• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Refueling Drogue Oscillation During Refueling Docking

    2016-09-14 01:16:37ChenLeleLiuXueqiang
    關(guān)鍵詞:普通用戶管理員界面

    Chen Lele,Liu Xueqiang

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China(Received 16December 2014;revised 25September 2015;accepted 11October 2015)

    with the following values for the constants

    1.2 Dynamic grid techniqueThere is flexible deformation of the hose in the numerical implementation in addition to drogue oscillation,which requires the new mesh maintain the same topology and density distribution as the original mesh.Since most dynamic grid deformation techniques are iterative based on the spring analogy without maintaining the primary qualities of the grid,another dynamic grid deformation technique based on Delaunay

    ?

    Numerical Analysis of Refueling Drogue Oscillation During Refueling Docking

    Chen Lele,Liu Xueqiang*

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China
    (Received 16December 2014;revised 25September 2015;accepted 11October 2015)

    Refueling docking at different velocities is simulated by using computational fluid dynamics(CFD)method.The Osher scheme and S-A turbulence model are used to solve the compressible Navier-Stokes equations,and the Delaunay mapping dynamic grid method is also employed.All the numerical results show that the velocity of refueling docking is very important for aerial refueling.When the velocity is lower than 3m/s,the refueling drogue will move upward with obvious cycle staggering,while moving upward with slight cycle staggering at the speed of 3m/s.The results can be referenced by aerial refueling design.

    aerial refueling;numerical simulation;refueling drogue;dynamic grid;refueling docking

    0 Introduction

    Aerial refueling is the process of transferring fuel from one aircraft(the tanker)to another(the receiver)during flight.The procedure allows the receiver aircraft to extend its range and combat radius.Generally,the combat radius of a bomber,a fighter and a transport aircraft can be increased by 25%—30%,30%—40%and 100%,respectively[1].A combat aircraft after extending its range can shift fast over a long distance,and make a sudden strike or strategic defence.Aerial refueling also allows aircrafts to take off with the maximum payload by carrying less fuel and topping up once airborne.Alternatively,a shorter takeoff roll can be achieved because takeoff can be at a lighter weight before refueling once airborne. While increasing the cruise duration,aerial refueling can greatly reduce the number and use intensity of aircrafts,which will relieve potential contradiction and the demand for air force or naval aviation in battle.

    The two main refueling systems are probeand-drogue and the flying boom.Generally,the U.S.Air Force uses flying booms,while the Navy and Marines mostly use probe-and-drogue. Each method has its advantages and disadvantages.The probe-and-drogue has simple design and good security whereas the refueling quantity is smaller.The flying boom has higher fuel flow rates but with higher technology requirement and relatively poor security.The probe-and-drogue method is more common in modern air refueling.

    The probe-and-drogue method employs a trailing hose with a drogue attachment from the tanker aircraft,the receiver has a probe placed on the aircraft′s nose or fuselage to make the connection.This method is subject to turbulence and aerodynamic forces of the approaching aircraft,which directly affects the aviation safety.Therefore,the analyses of steady aerodynamic characteristics are far from enough.There are a growing number of researches and flight tests on the flow field of the probe-and-drogue at home and abroad,and some results have been achieved[2-5]. Kapseong and James[6]developed a dynamic model of a hose-paradrogue assembly for aerial refueling using the finite-segment approach and studied theeffects of atmospheric turbulence on paradrogue motion by incorporating the Dryden turbulence model into the hose-paradrogue dynamic model. Sriram et al.[7-9]investigated an improved and more natural method of incorporating the trailing vortex effect associated with aircraft flying in close proximities,including the effect of timevarying mass and inertia properties associated with the fuel transfer,the tanker′s vortex induced wind effect and atmospheric turbulence. Eichler[10]presented the derivation and solution of the nonlinear partial differential equation[11]in closed form for sine-wave gust disturbances and numerically for both sine wave,pulse-type vertical gusts and wing vibration,besides,the anticipated effect of vortex from the wingtip on the hose-drogue system was calculated.Hu et al.[12]modeled the trailing refueling hose-drogue by using an array of discrete point mass nodes that represented the physical properties of the hose-drogue,and analyzed the influence of air turbulence on hosedrogue's motion following the simulation of the motion in the cloudless air turbulence.

