• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle

    2016-09-14 01:16:40ShaoZhijianHeChengPeiJinhua

    Shao Zhijian,He Cheng,Pei Jinhua

    Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China(Received 23October 2014;revised 25February 2015;accepted 3March 2015)

    ?

    Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle

    Shao Zhijian,He Cheng*,Pei Jinhua

    Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China
    (Received 23October 2014;revised 25February 2015;accepted 3March 2015)

    Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.

    airbag;vent orifice;soft landing;multi-objective optimization;unmanned aerial vehicle(UAV)

    0 Introduction

    Parachute-airbag landing is an undamaged recovery method that is commonly used with modern unmanned aerial vehicles(UAVs),manned spacecraft,and heavy cargo airdrops.A parachute′s deceleration is limited because the landing speed of a decelerated UAV cannot be too low;if it is,the weight of the parachute system becomes unreasonable.For instance,the recoverable modules of UAVs and manned spacecraft normally have ground landing speeds between 6m/s and 7m/s after parachute deceleration.Therefore,light and foldable airbags with superior cushioning performance are normally used to cushion the vehicles′landings.

    Because they are effective cushions,after many years of development,airbag cushions with a variety of structures and forms are yielded. Based on cushioning mechanisms,current configurations include enclosed and vented airbags.The enclosed airbags have two maijor advantages. They are not sensitive to the orientation of the payload on landing,and they have a history of use in many applications.However,the multiple impacts and unknow lander orientation during bounces complicates the design.On the other hand,as the final attitude is unpredicatable lander righting is required,increasing system mass and complexity.Vented airbags,due to its deterministic impact load direction,can be deployed with a more targeted arrangement.A properly designed airbag with a suitable size and vent hole dimension can keep the overload within the allowed range,control the recovery object′s final touchdown speed,and prevent bouncing.In view of these advantages,a large number of UAVs and spacecraft are presently recovered by means of vented airbag systems.In the manned spacecraft″Orion″developed by NASA(National Aeronautics and Space Administration)for the Constellation Program[1],six vented airbags cushioning systems were deployed.During the landing process,the externally vented airbag acts as decelerator,and the internally enclosed airbag drops up the spacecraft and prevents it from touching the ground.The U.S.Army′s Natick research center designed a mechanical vent control mechanism for the cushioning airbags used in heavy airdrops,which could adjust the vent area during cushioning to smooth variations in the airbag′s pressure[2,3].In addition,vented airbags were heavily used in the delivery of combat weapons and relief supplies[4-7].In China,relevant research institutions studies this type of airbag.A magnetostrictive actuator was employed to drive vent valves and implement proactive control of vent holes during the cushioning process[8].Shao[9]designed a vented airbag system with a secondary airbag that leveraged gas is recycled to improve the cushioning performance of airbag systems.Chen et al.[10]investigated the pros and cons of airbags with fixed and controllable vents using a theoretical model.Current studies show that,despite all the advantages of airbags with controllable vents,this type of airbag requires a mechanical driver and a control system to complete feedback and perform an action within tens of milliseconds,which proves to be quite challenging with the technology currently available in China.In addition,in China,studies of vented airbag cushioning systems generally remain in the stage of theoretical analysis and simulations,and there are few studies available to guide actual engineering projects.

    In this paper,a cushioned recovery problem for a type of UAV is investigated.Based on a theoretical model and the NSGA-Ⅱalgorithm,a multi-objective method of optimizing design for a horizontal cylindrical vented cushioning airbag is proposed.The cushioning process is divided into an adiabatic compression stage and a venting and energy release stage.Piecewise non-linear differential equations for the horizontal cylindrical vented airbag are established.The relationship between the airbag′s design parameters and cushioning performance is conducted.A multi-objective(Optimize both the area of the vent hole and the crack pressure)design method is proposed for this type of airbag.Finally,the accuracy of the design is verified experimentally.

    1 Basic Dynamical Equations of Cylindrical Vented Airbag System

    A certain mass of an ideal gas inside a cylindrical vented airbag satisfies the following state equation

    whereρis the density of the gas,ethe specific internal energy of gas,andγthe gamma constant. The specific internal energy represents the internal energy of one mass unit of the gas.Using the ideal gas law,this parameter can be represented using the gas′s initial specific internal energy.

