• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FT-IR、XPS和DFT研究水楊酸鈉在針鐵礦或赤鐵礦上的吸附機理

    2016-09-09 09:35:54胡慧萍,王夢,丁治英
    物理化學(xué)學(xué)報 2016年8期
    關(guān)鍵詞:水楊酸鈉王夢氧原子

    ?

    FT-IR、XPS和DFT研究水楊酸鈉在針鐵礦或赤鐵礦上的吸附機理

    胡慧萍1王夢1,*丁治英1,*姬廣富2

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙410083;2中國工程物理研究院流體物理研究所,四川綿陽621900)

    采用傅里葉變換紅外(FT-IR)光譜、X射線光電子能譜(XPS)以及基于周期平面波的密度泛函理論(DFT)分別研究了水楊酸鈉在針鐵礦或赤鐵礦表面上的吸附結(jié)構(gòu),并將計算得到的光電子能譜移動(CLS)和電荷轉(zhuǎn)移與實驗得到的XPS結(jié)果進行對比。FT-IR結(jié)果表明,水楊酸鈉可能以雙齒雙核(V)和雙齒單核(IV)的形式分別吸附于針鐵礦或赤鐵礦表面。由DFT計算結(jié)果可知,水楊酸鈉在針鐵礦(101)晶面上形成雙齒雙核化合物(V)的吸附能為-5.46 eV。而水楊酸鈉在針鐵礦(101)晶面上形成雙齒單核化合物(IV)的吸附能為3.80 eV,因此水楊酸鈉在針鐵礦上基本不以雙齒單核化合物(IV)構(gòu)型存在。水楊酸鈉在赤鐵礦(001)晶面上形成雙齒單核化合物(IV)時吸附能為-4.07 eV,說明水楊酸鈉在赤鐵礦(001)晶面上形成了雙齒單核化合物(IV)。另外,理論計算的針鐵礦(101)晶面上吸附位點鐵原子的Fe 2p的CLS值(-0.68 eV)與實驗觀察到的Fe 2p的CLS值(-0.5 eV)吻合。理論計算的赤鐵礦(001)晶面上吸附位點鐵原子的Fe 2p的CLS值(-0.80 eV)與實驗觀察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水楊酸鈉吸附在針鐵礦表面時能夠通過羧酸基團上一個氧原子和酚羥基上的氧原子與針鐵礦(101)表面上的兩個鐵原子形成雙齒雙核(V)結(jié)構(gòu),而在赤鐵礦(001)表面上,水楊酸鈉中羧酸基團上一個氧原子和酚羥基上的氧原子與赤鐵礦(001)表面上的一個鐵原子形成了雙齒單核(IV)結(jié)構(gòu)。

    針鐵礦;赤鐵礦;水楊酸鈉吸附;FT-IR;XPS;DFT計算

    www.whxb.pku.edu.cn

    1 Introduction

    The bauxite ores ordinarily contain from 0.1%to 0.4%(w,mass fraction)organic compounds and occasionally as high as 0.6% (w)1.These organic compounds are comprised of a complex mixture of humates,lignin,and cellulose2.On digestion of this bauxite in the Bayer process,between 50%and 90%of the organic compounds in the bauxite ore may be extracted into the Bayer liquor as dissolved organic compounds which build up to an equilibrium level.The dissolved organic compounds presented in Bayer liquors are mainly aliphatic and aromatic compounds with carboxylic groups and hydroxyl groups(such as sodium formate, sodium acetate,sodium oxalate,sodium salicylate,disodium phthalate and so on).Goethite and hematite,the most common iron-containing minerals in red mud,play an important role in the entrainment,adsorption and precipitation of the dissolved organic species in the Bayer liquor due to their high surface areas and high densities of reactive surface sites.According to previous studies3,4, we have found that the dissolved organic compounds had negative effects on the settling performance of goethite or hematite slurries in the absence of flocculants,and sodium salicylate had a more remarkable negative effect than the sodium formate did.We have also investigated the adsorption mechanism of sodium formate onto the goethite or hematite surface by Fourier transform infrared (FT-IR)spectroscopy,X-ray photoemission spectroscopy(XPS), and periodic plane-wave density functional theory(DFT)calculation methods5,which showed that chemisorptions with different interfacial structures occurred between sodium formate and the goethite or hematite surface.Thus,an effort of molecular-level understanding of interfacial structure-property relationships between sodium salicylate and the goethite or hematite surface was made in this paper.