    By utilizing numerical simulation methods,the motion of the refueling drogue in the docking phase of an aerial refueling is simulated and analyzed in this paper,and the movements of the refueling drogue at different velocities are covered as well,which is followed by the generalization of the motion characteristics.

    1 Numerical Methods

    The numerical methods consist of two parts,one is numerical simulations for unsteady flows,and the other is dynamic grid technique.

    1.1 Numerical methods for unsteady flows

    The governing equations are Reynolds-averaged Navier-Stokes equations which are solved using finite volume method based on unstructured grids.In addition,S-A one equation turbulence model[13]is adopted.The computing software employed in this paper has own intellectual property right and is verified by many numerical case,which guarantees reliable and rational computa-tion results.

    1.1.1 Governingequations

    The three-dimensional compressible Reynolds-averaged Navier-Stokes equations can be expressed as

    where Uis the conservative variable vector,F(xiàn)ithe inviscid flux vector,and Githe viscous flux vector.They are defined by

    whereρ,p,e,Tand kdenote the density,the pressure,the total energy per unit volume,the temperature,and the thermal conductivity coefficient.uiis the velocity component in xidirection and σmithe components of the viscous stress tensor.

    1.1.2 Spacialandtemporaldiscretization

    The spatial flux terms are discretized by using Osher scheme[14].

    Osher's approach assumes that there exist vector-valued functions F+(U)and F-(U)satisfying

    and

    where the integrals are evaluated along each of the partial integration paths U0,U1/3,U2/3,U1.

    The set of equations is then discretized intime by using a fully implicit time discretisation to give

    where ndenotes the time level,Rthe flux residual after discretisation that contains all of the terms arising from the spatial discretisation,P=(ρ,u,v,w,p),the primitive variable,and Pn+1= Pn+nΔP.

    1.1.3 Turbulencemodel

    The turbulence model employs the following S-A one-equation turbulence model

    While the left hand side term represents the advection along a streamline,the terms on the right hand side are defined using the following functions

    whereνis the molecular viscosity,?νthe working variable,dthe distance to the closest wall,and S the magnitude of the vorticity.graph[15]is employed in this paper,within which the original grid is mapped back onto the deformed Delaunay graph to provide the new mesh for the new time step or the new design cycle. The method consists of four steps:(1)Generating the Delaunay graph;(2)Locating the mesh points in the graph;(3)Moving the Delaunay graph according to the specified geometric change;(4)Relocating the mesh points in the new graph.The mapping guarantees that the original mesh topology and density distribution are maintained without mesh crossing or overlapping cells.Besides,it is much more efficient,as it requires only non-iterative algebraic calculations. Figs.1,2show the Delaunay graphs and meshes before and after movement,respectively.

    with the following values for the constants

    1.2 Dynamic grid technique
    There is flexible deformation of the hose in the numerical implementation in addition to drogue oscillation,which requires the new mesh maintain the same topology and density distribution as the original mesh.Since most dynamic grid deformation techniques are iterative based on the spring analogy without maintaining the primary qualities of the grid,another dynamic grid deformation technique based on Delaunay

    Fig.1 Delaunay graphs

    Fig.2 Meshes before and after movement

    2 Simulation of Refueling Drogue Movement

    In the process of air refueling,the flow field around the receiver aircraft suffers from intense airflow turbulence from both the wing and refueling drogue of the tanker aircraft.When approaching to the refueling drogue,the forward pres-sure from the receiver aircraft breaks the balance of the drogue and make it oscillate.The interaction exacerbates the oscillation and wake influence of refueling drogue on the receiver aircraft,which makes the turbulence from the receiver aircraft winglet couple with the strong airflow between the wing of the tanker aircraft and refueling drogue,thus leading to the drogue to oscillate substantially.The closer the drogue is to the probe on the receiver aircraft,the greater the oscillation amplitude is and the faster the oscillation velocity is.Parameters related to refueling docking,such as docking velocity,distance from the drogue to the probe,oscillation amplitude,oscillation velocity,reel frequency and so on,provide references for pilots to correct and improve flight operations and control over the relative velocity between the two aircrafts.The results of air refueling flight tests indicate that in the docking phase,with the receiver aircraft gradually approaching to the refueling drogue,it is normal for the drogue to escape away from the receiver aircraft due to the effect of forward airflow.Therefore,the docking process should be as short as possible,in addition,right adjustments of both docking velocity and stable flight are critical factors to guarantee the success of refueling docking.