    It is assumed that the recovery object with mass is in the upper part of the airbag.For simplicity the connections between the recovery object and the airbag will not be included in the representation of the system for the simulation,instead the degrees of freedom of system will be restricted to prevent rotation or movement not in the vertical direction.Upward is defined as the positive direction of the recovery object′s displacement.The balanced position is defined as the initial position,the external pressure is Pe.The airbag deflation geometry is idealised as the double truncation of a cylinder.If the landing craft plate moves 10cm after the bag initially comes into contact with ground,5cm both of the top and the sphere bottom is cut off and the cylinder is compressed without deformation of the rest(See Fig.1).This means that the volume of the airbag is now that of full cylinder minus that of the compressed domes at the top and bottom.This method neglects the reality that a cylindrical bag does not deform in this idealised fashion.More realistically the bag deforms with a more expanded midsection,similar to a donut without the centre removed.In addition,because the stiffness of the airbag′s fabric is significantly less than the supportprovided by the gas,the effect of the airbag fabric′s stiffnes can be ignored.Then,based on Newton′s second law of motion,the equation of motion for the recovery object is as follows

    Fig.1 Deformation in cross section of airbag

    where Sis the interaction area of the recovery object and the airbag.For a horizontal cylindrical airbag with length L,the interaction area Sis

    whereΔu is the initially generated compression when the object is in its balanced position.Assuming that the airbag′s initial volume is V0and its initial pressure is P0,the initial interaction ar-ea isIt is worth noting that all of the initial conditions can be calculated from the balanced condition,the state equation of the gas,and the geometrical relationships.If the gas has an initial density ofρ0,the initial mass of the gas is

    The initial specific internal energy of the gas is

    Because at any moment during the recovery process the volume of the cylindrical airbag is approximately V=V0+u(S+S0)(6)the density of the gas inside the airbag is

    According to the law of conservation of energy,before vent occuring,the total energy of the recovery object/airbag system is conserved.Therefore,the recovery object′s mechanical energy and the internal energy of the gas convert into each other.Assuming that the recovery object′s initial position has zero potential energy,its mechanical energy at the present moment is

    Initially,the mechanical energy of the recovery object is

    The law of conservation of energy can be used to calculate the total internal energy of the gas inside the cylinder at the present moment as follows

    where?E0is gas′s initial total internal energy,which is determined by combining Eq.(4)and Eq.(5)to obtain

    From Eqs.(10),(11),the gas′s specific internal energy at the present moment can be obtained,namely

    Next,the airbag′s internal pressure at the present moment can be obtained from Eq.(1),namely

    Note that ma=ρ0V0=ρV,Eq.(13)can be rewritten as

    Substituting Eq.(14)into Eq.(2)yields the differential equation that describes the dynamics of the airbag recovery system before vent

    Eqs.(3),(6),(15)can be grouped to form a system of simultaneous differential equations for this non-linear problem.With the initial conditions u(0)=0andu(0)=v0,the response of the center can be calculated using the different method.

    As the compression process proceeds,the airbag is in the venting phase when the internal pressure of the airbag reaches the burst pressure Pcr.At that moment,Eq.(20)is still valid.To facilitate explanation,the balance equation for this phase is

    where″ex″denotes a gas state parameter in thevent phase.According to Ref.[11],the venting rate of a vent hole is related to the difference between the internal and external pressures,the area of the vent hole Aex,and the retention coefficient K.The venting rate is

    Assuming that during venting,the temperature of the gas inside the airbag is fixed and″cr″denotes the gas state at the moment of cracking,the gas inside the airbag satisfies

    Pex(Vcr+uex(S+Scr)=maRTcr(18)In addition,since

    ma=ρ0V0-q(19)

    and the initial conditions are uex(0)=ucr,uex(0)=ucr,and q(0)=0,Eqs.(3),(16)—(19)can be grouped to calculate the response of recovery object and the patterns of variations in the airbag parameters during the venting stage.

    2 Optimizing Multiple Objectives in Design of Vented Airbag System for UAV

    2.1 Discussion on characteristics of exhaust airbag

    The design of an airbag recovery system for a UAV in a standard environment is used as an example to investigate the cushioning performance of a vented airbag.Mass of the UAV system is 250 kg.The vertical ground landing speed is 5.4m/s. During the gas injection process,the nitrogen cylinder system carries in the body of the vehicle injects air,and the stable operational pressure is equal to the environmental pressure,i.e.,p0=pe. To facilitate the design,based on previous recovery experiences,the airbag is designed as a cylinder 800mm long and 600mm in diameter.

