| 欧美黑人欧美精品刺激| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 欧美国产精品va在线观看不卡| 国产爽快片一区二区三区| 免费黄频网站在线观看国产| 1024香蕉在线观看| 人人妻人人澡人人爽人人夜夜| 久久精品亚洲av国产电影网| av一本久久久久| 在现免费观看毛片| 国产深夜福利视频在线观看| 亚洲精品美女久久av网站| 又大又爽又粗| 国产激情久久老熟女| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久| 国产在线免费精品| 久久性视频一级片| 中国国产av一级| 黄网站色视频无遮挡免费观看| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 午夜影院在线不卡| 国产麻豆69| 少妇人妻精品综合一区二区| 天天添夜夜摸| 最近中文字幕高清免费大全6| 亚洲第一av免费看| 日本wwww免费看| 侵犯人妻中文字幕一二三四区| 午夜福利免费观看在线| 国产成人av激情在线播放| 亚洲第一av免费看| 日本vs欧美在线观看视频| 99热全是精品| 久久久久久久久久久久大奶| 婷婷色综合www| 亚洲成人国产一区在线观看 | 啦啦啦在线观看免费高清www| 悠悠久久av| 满18在线观看网站| 欧美国产精品一级二级三级| 日本av手机在线免费观看| 亚洲av中文av极速乱| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| 好男人视频免费观看在线| 免费看av在线观看网站| 国产xxxxx性猛交| 99re6热这里在线精品视频| 免费女性裸体啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 高清av免费在线| 国语对白做爰xxxⅹ性视频网站| 黑人巨大精品欧美一区二区蜜桃| 久久鲁丝午夜福利片| 国产极品天堂在线| 久久久久人妻精品一区果冻| 少妇 在线观看| 久久亚洲国产成人精品v| av在线观看视频网站免费| 免费av中文字幕在线| 国产精品99久久99久久久不卡 | 69精品国产乱码久久久| 国产精品女同一区二区软件| 国产乱来视频区| 另类亚洲欧美激情| 日本色播在线视频| 欧美成人午夜精品| 久久久亚洲精品成人影院| 亚洲综合精品二区| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验| 亚洲精品国产一区二区精华液| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 亚洲精品日韩在线中文字幕| 一边摸一边抽搐一进一出视频| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 免费在线观看完整版高清| 日韩av免费高清视频| 国产乱人偷精品视频| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 叶爱在线成人免费视频播放| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 视频在线观看一区二区三区| 777米奇影视久久| 欧美日韩一区二区视频在线观看视频在线| 一区二区av电影网| 好男人视频免费观看在线| 少妇精品久久久久久久| av.在线天堂| 色综合欧美亚洲国产小说| 99久国产av精品国产电影| 午夜福利一区二区在线看| 青草久久国产| 热re99久久国产66热| 日韩视频在线欧美| 1024视频免费在线观看| 免费观看性生交大片5| 高清在线视频一区二区三区| 高清黄色对白视频在线免费看| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 老司机影院毛片| 午夜激情久久久久久久| 97人妻天天添夜夜摸| 亚洲人成网站在线观看播放| 十分钟在线观看高清视频www| 国产成人欧美| 免费观看a级毛片全部| 一级黄片播放器| 伦理电影大哥的女人| 最新在线观看一区二区三区 | 午夜免费鲁丝| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 精品一区二区三卡| 久久久国产一区二区| 亚洲成人免费av在线播放| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 国产一区二区三区av在线| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 欧美国产精品va在线观看不卡| 成人亚洲欧美一区二区av| 国产av国产精品国产| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 久久av网站| av一本久久久久| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 日本欧美视频一区| 国产亚洲欧美精品永久| h视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产乱人偷精品视频| 又大又黄又爽视频免费| av线在线观看网站| av片东京热男人的天堂| 乱人伦中国视频| av福利片在线| 天天躁夜夜躁狠狠躁躁| 亚洲av成人精品一二三区| 18禁动态无遮挡网站| 波多野结衣一区麻豆| 激情视频va一区二区三区| 国产精品国产三级专区第一集| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| 丝袜脚勾引网站| 51午夜福利影视在线观看| 亚洲国产最新在线播放| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 啦啦啦在线免费观看视频4| 捣出白浆h1v1| 国产成人av激情在线播放| 亚洲国产精品999| 久久ye,这里只有精品| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 午夜免费观看性视频| av网站在线播放免费| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 成人国产av品久久久| 又大又黄又爽视频免费| 亚洲国产精品国产精品| 亚洲成国产人片在线观看| 在线观看人妻少妇| 亚洲一级一片aⅴ在线观看| 久久久国产欧美日韩av| 777米奇影视久久| 日韩 欧美 亚洲 中文字幕| av又黄又爽大尺度在线免费看| 一级爰片在线观看| 亚洲国产欧美在线一区| avwww免费| 在线观看三级黄色| 成人午夜精彩视频在线观看| 激情五月婷婷亚洲| 欧美黑人欧美精品刺激| 啦啦啦视频在线资源免费观看| 看免费成人av毛片| 亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 在现免费观看毛片| 亚洲激情五月婷婷啪啪| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 十分钟在线观看高清视频www| av在线老鸭窝| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 