    進(jìn)入系統(tǒng)前,用戶需要先登錄(用戶分為管理員用戶和普通用戶),登錄界面如圖2所示。管理員和普通用戶對(duì)應(yīng)的權(quán)限不同,管理員可操作功能最多,下面以管理員用戶登錄后進(jìn)入主界面如圖3所示。

    The following simplification is made for the simulation:the refueling hose is flexible and does not expected to generate the greater stiff force. The displacement of refueling drogue of a fighter at different docking velocities is then simulated. For convenience,the real-time display is conducted by setting the refueling drogue moving toward the receiver aircraft,and x-axis being docking velocity.Besides,the distances before movement between the receiver and the drogue are 3,0and 0min x,yand zdirections,respectively.The simulations are carried out with docking velocities of 0.6,1.2,2.0and 3.0m/s.The results are displayed in Figs.3—7,where x,yand zstand for the central locations of the refueling drogue.

    (1)0.6m/s

    The trajectory path of the refueling drogue at the docking velocity of 0.6m/s is shown in Fig.3.

    ig.3 Trajectory path of drogue at 0.6m/s

    From the results above,it is clear that when docking at the velocity of 0.6m/s,the refueling drogue oscillates with an amplitude of 0.6mand a frequency of 0.5Hz accompanied with an upward movement,as shown in Fig.4.

    (2)1.2m/s

    Here is the trajectory path of the refueling drogue at the docking velocity of 1.2m/s(See Fig.5).

    It is known from the results that when doc-king at the velocity of 1.2m/s,the refueling drogue still oscillates at the frequency of 0.5Hz with an upward movement.Since the docking velocity has doubled,the period of oscillations reduces to one from two.However,there are still many difficulties in the refueling docking because of periodical oscillations.

    Fig.4 Trajectory path of refueling drogue

    (3)2m/s

    The results for the refueling drogue at the docking velocity of 2m/s are displayed in Fig.6.

    It is clear that the refueling drogue still oscillates at the frequency of 0.5Hz with an upward movement,but the period of oscillations reduces to a half because the docking velocity is three times faster than that of the first case.Besides,the technical difficulties still remain the same with the oscillations of the drogue.

    (4)3m/s

    Fig.7depicts the trajectory path of the refueling drogue at the docking velocity of 3m/s.

    As can be seen from the above results,the refueling drogue will move upward with a drift distance of about 0.6mat the speed of 3m/s,whereas the periodic oscillation is slight.This is mainly because the periodic oscillation is only just beginning after increasing the speed,but does not yet go through 1/4cycle,which makes the oscillation very slight.Therefore,in aerodynamic terms,it is much easier to dock and refuel when the docking velocity is no less than 3m/s.But if the velocity is too fast,the hose will float upward due to the aerodynamic forces,which will break the probe owning to sudden bending moment. Thus,various factors need to be balanced when determining the docking velocity.

    ig.5 Trajectory path of drogue at 1.2m/s

    Fig.6 Trajectory path of drogue at 2m/s

    3 Conclusions

    The CFD method and the Delaunay mapping dynamic grid technique are applied to simulate the dynamic behavior of the refueling docking at different velocities varying from 0.6m/s to 3m/s. Compared with other numerical simulation methods,this paper directly simulates the motion between the receiver and the drogue around the coupled flow field,thus being more effective and general.Conclusions can be drawn from numerical simulations and analysis as follows:

    (1)When docking at lower velocity,the refueling drogue exhibits periodical oscillations, which makes the refueling docking quite difficult.

    g.7 Trajectory path of the drogue at 3m/s

    (2)When the docking velocity increases to a certain value,the refueling drogue has little oscillation except upward float,it is then much easier to refuel.