    Previous studies show that proper real-time control of the vent hole′s area can cause UAV to perform a″zero speed″landing.However,because it is constrained by the development of sensor and control mechanisms in China,actual control of the vent hole′s area is unable to satisfy the theoretical requirements of the ultrashort venting period,and there is a significant delay.Therefore,most of the vent airbags still use fixed vent holes.Fig.2shows the maximum overload and touchdown speed within the vented airbag during impact attenuation.The graph shows as follows:

    (1)When the area of the vent hole is fixed,none of the following parameters exhibits variation with a linear trend:the UAV′s maximum overload,its touchdown speed,and its crack pressure.

    (2)When the crack pressure is fixed,the UAV′s maximum overload decreases as the area of the vent hole increases.After the area exceeds a certain threshold,the maximum overload does not change.In contrast,the touchdown speed gradually increases.

    (3)When the area of the vent hole exceeds a certain threshold,the UAV′s maximum overload does not change.However,at that moment,the touchdown speed continues to increase.

    The above analysis shows that an oversized vent hole is likely to result in an accelerated vent speed and relatively fast cushion stroke height as UAV descends.Therefore,the amount of energy lost per unit mass of gas is reduced,which definitely requires increasing the airbag′s height. When the area of its base is fixed,the discordance between the height and the area of the base reduces the airbag′s stability and reliability,thereby complicating the control rule.In contrast,an undersized vent hole significantly increases the overload level.Therefore,aproper design is necessary to coordinate the relationship between the overload and the touchdown speed.In the following sections,both of these parameters are used as objective functions in the multi-objective optimization process.

    2.2 Multi-objective optimization design

    The vent hole area coefficient cexand the crack pressure Pcrare optimization parameters. The initial area(the aperture is 120mm)and the area coefficient are multiplied to determine the area of the vent hole.A mathematical model of the multi-objective optimization problem whose objec-tive functions are the maximum overload amaxand the final touchdown speed vfinis

    Fig.2 Change of cushioning properties with airbag parameters

    where the superscripts U and L denote the lower and upper limits,respectively,of the design variables.

    The Pareto front(See Fig.3),[cex,Pcr]l(l= 1,2,…,NP),can be obtained for multi-objective optimization problem by NSGA-Ⅱ,where NPis the number of Pareto optimal solutions.Every objective(Ji([cex,Pcr]l),i=1,2,…,Nobj)is normalized with respect to its minimum and maximum values(Jmaxiand Jmini)on the Pareto front approximation,ˉJi([cex,Pcr]l),i=1,2,…,NobjObviously,ifthat meansis the optimal solution of the i th objective function on the Pareto front.Otherwise,that means is the worst solu-tion.The 2-norm values of all of the solutions in the optimal solution set are compared,and the solution with the smallest distance from the ideal optimal solution is chosen as the final identified result.The results are listed in Table 1.

    Fig.3 Pareto optimal solutions

    Table1 Final optimal solution

    3 Experiment on UAV Airbag System

    To verify the accuracy of the optimized design of the airbag system,a relevant study involving an airbag drop test is conducted.The test is conducted in the drop testbed of the Launch and Recovery Technology Laboratory,UAV Research Institute,Nanjing University of Aeronautics and Astronautics.The test article and the airbag are lifted to a height that allows them to reach a parachute landing speed in free fall.After being released,the test article drops to the ground platform.Impact sensors under the platform record and export the impact signals,which are recorded by the data collection system.At the same time,data on the vehicle body′s acceleration are recorded,and the vehicle body′s touchdown speed is recorded using a high-speed photographic system. The overall testbed is shown in Fig.4.

    Fig.5show the velocity and overload curves(The filter frequency is 50Hz)for the center ofgravity of the vehicle body,which is collected during the test.A comparison resulted from the theoretical model shows that the peak value and pulse width from the theoretical model match the test results well.In addition,the touchdown speed obtained using the high-speed photographic system is approximately 1.1m/s,which is basically consistent with the theoretically calculated result.