    The interfacial structure of sodium salicylate on the goethite or hematite surface has not been well understood.From a critical perusal of the public literature,the complex that occurred in natural aquatic systems6,7and fluid/rock systems8over a pH range from 2 to 10 between sodium salicylate and the goethite or hematite surface has been widely investigated by batch adsorption experiments and FT-IR measurement9-12,but no consistent conclusion was drawn about the interfacial structures.For example, via FT-IR measurement,the adsorption of sodium salicylate on the goethite or hematite surface was described as a bidentate mononuclear structure involving the phenolic oxygen atom(Ph-O-),one oxygen atom of carboxylic group(COO-),and one surface iron atom of goethite or hematite11,12.In addition,Yost et al.11proposed that the interfacial structure on the goethite surface could be either an electrostatic outer-sphere complex or a very weakly bound bridging bidentate complex around pH 5.5.Meanwhile,Biber and Stumm12proposed an alternate surface complex structure for salicylate adsorption to goethite involving binding one oxygen atom of carboxylate groups(COO-),and hydrogen bonding between surface oxygen atoms of goethite and phenolic functional groups at pH 7.However,the Bayer liquor is extremely alkaline with NaOH concentration range from 2 to 3 mol·L-1,and the interfacial structure of sodium salicylate on the goethite or hematite surface under this condition has not been investigated.

    XPS is one of the most extensively used surface analytical techniques due to its high sensitivity of 0.1%(atomic ratio)13and the ability to probe the electronic and geometric structures of solid surface with adsorbed molecules14,15.In this technique,the binding energies of emitted core electrons are determined through their escape kinetic energies.When referred to a given reference,that binding energy shift can be expressed as core level shift(CLS) which reflects the local atomic coordination and the relative oxidation state16.

    DFT calculations are suitable for a variety of surface science applications17,and the increased application of DFT modeling to chemical questions about environmental interface reactivity is emerging in literatures:DFT employing a Gaussian-type basis set on molecular clusters containing two iron ions has been used to study the competitive adsorption of salicylate and catechol on goethite surface18.While it captures some aspects of the adsorption process,the small cluster size does not allow realistic modeling of the goethite surface structure.The periodic DFT calculations are valuable for estimating surface complex structures and adsorption energies because they explicitly include details of the mineral surface.Otte et al.19employed DFT calculation using a projected augmented wave to investigate the adsorption of arsenate on the goethite(101)surface.Spin-polarized DFT calculations17were carried out to model analogs of arsenic surface complexes on the hematite(001)surface which is a prevalent growth face.Furthermore,the adsorptions and reactions of SO2on clean and oxygen-precovered Pd(100)were investigated with XPSand DFT calculations,and the adsorbed SO2species were identified by comparing the calculated CLS20with the experimental photoemission.This(incomplete,but demonstrative)summary represents the emerging role of,and growing interest in,DFT modeling applied to chemical questions about environmental interface reactivity.

    In this paper,goethite(101)and hematite(001)surfaces which represent the high reactivity properties of goethite and hematite are taken into account.A combination of FT-IR,XPS,and DFT calculations was performed to study the surface structures of sodium salicylate bound to goethite or hematite in the highly caustic liquor.Modeling of the structures,energetics,electronic structures and CLS of sodium salicylate on goethite(101)and hematite(001)surfaces were performed in a self-consistent manner.Possible interfacial structures of sodium salicylate on goethite(101)or hematite(001)surface are obtained.And these CLS of Fe 2p and charge transfer of the adsorption iron sites calculated by DFT with periodic interfacial structures are confronted to the X-ray photoemission experiments.