    The aerodynamic force transmission and the following response after the instant contact will cause the hose to exhibit interactive coupling phenomenon and backward transverse wave oscillation,which will leave the probe to subject to great bending moment.For this reason,the future work on this research will be carried out combining with structural dynamics.

    Acknowledgements

    This work is supported by the Funding of Jiangsu In-novation Program for Graduate Education(No.CXLX13_ 133)and the Fundamental Research Funds for the Central Universities.

    References:

    [1] XU Gan,CAO JinQi.The status and development of overseas in-flight refueling technology[J].Aeronautical Science and Technology,1995(1):27-30.(in Chinese)

    [2] VASSBERG J C,YEH D T,BLAIR A J,et al.Dynamic characteristics of a KC-10wing-pod refueling hose by numerical simulation:AIAA,2002-2712[R]. 2002.

    [3] VASSBERG J C,YEH D T,BLAIR A J,et al.Numerical simulation of KC-10in-flight refueling hosedrogue dynamics with an approaching F/A-18Dreceiver aircraft:AIAA,2005-4605[R].2005.

    [4] VASSBERG J C,YEH D T,BLAIR A J,et al.Numerical simulations of KC-10wing-mount aerial refueling hose-drogue dynamics with a reel take-up system:AIAA,2003-3508[R].2003.

    [5] RIBBENS W B,SAGGIO F,WIERENGA R,et al. Dynamic modeling of an aerial refueling hose & drogue system:AIAA,2007-3802[R].2007.

    [6] RO K,KAMMAN J W.Modeling and simulation of hose-paradrogue aerial refueling systems[J].Journal of Guidance,Contral and Dynamics,2010,33(1):53-63.

    [7] VENKATARAMANAN S,DOGAN A.Dynamic effects of trailing vortex with turbulence &time-varying inertia in aerial refueling:AIAA,2004-4945[R].2004.

    [8] VENKATARAMANAN S,DOGAN A.Modeling of aerodynamic coupling between aircraft in close prox-imities:AIAA,2004-5172[R].2004.

    [9] VENKATARAMANAN S,DOGAN A.Vortex effect modeling in aircraft formation flight:AIAA,2003-5385[R].2003.

    [10]EICHLER J.Dynamic analysis of an in-fIight refueling system[J].Journal of Aircraft,1978,15(5):311-318.

    [11]HOERNER S F.Fluid-dynamic drag[M].Brick Town:Hoerner,1965:454-455.

    [12]HU Mengquan,LIU Ping,NIE Xin,et al.Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics,2010,28(5):20-23.(in Chinese)

    [13]SPALART P R,ALLMARAS S R.A one-equation turbulence model for aerodynamic flows:AIAA,92-0439[R].1992.

    [14]OSHER S,SOLOMON F.Upwind difference schemes for hyperbolic systems of conservation laws[J].Mathematics of Computation,1982,38(158):339-374.

    [15]LIU X Q,QIN N,XIA H.Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics,2006,211(2):405-423.

    Ms.Chen Lele is currently a Ph.D.candidate of fluid mechanics in College of Aerospace Engineering at Nanjing University of Aeronautics and Astronautics.Her research interests focus on high-order discontinuous Galerkin method.

    Dr.Liu Xueqiang is currently aprofessor at Nanjing University of Aeronautics and Astronautics.His research interests include high-order discontinuous Galerkin method and aerodynamic optimization design.

    (Executive Editor:Xu Chengting)

    V211.3 Document code:A Article ID:1005-1120(2016)02-0173-07

    *Corresponding author,E-mail address:liuxq@nuaa.edu.cn.