    Fig.4 Impact test for UAV airbag system

    Fig.5 Comparison of test and simulation results

    4 Conclusions

    In this paper,a theoretical model of a horizontal cylindrical vented airbag is developed based on the state equations of internal gases and the law of conservation of energy of the system,and a numerical algorithm is used to analyze the effect of the airbag system′s parameters on its cushioning performance.The touchdown speed and the maximum overload serve as objective functions in a multi-objective optimization process for the cylindrical vented airbag system.Based on the design requirements and screen criteria,a final design is identified.Finally,the feasibility of the proposal is verified experimentally.The design method proposed in this paper is a valuable trial for various systems that use vented airbags for recovery,and it has practical value in engineering applications.The design approach is universal and can be directly applied to recovery design in other space and aviation systems.

    References:

    [1] SMITH T R,WAER J S,WILLEY C E,et al.Orion CEV earth landing impact attenuating airbags-design challenges and application[C]∥Proc of 28th IEEE Aerospace Conference.Montana,USA:IEEE AC Paper,2007.

    [2] LEE C K.Methods for improved airbag performance for airdrop:Technical Report 11-atick/TR-93/002[R].[S.l.]:L.S.Army Natick Reseach,Development and Engineering Center,1992.

    [3] LEE C,ROSATO N,LAI F.An investigation of improved airbag performance by vent control and gas injection[C]∥11th AIAA Aerodynamic Decelerator Systems Technology Conference.San Diego,CA:AIAA,1991:455-464.

    [4] TAYLOR A P.Investigation of the application of airbag technology to provide a soft-landing capability for military heavy airdrop[C]∥16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Boston,MA:AIAA,2001:284-292.

    [5] WARRICK J C,LEE C K.Advanced airbag system for cargo airdrop[C]∥16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Boston,MA:AIAA,2001:293-303.

    [6] DREHER P,CANFIELD R,MAPLE R.Dynamic response of a monition to a low pressure airbag[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics &Materials Conference.Austin,Texas:AIAA,2005,2031:1-11.

    [7] DREHER P,CANFIELD R,MAPLE R.Experi-mental dynamic response of a solid object to various diameter low pressure airbags[C]∥47th AIAA/ ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Newport,Rhode Island:AIAA,2006:1-7.

    [8] GE Sicheng,CHEN Fei.Experimental study on theory of impact active control of intelligent airbag[J]. Journal of Astronautics,2004,25(6):600-603.(in Chinese)

    [9] SHAO Zhijian.Application of second-airbag to unmanned aerial vehicle[J].Journal of Nanjing University of Aeronautics and Astronautics,2009,41(S):93-96.(in Chinese)

    [10]CHEN Shuai,LI Bin,WEN Jinpeng,et al.Cushioning characteristic and parameter design of a soft landing airbag[J].Journal of Vibration and Shock,2009,28(4):25-30.(in Chinese)

    [11]ESGAR J B,MORGAN W C.Analytical study of soft landings on gas-filled bags:NASA TR R-75[R]. 1975.

    [12]BLASCO X,HERRERO J M,SANCHIS J,et al.A new graphical visualization of n-dimensional Pareto front for decision making in multiobjective optimization[J].Information Sciences,2008,178(20):3908-3924.

    Mr.Shao Zhijianis an assistant professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his B.S.degree in Nanjing University of Aeronautics and Astronautics.His research interests are emission and recovery for pilotless aircraft.

    Dr.He Chengis an assistant professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his Ph.D.degree in Nanjing University of Aeronautics and Astronautics.His research interests are emission and recovery for pilotless aircraft.

    Mr.Pei Jinhuais a professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his M.S.degree in Nanjing University of Science and Technology.His research interests are emission and recovery for pilotless aircraft.

    (Executive Editor:Xu Chengting)

    V224.1 Document code:A Article ID:1005-1120(2016)02-0208-07

    *Corresponding author,E-mail address:hechengary@163.com.