    2 Methods

    2.1Experimental details

    2.1.1Materials and characterization

    Goethite and hematite were prepared according to the procedure of Schwertmann and Cornell21,then dried at 60°C for 24 h.The resulting particles of goethite or hematite were identified by X-ray powder diffraction(XRD)pattern on X-ray diffractometer(D/max 2500,Rigaku Corporation,Cu Kαradiation,Japan).The XRD patterns are presented in Fig.1.The surface area and particle size distribution were measured by adsorption/desorption N2(g)isotherm(Monosorb Autosorb,Quantachrome Instruments Ltd., USA)and laser diffraction(Mastersizer2000,Malvern Instruments Ltd.,UK),respectively.The results are given in Table 1.Sodium hydroxide and sodium salicylate were of analytical grade.

    2.1.2Spectral measurements

    Fig.1 XRD patterns of samples

    Table 1 Properties of goethite and hematite samples

    The technique used for adsorbing sodium salicylate on the goethite or hematite surface was modified from that developed by Jones et al.22.0.25 g goethite or hematite was placed in an airtight conical flask with 50 mL of 0.001 mol·L-1sodium hydroxide solution and sonicated at 60°C for 10 h to obtain a suspension, and the suspension was centrifuged for 30 min at 4000 r·min-1to separate the supernatant and the solid.The supernatant was decanted to obtain a fresh,carbonate-free goethite or hematite solid placed in an airtight conical flask.50 mL sodium salicylate solution in pH 13 with certain concentration was added to the conical flask with 0.25 g of carbonate-free goethite or hematite solid,and the molar ratio for carboxylate groups of sodium salicylate to ferric ion of goethite or hematite was 10:1.After the mixture was sonicated at 60°C for 10 h and equilibrated for 24 h, the mixture was centrifuged at 4000 r·min-1to obtain a solid,and the solid was washed with de-ionized water for one time and dried in a vacuum oven at 60°C for 24 h.The samples of goethite or hematite after the treatment of sodium salicylate(SSa-treated goethite and hematite)were obtained.Goethite or hematite before the treatment of sodium salicylate(untreated goethite or hematite) was prepared in the same manner except that sodium salicylate was not added to the carbonate-free goethite or hematite suspension.

    The infrared spectra of the samples were measured by a Nicolet-6700 FT-IR spectrometer(Thermo Scientific Co.,USA).The samples were analyzed on X-ray photoelectron spectrometer (ESCALAB 250XI,Thermo Scientific Co.,USA)utilizing a monochromatic Al KαX-ray at 1486.6 eV.All measurements were carried out at the pressure below 10-8Pa and with a flood gun for charge neutralization.All spectra were charge-referenced so that the unfunctionalized aliphatic C 1s component occurred at 284.8 eV.Curve fittings of Fe 2p spectra were performed using the Avantage software.The reduced chi-squared(χ2)value incorporated in the Avantage was used as a potentially useful guide to assess the fitting quality.

    2.2Computational details

    Fig.2 Optimized structure of sodium salicylate

    The structure of sodium salicylate is shown in Fig.2.Periodic slab model of the goethite surface was created by cleaving thesurface(101)23from the experimental crystal structure of bulk goethite(space group Pnma24,25),which is modeled in a supercell geometry with a vacuum space of 1 nm and extended to(1×3)15. The thickness of the goethite(101)slab amounted to eight Fe layers.The periodic slab model of hematite surface was created by cleaving the surface(001)from the structure of bulk hematite (space group R3c26).The surface(001)of hematite was extended to(1×2)and modeled using a periodic slab consisting of six O layers and twelve Fe layers on which the terminal Featoms contain triply-coordinated oxygen atoms in the subsurface layer,with an excess of 1.5 nm of vacuum separating the periodic images in the direction along the surface normal17.Initial magnetic moments of Fe atoms were assigned so as to obtain an antiferromagnetic goethite and hematite slab in each case.The goethite(101)or hematite(001)surfaces was passivated by water dissociation products to surface dangling Fe and O atoms(as shown in Fig.3).

    Fig.3 Truncated side views of the models of the surface slab

    According to the previous literature12,carboxylate groups may be adsorbed on inorganic(oxide)surfaces as a monodentate mononuclear(I)structure,a bidentate mononuclear(II)structure or a bidentate binuclear(III)structure,and salicylate groups may be adsorbed on inorganic(oxide)surfaces as a bidentate mononuclear(IV)structure or a bidentate binuclear(V)structure(as shown in Fig.4)

    In this study,the free sodium salicylate was added to the goethite(101)surface in a bidentate binuclear(V)structure or a bidentate mononuclear(IV)structure(as shown in Fig.5(a,b)).And the free sodium salicylate was added to the hematite(001)surface in a bidentate mononuclear(IV)structure(as shown in Fig.5(c)).