    How to cite this article:Chen Lele,Liu Xueqiang.Numerical analysis of refueling drogue oscillation during refueling docking[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(2):173-179.

    http://dx.doi.org/10.16356/j.1005-1120.2016.02.173

    猜你喜歡
    普通用戶管理員界面
    我是小小午餐管理員
    A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
    我是圖書管理員
    我是圖書管理員
    國(guó)企黨委前置研究的“四個(gè)界面”
    可疑的管理員
    即使是普通用戶也需要備一張家庭影院入門攻略:影音調(diào)校工具篇1
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開(kāi)發(fā)方法研究
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    手機(jī)界面中圖形符號(hào)的發(fā)展趨向
    新聞傳播(2015年11期)2015-07-18 11:15:04
    五月伊人婷婷丁香| 亚洲三级黄色毛片| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 国产一级毛片在线| 国产淫语在线视频| 久久久亚洲精品成人影院| 国产精品一及| 六月丁香七月| 中文在线观看免费www的网站| 女人久久www免费人成看片 | 在线免费观看不下载黄p国产| 中文字幕人妻熟人妻熟丝袜美| 白带黄色成豆腐渣| 亚洲美女视频黄频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 精品少妇黑人巨大在线播放 | 精品99又大又爽又粗少妇毛片| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 我要看日韩黄色一级片| 国产精品一二三区在线看| 精品久久久久久久人妻蜜臀av| 国产极品精品免费视频能看的| av免费在线看不卡| 毛片女人毛片| 国产伦精品一区二区三区四那| 日本午夜av视频| 亚洲一级一片aⅴ在线观看| 99久久精品热视频| 99九九线精品视频在线观看视频| 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 国内精品美女久久久久久| 亚洲一级一片aⅴ在线观看| 成人无遮挡网站| 欧美成人午夜免费资源| 在线天堂最新版资源| 免费av毛片视频| 欧美xxxx黑人xx丫x性爽| 午夜精品国产一区二区电影 | 桃色一区二区三区在线观看| 国产亚洲精品av在线| 日韩精品青青久久久久久| 男女边吃奶边做爰视频| 麻豆精品久久久久久蜜桃| 看黄色毛片网站| 我的老师免费观看完整版| 黑人高潮一二区| 毛片女人毛片| 久久久欧美国产精品| 亚洲精品乱码久久久久久按摩| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 22中文网久久字幕| 深爱激情五月婷婷| 99热这里只有精品一区| 精品熟女少妇av免费看| 色哟哟·www| 人妻少妇偷人精品九色| 欧美日本视频| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 亚洲国产日韩欧美精品在线观看| 国产不卡一卡二| 欧美激情在线99| 高清毛片免费看| 日本黄色片子视频| 搞女人的毛片| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| 自拍偷自拍亚洲精品老妇| 嫩草影院精品99| 成年免费大片在线观看| 波野结衣二区三区在线| 亚洲av福利一区| 久久久国产成人免费| 国产伦精品一区二区三区四那| 午夜日本视频在线| 69人妻影院| 精品久久久久久成人av| 午夜福利网站1000一区二区三区| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 不卡视频在线观看欧美| 看非洲黑人一级黄片| 69人妻影院| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 七月丁香在线播放| 亚洲av免费高清在线观看| 欧美97在线视频| 久久久久久九九精品二区国产| 国产精品日韩av在线免费观看| 在线免费观看不下载黄p国产| 国产成人一区二区在线| 日韩制服骚丝袜av| 好男人在线观看高清免费视频| 久久精品熟女亚洲av麻豆精品 | 3wmmmm亚洲av在线观看| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 毛片女人毛片| 日韩成人伦理影院| 菩萨蛮人人尽说江南好唐韦庄 | 青春草视频在线免费观看| 亚洲av日韩在线播放| 欧美xxxx黑人xx丫x性爽| 国产亚洲一区二区精品| 大香蕉久久网| 高清av免费在线| 亚洲欧美一区二区三区国产| www.av在线官网国产| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久大av| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 