    How to cite this article:Shao Zhijian,He Cheng,Pei Jinhua.Multi-objective optimization design of vented cylindrical airbag cushioning system for unmanned aerial vehicle[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(2):208-214.

    http://dx.doi.org/10.16356/j.1005-1120.2016.02.208

    亚洲无线在线观看| 丝袜喷水一区| 欧美极品一区二区三区四区| 午夜福利18| 婷婷色综合大香蕉| 黑人高潮一二区| 国产蜜桃级精品一区二区三区| 亚洲国产欧美人成| 日韩欧美精品免费久久| 最近的中文字幕免费完整| aaaaa片日本免费| 久久久a久久爽久久v久久| 久久久久久久久中文| 日韩国内少妇激情av| 精品熟女少妇av免费看| 人人妻,人人澡人人爽秒播| 3wmmmm亚洲av在线观看| 日韩欧美三级三区| 久久精品影院6| 欧美日韩乱码在线| 亚洲最大成人手机在线| 精品日产1卡2卡| 国产精品人妻久久久久久| 寂寞人妻少妇视频99o| 在线观看一区二区三区| 免费大片18禁| 国产淫片久久久久久久久| 校园春色视频在线观看| 久久久欧美国产精品| 久久精品91蜜桃| 亚洲av中文av极速乱| 日韩制服骚丝袜av| 有码 亚洲区| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频| 中文字幕av在线有码专区| 女人被狂操c到高潮| 亚洲国产色片| 一边摸一边抽搐一进一小说| av在线播放精品| 国产精品免费一区二区三区在线| 久久国产乱子免费精品| 此物有八面人人有两片| 国产高清视频在线播放一区| 大型黄色视频在线免费观看| 在线a可以看的网站| 少妇熟女aⅴ在线视频| 亚洲性久久影院| 尾随美女入室| 精品久久久久久久人妻蜜臀av| 欧美最黄视频在线播放免费| 日本一本二区三区精品| 尤物成人国产欧美一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲四区av| 一个人观看的视频www高清免费观看| 18禁在线无遮挡免费观看视频 | 亚洲五月天丁香| 久久综合国产亚洲精品| 亚洲国产欧洲综合997久久,| 日日撸夜夜添| 午夜a级毛片| eeuss影院久久| 亚洲乱码一区二区免费版| 此物有八面人人有两片| 国产爱豆传媒在线观看| 亚洲精品日韩在线中文字幕 | 啦啦啦韩国在线观看视频| 国产又黄又爽又无遮挡在线| 久久久久精品国产欧美久久久| 国产单亲对白刺激| 三级毛片av免费| 亚洲av免费高清在线观看| 男女视频在线观看网站免费| 69人妻影院| 亚洲最大成人av| 在线免费观看的www视频| 丰满的人妻完整版| 国产伦精品一区二区三区视频9| 婷婷精品国产亚洲av在线| 亚洲精品亚洲一区二区| 99久久久亚洲精品蜜臀av| 最好的美女福利视频网| 亚洲激情五月婷婷啪啪| 日韩av不卡免费在线播放| 日本免费一区二区三区高清不卡| 一区二区三区高清视频在线| 亚洲激情五月婷婷啪啪| 99国产极品粉嫩在线观看| 色在线成人网| 欧美日韩在线观看h| av国产免费在线观看| www日本黄色视频网| 亚洲电影在线观看av| 国内少妇人妻偷人精品xxx网站| 1000部很黄的大片| 悠悠久久av| 国产高清视频在线播放一区| 日韩欧美 国产精品| 97碰自拍视频| 一区二区三区高清视频在线| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 国产爱豆传媒在线观看| 亚洲成人久久性| 久久热精品热| 此物有八面人人有两片| 日本色播在线视频| www日本黄色视频网| 欧美bdsm另类| 亚洲欧美成人综合另类久久久 | 国产美女午夜福利| 日本在线视频免费播放| 国产在线男女| 亚洲欧美成人精品一区二区| 亚洲三级黄色毛片| 少妇熟女aⅴ在线视频| 国产免费一级a男人的天堂| www.色视频.com| 亚洲精品色激情综合| 丝袜美腿在线中文| 亚洲欧美精品综合久久99| 午夜日韩欧美国产| 欧美不卡视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 色在线成人网| 精品午夜福利在线看| 亚洲精品影视一区二区三区av| 极品教师在线视频| 亚洲国产日韩欧美精品在线观看| 欧美日韩一区二区视频在线观看视频在线 | 淫妇啪啪啪对白视频| 欧美日韩一区二区视频在线观看视频在线 | 夜夜爽天天搞| 夜夜夜夜夜久久久久| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 亚洲成人精品中文字幕电影| 丰满的人妻完整版| 亚洲精品国产成人久久av| 国产精品久久久久久av不卡| 国产美女午夜福利| 欧美成人精品欧美一级黄| 十八禁国产超污无遮挡网站| 国产免费男女视频| 日韩精品中文字幕看吧| .