    DFT calculations were carried out with the CASTEP code27,28in Materials Studio 6.0 using density functional theory.Plane wave basis sets were used to solve the Kohn-Sham equations.The generalized gradient approximation(GGA)electron exchange and correlation effects were described using the Perdew Burke Ernzerhof(PBE)29.The on-site Coulomb interaction of 3d electrons,the GGA+U method was applied to the Fe atoms to improve the description of the electronic properties,the suggested values of the Hubbard U were correspondingly 5 eV for goethite19and 2.5 eV for hematite30.For the electronic integration in reciprocal space,the Brillouin zone was sampled according to theMonkhorst-Pack scheme31.The k point was set to gamma for free sodium salacylate and fine for surface structures with or without sodium salicylate.

    Fig.4 Mode of complex structures of metal-salicylate compounds

    Fig.5 Illustration of the optimized interfacial structures on goethite and hematite

    For free sodium salicylate,the ionic cores were described by the norm conserving pseudopotentials32.The wave functions were expanded with an energy cutoff of 750 eV for geometry optimization and vibrational analysis.All positions were relaxed and fully optimized up to a force convergence of 0.3 eV·nm-1.The absence of imaginary frequencies verified that all structures were true minima33.The final structure of the geometry optimization was subjected to a single-point energy calculation with the ultrasoft pseudopotentials34and an energy cutoff of 340 eV for the plane-wave basis set to achieve an accuracy of total energy differences of 2×10-5eV·atom-1.

    As to the models of surface slabs,SSa-goethite systems and SSa-hematite system,the optimized parameter was set as the same as that used in the single-point energy calculation for free sodium salicylate.The structures of the adsorbate and the four outer Fe layers of goethite(101)surface or the adsorbate and the two outer Fe layers of hematite(001)surface were relaxed and fully optimized up to a force convergence of 0.5 eV·nm-1,while the inner layers kept fixed at their bulk positions to reproduce the properties of bulk goethite or hematite.

    The adsorption energy,Eads,of the adsorbate at goethite or hematite surfaces in(eV)was described as Eq.(1):

    where Esurfaceand Eadsorbate-surface(in eV)were the total energies of goethite or hematite slabs before and after the adsorption of the adsorbate.Eadsorbate(eV)was the total energy of a free adsorbate molecule.

    For the calculation of CLS of Fe 2p,geometry-optimized SSagoethite systems and SSa-hematite system were used as models of the interfacial structures.We modeled CLS of Fe 2p as total energy differences between the system with a core hole on the excited Fe atom and the unperturbed system.The on-the-fly pseudopotential provided in the Materials Studio software was adopted to describe the excited Fe atom which included a corehole in the 2p level.In a pseudopotential formulation,absolute binding energies were not accessible.However,CLS could be accurately achieved with respect to a given reference.In this work, the reference was taken to be the surface iron atoms located at the same position on goethite(101)or hematite(001)surface.Within these calculations,we arrived at Eq.(2)for the CLS of a single atom in the interfacial structures:

    where ECLS(eV)was the core level shift of a certain system.Eionand Egsrepresented the ground state energies of the system with and without a core hole,respectively.

    The CLS of Fe 2p and charge transfer of the adsorbed surface iron site calculated by DFT with periodic interfacial structures were confronted to the X-ray photoemission experiments,and accurate interfacial structures were verified on the basis of the consistence between the calculated and experimental results.

    3 Results and discussion

    3.1FT-IR spectroscopy analysis

    The FT-IR spectra of free SSa,untreated goethite,and SSatreated goethite are depicted in Fig.6.The FT-IR spectra of free SSa,untreated hematite,and SSa-treated hematite are depicted in Fig.7.