只有这里有精品99| 91精品伊人久久大香线蕉| 日韩欧美国产在线观看| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 国产精品永久免费网站| 国产成人精品久久久久久| 淫秽高清视频在线观看| 国产乱人偷精品视频| 国产精品一区二区性色av| 国产精品爽爽va在线观看网站| 成人二区视频| 我的老师免费观看完整版| 听说在线观看完整版免费高清| 99久国产av精品| 亚洲成人av在线免费| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 久热久热在线精品观看| 成年女人看的毛片在线观看| 免费观看人在逋| 级片在线观看| 久久精品人妻少妇| 一区二区三区免费毛片| 中文资源天堂在线| 日韩欧美三级三区| 极品教师在线视频| 边亲边吃奶的免费视频| 男女视频在线观看网站免费| 日韩欧美在线乱码| 免费电影在线观看免费观看| 成人二区视频| 日韩欧美 国产精品| 亚洲av电影在线观看一区二区三区 | 国产精品女同一区二区软件| av在线老鸭窝| 成人三级黄色视频| 禁无遮挡网站| 国内精品一区二区在线观看| 男女国产视频网站| 亚洲天堂国产精品一区在线| 国产精品无大码| 国模一区二区三区四区视频| 亚洲无线观看免费| 亚洲av福利一区| 久久久国产成人精品二区| 国产熟女欧美一区二区| 一级毛片久久久久久久久女| 十八禁国产超污无遮挡网站| 久久国产乱子免费精品| 亚洲av免费高清在线观看| 欧美+日韩+精品| 少妇丰满av| 一级毛片aaaaaa免费看小| 久久欧美精品欧美久久欧美| 能在线免费看毛片的网站| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 六月丁香七月| 特级一级黄色大片| 久久久久久久午夜电影| 国产亚洲av片在线观看秒播厂 | 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 男女边吃奶边做爰视频| 日本三级黄在线观看| 中文字幕av成人在线电影| 一二三四中文在线观看免费高清| 99热精品在线国产| 国产成人免费观看mmmm| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 午夜亚洲福利在线播放| 秋霞伦理黄片| 日韩大片免费观看网站 | 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 中文字幕av在线有码专区| 日本色播在线视频| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 床上黄色一级片| 成年av动漫网址| 午夜福利高清视频| 国产在视频线精品| 久久精品国产亚洲av涩爱| 亚洲av免费在线观看| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 国产淫语在线视频| 美女黄网站色视频| 久久精品国产亚洲av天美| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 看十八女毛片水多多多| 一个人免费在线观看电影| 青春草视频在线免费观看| 日韩中字成人| 日韩一区二区三区影片| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频 | 成人综合一区亚洲| 国产精品一及| 亚洲精品乱码久久久v下载方式| 国产三级中文精品| 亚洲精品国产av成人精品| 高清视频免费观看一区二区 | 国产淫片久久久久久久久| 白带黄色成豆腐渣| 69人妻影院| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 亚洲av电影不卡..在线观看| 91午夜精品亚洲一区二区三区| videossex国产| 国产午夜精品论理片| 国产高清视频在线观看网站| 国产大屁股一区二区在线视频| 国产 一区精品| 国产片特级美女逼逼视频| 99久久九九国产精品国产免费| 国产精品日韩av在线免费观看| 乱码一卡2卡4卡精品| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 国产精品综合久久久久久久免费| 亚洲综合精品二区| 久热久热在线精品观看| 91午夜精品亚洲一区二区三区| 亚洲综合精品二区| 白带黄色成豆腐渣| 久久精品影院6| 亚洲美女搞黄在线观看| 国产 一区精品| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站 | 国产亚洲av嫩草精品影院| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕| 亚洲综合色惰| 99热这里只有精品一区| 3wmmmm亚洲av在线观看| 麻豆av噜噜一区二区三区| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 看黄色毛片网站| 精品午夜福利在线看| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 成年免费大片在线观看| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 