国产精品久久| 日本五十路高清| 三级国产精品欧美在线观看| 一本久久中文字幕| 99riav亚洲国产免费| 在线观看美女被高潮喷水网站| 亚洲五月天丁香| 欧美极品一区二区三区四区| 欧美最黄视频在线播放免费| 波野结衣二区三区在线| 日本与韩国留学比较| 一级毛片电影观看 | 搞女人的毛片| 久久久久久九九精品二区国产| 国产精品免费一区二区三区在线| 丝袜美腿在线中文| 麻豆乱淫一区二区| av专区在线播放| 午夜福利在线观看免费完整高清在 | 亚洲精品一区av在线观看| 欧美激情在线99| 男女那种视频在线观看| 婷婷色综合大香蕉| 国产欧美日韩精品亚洲av| 最近手机中文字幕大全| 日韩欧美在线乱码| 在线免费观看的www视频| 99热6这里只有精品| 国内精品一区二区在线观看| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 精品一区二区三区人妻视频| 夜夜爽天天搞| 欧美日韩国产亚洲二区| 久久人人爽人人爽人人片va| 国产91av在线免费观看| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 久久久a久久爽久久v久久| 一区二区三区高清视频在线| 18禁在线无遮挡免费观看视频 | 69人妻影院| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 午夜福利在线观看吧| 国产av麻豆久久久久久久| 欧美日韩精品成人综合77777| 禁无遮挡网站| 白带黄色成豆腐渣| 久久久久久大精品| 男女那种视频在线观看| 午夜a级毛片| 简卡轻食公司| 国产精品亚洲一级av第二区| 天美传媒精品一区二区| 亚洲三级黄色毛片| 国产成人91sexporn| 中文字幕精品亚洲无线码一区| 色综合色国产| 乱人视频在线观看| 精品久久久久久久久久久久久| 97碰自拍视频| 亚洲av免费高清在线观看| 亚洲精华国产精华液的使用体验 | 我要看日韩黄色一级片| 精品人妻熟女av久视频| 久久人妻av系列| 精品福利观看| 国产男靠女视频免费网站| 老司机福利观看| 中文资源天堂在线| 日韩人妻高清精品专区| 色哟哟·www| 乱系列少妇在线播放| 成人欧美大片| 一进一出抽搐gif免费好疼| 国产成年人精品一区二区| 国产精华一区二区三区| 国产成人a区在线观看| 永久网站在线| 有码 亚洲区| 国产麻豆成人av免费视频| 亚洲在线观看片| 悠悠久久av| 欧美在线一区亚洲| 久久久久久久久久成人| 女生性感内裤真人,穿戴方法视频| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 亚洲欧美清纯卡通| 婷婷亚洲欧美| or卡值多少钱| 别揉我奶头 嗯啊视频| 嫩草影视91久久| 成人无遮挡网站| 亚洲国产日韩欧美精品在线观看| av免费在线看不卡| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 精品午夜福利视频在线观看一区| 又黄又爽又刺激的免费视频.| 日本撒尿小便嘘嘘汇集6| 亚洲中文日韩欧美视频| 嫩草影视91久久| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 精品久久久噜噜| 此物有八面人人有两片| 观看美女的网站| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看 | 国产 一区精品| 最近中文字幕高清免费大全6| aaaaa片日本免费| 国产亚洲精品综合一区在线观看| 免费看光身美女| 国产免费一级a男人的天堂| 97超视频在线观看视频| 丝袜美腿在线中文| 久久精品国产99精品国产亚洲性色| 97超碰精品成人国产| 99久久久亚洲精品蜜臀av| 亚洲国产欧洲综合997久久,| 国产人妻一区二区三区在| 国产在线男女| 精品熟女少妇av免费看| 亚洲av美国av| 久久久久九九精品影院| 韩国av在线不卡| 国产精品嫩草影院av在线观看| 亚洲国产精品国产精品| 特级一级黄色大片| 97人妻精品一区二区三区麻豆| 给我免费播放毛片高清在线观看| 熟女电影av网| 午夜福利在线观看吧| 不卡视频在线观看欧美| 免费大片18禁| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 欧美高清性xxxxhd video| 国产三级在线视频| 久久99热6这里只有精品| 国产高潮美女av| 国产精品久久视频播放| 亚洲av二区三区四区| 免费观看人在逋| 真人做人爱边吃奶动态| АⅤ资源中文在线天堂| 丝袜喷水一区| 精品乱码久久久久久99久播| 老师上课跳d突然被开到最大视频| eeuss影院久久| 亚洲成a人片在线一区二区| 麻豆久久精品国产亚洲av| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜 | 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 