    Fig.6 FT-IR spectra of samples

    Fig.7 FT-IR spectra of samples

    Several studies11,22have demonstrated that the expected frequency shifts occurred when carboxylic acids or their salts were adsorbed as carboxylates on inorganic(oxide)surfaces.When the carboxyl group of carboxylic acids or their salts is directly involved in the adsorption,it is possible to identify the structures on the basis of the carboxylate asymmetric(νasym)and symmetric(νsym) stretches,and their separation(Δν=νasym-νsym).Δν(adsorbed)and Δν(salt)are correspondingly the separation of the symmetric and asymmetric stretches of the carboxylate group of the adsorbed carboxylate salt and the unadsorbed carboxylate salt.They can beused to identify the adsorbed structures(as shown in Fig.4):when the value of Δν(adsorbed)is smaller than that of Δν(salt),a bidentate mononuclear(II)structure is observed(two oxygen atoms of the carboxylate group form two bonds with one metal atom on the solid surface).However,when the value of Δν(adsorbed)is greater than that of Δν(salt),a monodentate mononuclear(I) structure is seen(only one oxygen atom of the carboxylate group binds with one metal atom on the solid surface).In bidentate binuclear(III)structure(two oxygen atoms of the carboxylate group bind with two metal atoms on the solid surface),Δν(adsorbed) almost equals to Δν(salt).

    In addition,sodium salicylate may be adsorbed on inorganic (oxide)surfaces with a bidentate mononuclear(IV)structure or a bidentate binuclear(V)structure(as shown in Fig.4).In the bidentate mononuclear(IV)structure,both the oxygen atom of phenolic group and one oxygen atom of the carboxylate group bind with one surface iron atom.Whereas,when the oxygen atom of phenolic group and one oxygen atom of the carboxylate group bind with two adjacent surface atoms of inorganic(oxide),a bidentate binuclear(V)structure may be formed.

    In the FT-IR spectrum of free sodium salicylate(Fig.6(a)),the asymmetric and symmetric stretches of the carboxylate group can be identified as the bands at 1587 and 1378 cm-1.The bands at 1623,1486,and 1469 cm-1are correspondingly assigned to the 8a, 16b,and 16a C―C ring stretching modes of benzene based on the work of Varsányi35.The band at 1295 cm-1is attributed to the bending mode of the phenolic(Ph―O―H)group.The phenolic Ph―O stretching vibration is represented by the band at 1250 cm-1in sodium salicylate.The band frequencies between 1200 and 1000 cm-1are the C―H inner plane bending vibration.

    As shown in Fig.6(b),the bands at 1639 and 1381 cm-1are assigned to OH bending vibration bands of adsorbed water and constitutional water of the untreated goethite.As shown in Fig.7 (b),the bands at 1627 and 1384 cm-1are assigned to the vibrations of adsorbed water and constitutional water of the untreated hematite.

    In the FT-IR spectra of SSa-treated goethite(Fig.6(c)),the asymmetric(νasym)and symmetric(νsym)stretching vibrations of carboxylate group of adsorbed sodium salicylate are correspondingly at 1572 and 1381 cm-1.In the FT-IR spectra of SSatreated hematite(Fig.7(c)),the asymmetric and symmetric stretches frequencies of the carboxylate group of adsorbed sodium salicylate are at 1571 and 1385 cm-1,respectively.The value of Δν(salt)for unadsorbed sodium salicylate is 208 cm-1,Δν(adsorbed)values for sodium salicylate adsorbed on the goethite or hematite surface are correspondingly 191 and 187 cm-1.

    However,according to Yost et al.′s work11,a distinction among the types of Fe-carboxylate complexes cannot be identified readily from their FT-IR spectra based solely on the simple rule of comparing Δν(adsorbed)value with Δν(salt)value when salicylate coordinates with Fe(III).As shown in Fig.7(c),the absence of the bending frequency of the Ph―O―H in adsorbed sodium salicylate on the goethite or hematite surface indicates the deprotonation and coordination of phenolic group with the surface iron atom of goethite or hematite.Furthermore,the bending vibration of phenolic group shifts to 1000-1100 cm-1.Therefore,we assumed that sodium salicylate may be adsorbed on the goethite and hematite surfaces as a bidentate mononuclear(IV)or a bidentate binuclear(V)structure.