网址你懂的国产日韩在线| 激情 狠狠 欧美| 国产探花在线观看一区二区| 国产亚洲91精品色在线| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 久久99蜜桃精品久久| 亚洲欧美一区二区三区国产| 精品人妻偷拍中文字幕| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 免费av观看视频| 久久精品影院6| 国产 一区 欧美 日韩| 欧美bdsm另类| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 亚洲最大成人手机在线| 国产熟女欧美一区二区| 亚洲精品国产av成人精品| av福利片在线观看| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 好男人视频免费观看在线| 岛国毛片在线播放| 国产免费视频播放在线视频 | av免费观看日本| 国产乱来视频区| 日本免费一区二区三区高清不卡| 亚洲国产色片| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看 | 22中文网久久字幕| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 99久久精品国产国产毛片| 成人亚洲欧美一区二区av| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 国产黄片视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 视频中文字幕在线观看| 搞女人的毛片| 久久6这里有精品| 内射极品少妇av片p| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 我要搜黄色片| 免费看光身美女| 自拍偷自拍亚洲精品老妇| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 97热精品久久久久久| 亚洲成色77777| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 嫩草影院新地址| 欧美人与善性xxx| 国产精品精品国产色婷婷| 赤兔流量卡办理| 久久久精品94久久精品| 亚洲人成网站在线观看播放| 综合色av麻豆| 麻豆成人av视频| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 一级毛片电影观看 | 国产精品人妻久久久影院| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 国产综合懂色| 中文精品一卡2卡3卡4更新| 午夜精品一区二区三区免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久av不卡| 在线a可以看的网站| 嫩草影院入口| 99视频精品全部免费 在线| 一区二区三区免费毛片| 亚洲电影在线观看av| 国产亚洲精品久久久com| 亚洲电影在线观看av| 亚洲四区av| 人体艺术视频欧美日本| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载 | 亚洲国产欧美在线一区| 欧美潮喷喷水| 狂野欧美激情性xxxx在线观看| 日韩欧美在线乱码| 天美传媒精品一区二区| 岛国毛片在线播放| 亚洲国产最新在线播放| 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 久久99精品国语久久久| 如何舔出高潮| www.色视频.com| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 午夜精品一区二区三区免费看| 一边亲一边摸免费视频| 可以在线观看毛片的网站| 国产精品三级大全| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生 | 欧美性感艳星| 国产成人freesex在线| 日日干狠狠操夜夜爽| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 欧美日韩综合久久久久久| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 能在线免费观看的黄片| 国产精品福利在线免费观看| 欧美极品一区二区三区四区| 99久久中文字幕三级久久日本| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| av专区在线播放| 嫩草影院精品99| 国产免费男女视频| 午夜福利在线观看吧| 亚洲电影在线观看av| av女优亚洲男人天堂| 波多野结衣高清无吗| 成人鲁丝片一二三区免费| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 爱豆传媒免费全集在线观看| 亚洲av中文字字幕乱码综合| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说| 2022亚洲国产成人精品| 国产精品久久久久久久久免| 亚洲国产精品专区欧美| 成人综合一区亚洲| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 