亚洲内射少妇av| 十八禁国产超污无遮挡网站| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 精品人妻视频免费看| 一本久久中文字幕| 国产精品亚洲美女久久久| 日韩精品有码人妻一区| 给我免费播放毛片高清在线观看| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 亚洲内射少妇av| 国产精品爽爽va在线观看网站| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 成年女人永久免费观看视频| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 精品人妻视频免费看| 天堂动漫精品| 俺也久久电影网| 成年av动漫网址| 国产精品99久久久久久久久| 无遮挡黄片免费观看| 国产精品女同一区二区软件| 欧美成人免费av一区二区三区| 日韩,欧美,国产一区二区三区 | 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 国产色爽女视频免费观看| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 日本三级黄在线观看| 久久99热6这里只有精品| h日本视频在线播放| 日日撸夜夜添| 97超级碰碰碰精品色视频在线观看| 色噜噜av男人的天堂激情| 久久精品久久久久久噜噜老黄 | a级一级毛片免费在线观看| 精品一区二区三区人妻视频| 色哟哟·www| 午夜免费激情av| 精品人妻一区二区三区麻豆 | 国产三级在线视频| 18禁在线播放成人免费| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 免费观看在线日韩| 长腿黑丝高跟| 99久国产av精品国产电影| 一级毛片aaaaaa免费看小| 22中文网久久字幕| 免费观看人在逋| 极品教师在线视频| 国语自产精品视频在线第100页| 欧美bdsm另类| 日本一二三区视频观看| 又黄又爽又刺激的免费视频.| 97碰自拍视频| 久久6这里有精品| 乱码一卡2卡4卡精品| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 我要搜黄色片| 欧美3d第一页| 精品少妇黑人巨大在线播放 | 欧美激情在线99| 亚洲美女搞黄在线观看 | 夜夜爽天天搞| 高清毛片免费看| 国产精品亚洲一级av第二区| 嫩草影视91久久| 岛国在线免费视频观看| 久久久久精品国产欧美久久久| 欧美区成人在线视频| 日本精品一区二区三区蜜桃| 给我免费播放毛片高清在线观看| av专区在线播放| 日韩av不卡免费在线播放| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 国产在线精品亚洲第一网站| 亚洲电影在线观看av| 亚洲av美国av| 国产亚洲精品久久久com| 日本一本二区三区精品| 精品一区二区三区人妻视频| 久久人人爽人人爽人人片va| 午夜精品在线福利| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 床上黄色一级片| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | 国产男靠女视频免费网站| 免费人成视频x8x8入口观看| 真人做人爱边吃奶动态| 亚洲美女视频黄频| 亚洲欧美中文字幕日韩二区| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| 色尼玛亚洲综合影院| 内射极品少妇av片p| 国产成年人精品一区二区| 精品无人区乱码1区二区| 久久精品91蜜桃| 嫩草影院新地址| 99久久精品一区二区三区| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 一进一出抽搐gif免费好疼| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在 | 免费一级毛片在线播放高清视频| 久久久午夜欧美精品| 天天躁日日操中文字幕| 精品一区二区三区av网在线观看| 久久久午夜欧美精品| or卡值多少钱| 欧美3d第一页| 悠悠久久av| 18禁在线无遮挡免费观看视频 | 国产一区二区三区av在线 | 丝袜美腿在线中文| 中文字幕久久专区| 亚洲精品日韩av片在线观看| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| av国产免费在线观看| 毛片女人毛片| 国产伦在线观看视频一区| 99久久中文字幕三级久久日本| 99久国产av精品国产电影| 成人永久免费在线观看视频| 一个人看的www免费观看视频| 美女 人体艺术 gogo| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 