午夜福利,免费看| 久久久久久久精品精品| 久久女婷五月综合色啪小说| av不卡在线播放| 成人毛片60女人毛片免费| 国产 精品1| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 男女免费视频国产| 亚洲精品第二区| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 日韩精品有码人妻一区| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 久久av网站| 亚洲色图综合在线观看| 国产高清不卡午夜福利| 女性被躁到高潮视频| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 日韩大码丰满熟妇| 18禁动态无遮挡网站| 亚洲国产av新网站| 日韩视频在线欧美| 青春草亚洲视频在线观看| 亚洲在久久综合| 一二三四中文在线观看免费高清| 你懂的网址亚洲精品在线观看| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| 一级黄片播放器| 亚洲色图 男人天堂 中文字幕| 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| 精品人妻在线不人妻| 国产日韩一区二区三区精品不卡| 精品酒店卫生间| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品一区二区三区在线| 精品少妇一区二区三区视频日本电影 | 国产男女内射视频| 欧美激情 高清一区二区三区| 久久精品久久精品一区二区三区| 天天添夜夜摸| 国产 精品1| 街头女战士在线观看网站| 亚洲专区中文字幕在线 | 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 亚洲自偷自拍图片 自拍| 伊人亚洲综合成人网| 国产日韩欧美视频二区| 国产欧美日韩综合在线一区二区| 99热网站在线观看| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 多毛熟女@视频| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 亚洲av日韩在线播放| 国产精品女同一区二区软件| 热re99久久精品国产66热6| 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 人人妻人人澡人人爽人人夜夜| 最近中文字幕高清免费大全6| 久热这里只有精品99| 在线观看三级黄色| 涩涩av久久男人的天堂| 免费观看a级毛片全部| 丰满饥渴人妻一区二区三| 麻豆av在线久日| 美女国产高潮福利片在线看| 丝袜美腿诱惑在线| 亚洲婷婷狠狠爱综合网| 国产男女超爽视频在线观看| 午夜激情av网站| 一区在线观看完整版| 精品人妻一区二区三区麻豆| av一本久久久久| 大香蕉久久网| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| 老熟女久久久| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 王馨瑶露胸无遮挡在线观看| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| av又黄又爽大尺度在线免费看| 熟女av电影| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 国产成人一区二区在线| 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 韩国精品一区二区三区| 国产精品欧美亚洲77777| 九草在线视频观看| 免费日韩欧美在线观看| 亚洲熟女精品中文字幕| 搡老岳熟女国产| 两个人看的免费小视频| 99国产综合亚洲精品| 国产黄色视频一区二区在线观看| 视频区图区小说| 日韩 欧美 亚洲 中文字幕| 综合色丁香网| 天堂中文最新版在线下载| 青春草国产在线视频| 99久久精品国产亚洲精品| 国产精品国产av在线观看| 亚洲成人手机| 亚洲精品视频女| 久久人人97超碰香蕉20202| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 黄片无遮挡物在线观看| 国产一区有黄有色的免费视频| 国产精品女同一区二区软件| 免费观看av网站的网址| 亚洲精品国产区一区二| xxx大片免费视频| 亚洲精品美女久久久久99蜜臀 | 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 老汉色av国产亚洲站长工具| 在线 av 中文字幕| 99香蕉大伊视频| 精品视频人人做人人爽| 国产免费视频播放在线视频| 母亲3免费完整高清在线观看| 999久久久国产精品视频| 高清av免费在线| av有码第一页| 国产黄色视频一区二区在线观看| 精品一区二区三区四区五区乱码 | 久久久国产精品麻豆| 九色亚洲精品在线播放| 亚洲av成人精品一二三区| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区久久| 只有这里有精品99| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 国产成人精品久久二区二区91 | 久久性视频一级片| 国产精品久久久av美女十八| 最近中文字幕高清免费大全6| 国产成人精品久久二区二区91 | 欧美精品一区二区免费开放| 免费少妇av软件| 亚洲 欧美一区二区三区| 欧美精品一区二区大全| 老熟女久久久| 两个人看的免费小视频| 亚洲七黄色美女视频| 中文字幕制服av| 国产激情久久老熟女| 国产免费现黄频在线看| 国产乱来视频区| 狂野欧美激情性xxxx| 黄色视频不卡| 97精品久久久久久久久久精品| 99热网站在线观看| 国产精品二区激情视频| a级毛片黄视频| 国产精品秋霞免费鲁丝片| 国产不卡av网站在线观看| 亚洲综合精品二区| 成人黄色视频免费在线看| 在线观看免费视频网站a站| 好男人视频免费观看在线| 一区二区三区精品91| 国产免费又黄又爽又色| 在线观看免费高清a一片| 亚洲精品久久久久久婷婷小说| 波多野结衣av一区二区av| 久久青草综合色| 老鸭窝网址在线观看| 高清在线视频一区二区三区| 国产成人av激情在线播放| 天天操日日干夜夜撸| 国产乱人偷精品视频| 人人妻人人添人人爽欧美一区卜| 欧美精品一区二区大全| 伊人久久国产一区二区| 日韩成人av中文字幕在线观看| 伊人亚洲综合成人网| 极品少妇高潮喷水抽搐| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 新久久久久国产一级毛片| 日本爱情动作片www.在线观看| a级毛片在线看网站| 免费黄频网站在线观看国产| 久久97久久精品| 婷婷色麻豆天堂久久| 免费少妇av软件| 大片免费播放器 马上看| 91国产中文字幕| 日韩 欧美 亚洲 中文字幕| 好男人视频免费观看在线| 国产精品一国产av| 久久久精品免费免费高清| 国产精品久久久久成人av| 又大又黄又爽视频免费|