97热精品久久久久久| 亚洲av日韩在线播放| 免费黄色在线免费观看| 深夜a级毛片| 精品久久久久久成人av| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| av在线播放精品| 亚洲成人av在线免费| 好男人在线观看高清免费视频| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 亚洲成色77777| 99久国产av精品国产电影| 男的添女的下面高潮视频| 久久人人爽人人片av| 久久国产乱子免费精品| 国产大屁股一区二区在线视频| 九色成人免费人妻av| av在线亚洲专区| 99久久无色码亚洲精品果冻| 人妻夜夜爽99麻豆av| 久久精品国产亚洲网站| 国产不卡一卡二| 国产色爽女视频免费观看| 久久久精品94久久精品| 国产精品一区二区三区四区免费观看| 亚洲四区av| 久久欧美精品欧美久久欧美| 免费黄网站久久成人精品| 美女国产视频在线观看| 久久这里有精品视频免费| 超碰av人人做人人爽久久| av福利片在线观看| 国产美女午夜福利| 久久精品国产自在天天线| 午夜久久久久精精品| 久久久久久国产a免费观看| 伊人久久精品亚洲午夜| 亚洲va在线va天堂va国产| 国产乱人视频| 精品99又大又爽又粗少妇毛片| 国产成年人精品一区二区| 国产又色又爽无遮挡免| 天天躁日日操中文字幕| 午夜福利高清视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩三级伦理在线观看| 国产午夜精品论理片| av国产久精品久网站免费入址| 国产精品综合久久久久久久免费| 亚洲欧美精品综合久久99| 丰满人妻一区二区三区视频av| 久久久欧美国产精品| 国产免费视频播放在线视频 | 床上黄色一级片| 搞女人的毛片| 国产精华一区二区三区| 中文字幕制服av| 国产私拍福利视频在线观看| 日韩在线高清观看一区二区三区| 好男人视频免费观看在线| 国产爱豆传媒在线观看| 欧美极品一区二区三区四区| 一边亲一边摸免费视频| www.av在线官网国产| 久久久色成人| 亚洲成人中文字幕在线播放| 国产免费又黄又爽又色| 我要搜黄色片| 午夜福利在线观看免费完整高清在| 免费在线观看成人毛片| 亚洲综合色惰| 国产亚洲精品av在线| 能在线免费看毛片的网站| 波多野结衣高清无吗| 别揉我奶头 嗯啊视频| 色哟哟·www| 99久久九九国产精品国产免费| 国产片特级美女逼逼视频| 日本午夜av视频| 日韩视频在线欧美| 岛国在线免费视频观看| 一区二区三区高清视频在线| 中文字幕免费在线视频6| 亚洲内射少妇av| 国产精品国产高清国产av| 麻豆成人午夜福利视频| 久久精品国产自在天天线| 啦啦啦韩国在线观看视频| av在线播放精品| 搞女人的毛片| 老司机影院成人| 五月伊人婷婷丁香| 啦啦啦韩国在线观看视频| 亚洲欧美日韩卡通动漫| ponron亚洲| 欧美极品一区二区三区四区| 国产一区二区在线av高清观看| 99久久九九国产精品国产免费| 成人性生交大片免费视频hd| 亚洲成人中文字幕在线播放| 久久精品熟女亚洲av麻豆精品 | 男人和女人高潮做爰伦理| 中文欧美无线码| 观看免费一级毛片| 日本av手机在线免费观看| 国产免费福利视频在线观看| 女的被弄到高潮叫床怎么办| 天堂√8在线中文| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| av国产免费在线观看| 日韩视频在线欧美| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 18禁动态无遮挡网站| АⅤ资源中文在线天堂| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 亚洲av男天堂| 国产精品99久久久久久久久| 久久久国产成人免费| 亚洲欧美成人综合另类久久久 | 毛片一级片免费看久久久久| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 一级毛片久久久久久久久女| 人妻夜夜爽99麻豆av| 国产精品久久电影中文字幕| 91久久精品国产一区二区三区| 最近中文字幕2019免费版| 干丝袜人妻中文字幕| 久久精品影院6| 网址你懂的国产日韩在线| 日韩一区二区三区影片| 日韩三级伦理在线观看| 岛国毛片在线播放| 非洲黑人性xxxx精品又粗又长| 色吧在线观看| 日韩,欧美,国产一区二区三区 | 日韩中字成人| 亚洲人成网站在线观看播放| 久久久久九九精品影院| 亚洲成人中文字幕在线播放| 亚洲av中文字字幕乱码综合| 国语对白做爰xxxⅹ性视频网站| 精品人妻视频免费看| 秋霞伦理黄片| 性色avwww在线观看| 免费观看a级毛片全部| 国产精品野战在线观看| 国模一区二区三区四区视频| 亚洲国产精品sss在线观看| 国产色婷婷99| 免费搜索国产男女视频| 人人妻人人澡欧美一区二区| 欧美一级a爱片免费观看看| 毛片一级片免费看久久久久| 自拍偷自拍亚洲精品老妇| 免费观看精品视频网站| videossex国产| 亚洲精品日韩av片在线观看| 99久久精品一区二区三区| 最后的刺客免费高清国语| 亚洲欧美日韩无卡精品| 看片在线看免费视频| 日本一二三区视频观看| 免费播放大片免费观看视频在线观看 | 精品人妻偷拍中文字幕| 老女人水多毛片|