欧美国产日韩亚洲一区| 日本五十路高清| 一本久久中文字幕| 日韩大尺度精品在线看网址| 日本黄色视频三级网站网址| 久久久精品94久久精品| 观看美女的网站| 一进一出抽搐动态| 黄色一级大片看看| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 久久久久国产网址| 免费无遮挡裸体视频| 乱码一卡2卡4卡精品| 一进一出抽搐gif免费好疼| 亚洲av一区综合| 国产高清三级在线| 精品一区二区三区视频在线观看免费| 亚洲精品国产成人久久av| 中出人妻视频一区二区| 亚洲电影在线观看av| 舔av片在线| 国产乱人偷精品视频| 1000部很黄的大片| 日本a在线网址| 欧美最黄视频在线播放免费| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 干丝袜人妻中文字幕| 国产老妇女一区| 黄色视频,在线免费观看| 亚洲不卡免费看| ponron亚洲| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 国产高清激情床上av| 最近2019中文字幕mv第一页| 精品福利观看| 有码 亚洲区| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 网址你懂的国产日韩在线| ponron亚洲| 床上黄色一级片| 免费看av在线观看网站| 黄色配什么色好看| 国产成年人精品一区二区| 美女高潮的动态| 欧美日韩综合久久久久久| 免费高清视频大片| 直男gayav资源| 97碰自拍视频| 午夜精品在线福利| 亚洲最大成人中文| 日日撸夜夜添| 99热全是精品| 精品熟女少妇av免费看| 综合色丁香网| 午夜视频国产福利| 五月玫瑰六月丁香| 99久国产av精品| 大型黄色视频在线免费观看| 日本欧美国产在线视频| 久久久久国产网址| 舔av片在线| 午夜免费男女啪啪视频观看 | 免费人成视频x8x8入口观看| 天堂网av新在线| 亚洲欧美日韩无卡精品| 久久精品国产亚洲网站| 一级黄色大片毛片| 一个人免费在线观看电影| 大又大粗又爽又黄少妇毛片口| 精华霜和精华液先用哪个| 免费在线观看成人毛片| av.在线天堂| 精品免费久久久久久久清纯| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 国产日本99.免费观看| 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 亚洲av美国av| 午夜精品国产一区二区电影 | 日日撸夜夜添| 人妻少妇偷人精品九色| 99久久九九国产精品国产免费| 国产精品国产三级国产av玫瑰| 亚洲成人久久爱视频| 国内精品一区二区在线观看| 国产精品,欧美在线| 国产69精品久久久久777片| 国产亚洲精品久久久久久毛片| 成人漫画全彩无遮挡| 可以在线观看毛片的网站| 床上黄色一级片| 老女人水多毛片| 一区福利在线观看| 九九爱精品视频在线观看| eeuss影院久久| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 午夜爱爱视频在线播放| 一区二区三区高清视频在线| 老司机影院成人| 免费在线观看影片大全网站| 国产人妻一区二区三区在| 在线观看av片永久免费下载| 人妻少妇偷人精品九色| 午夜福利在线在线| 在线免费观看不下载黄p国产| 日日啪夜夜撸| 欧美丝袜亚洲另类| 看十八女毛片水多多多| 欧美成人a在线观看| 少妇高潮的动态图| 嫩草影院精品99| 中国美白少妇内射xxxbb| 男女之事视频高清在线观看| 亚洲,欧美,日韩| 久久婷婷人人爽人人干人人爱| 女的被弄到高潮叫床怎么办| 成人三级黄色视频| 国产91av在线免费观看| 亚洲综合色惰| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 青春草视频在线免费观看| 国产成人福利小说| 成人综合一区亚洲| 亚州av有码| 亚洲欧美精品综合久久99| av在线蜜桃| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| av国产免费在线观看| 最近在线观看免费完整版| 亚洲色图av天堂| 国产成人影院久久av| 婷婷亚洲欧美| 免费搜索国产男女视频| 又黄又爽又免费观看的视频| 美女内射精品一级片tv| 免费看光身美女| 嫩草影院新地址| 黄色一级大片看看| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 两个人视频免费观看高清| 国内精品一区二区在线观看| 夜夜爽天天搞| 国产老妇女一区| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| av在线蜜桃| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 国产精品女同一区二区软件| 在线国产一区二区在线| 色哟哟·www|