    3.2X-ray photoelectron spectroscopy analysis

    For the analysis of Fe 2p XPS spectra,a Shirley background is used for the Fe 2p1/2and Fe 2p3/2envelopes.The Fe 2p1/2and Fe 2p3/2envelopes are fitted using peaks corresponding to the Gupta and Sen(GS)multiplets,surface structures,and shake-up satellites36.The peak ascribed to surface structures is added with a higher binding energy and a larger full width at half-maximum (FWHM)than the GS multiplets.Asingle large peak representing the satellites due to shake-up is also added.Asingle low intensity peak on the low-binding-energy side of the envelope is added to account for the information of Fe ions with a lower oxidation state than normal oxidation state by the production of defects in neighboring sites,and this peak is referred to as the‘pre-peak'. The fitting of each compound follows the GS predictions well. The Fe 2p spectra and fitting curves for goethite or hematite before and after treatment of sodium salicylate are depicted in Fig.8. Table 2 lists the fitting peaks of the Fe 2p envelopes for goethite or hematite before and after the treatment of sodium salicylate.

    As presented in Fig.8 and Table 2,it is observed that all fitting peaks of Fe 2p for goethite or hematite after the treatment of sodium salicylate were correspondingly downshifted relative to untreated goethite or hematite.The peak 2 and surface peaks in the Fe 2p3/2envelope for SSa-treated goethite are correspondingly downshifted to 711.3 and 714.5 eV relative to those(711.8 and 715.0 eV)in the Fe 2p3/2envelope for untreated goethite.That is to say,the peaks in the Fe 2p spectrum for SSa-treated goethite are correspondingly downshifted by 0.5 eV compared with untreated goethite.The peak 2 and surface peaks in the Fe 2p3/2envelope for SSa-treated hematite are correspondingly downshifted to 711.1 and 714.2 eV relative to those(711.9 and 715.0 eV)in the Fe 2p3/2envelope for untreated hematite.That is to say,the peaks in the Fe 2p spectrum for SSa-treated hematite are both downshifted by 0.8 eV compared with untreated hematite.

    In this work,the downshift of binding energies of Fe 2p spectra for SSa-treated goethite or hematite will be explained by the atomic potential model37.The atomic potential model assumes that the atomic core potential varies linearly with the electron density of atoms,and the oxidation of one atom results in the increase of the atomic binding energy of the inner electron,whereas the reduction of one atom results in the decrease of the atomic binding energy of the inner electron.After sodium salicylate was adsorbed on the goethite or hematite surface,the binding energies of Fe 2p spectra were correspondingly decreased with respect to untreated goethite or hematite.According to the atomic potential model,the ion atoms may be partially reduced to a lower valence state.The coordination between oxygen atoms of carboxylate or phenolic group from sodium salicylate and surface iron atoms of goethiteor hematite may explain the partial reduction of iron atoms on the surfaces,because these iron atoms accepted electron clouds from oxygen atoms of carboxylate or phenolic group of sodium salicylate.However,the core level shift of the peaks of Fe 2p spectra for SSa-treated hematite was larger than that for SSa-treated goethite,which may be due to the differences of the interfacial structures between SSa-treated goethite and SSa-treated hematite.

    Fig.8 Fe 2p XPS spectra and the fitting curves of samples

    Table 2 Fitting peaks of Fe 2p spectra for goethite or hematite before and after the treatment of SSa

    In the bidentate mononuclear(IV)structure,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group attach and donate electrons to one surface iron atom.Whereas,in a bidentate binuclear(V)structure,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group correspondingly attach and donate electrons to two adjacent surface iron atoms.Thus,the electronic charge densities of the adsorbed iron atoms with a bidentate mononuclear(IV)structure could be higher than those with a bidentate binuclear(V)structure.According to the above mentioned relationship between the change of the binding energies and electronic charge densities of adsorbed atoms on solid surfaces,we can assume that the binding energy of Fe 2p spectrum for adsorbed iron atoms with a bidentate mononuclear(IV)structure could be lower than that with a bidentate binuclear(V)structure.Thus,the decrease of binding energy of adsorbed iron atoms relative to unadsorbed iron atoms would be larger in a bidentate mononuclear(IV)structure than that in a bidentate binuclear(V)structure.

    As listed in Table 2,the binding energies of Fe 2p3/2and Fe 2p1/2for SSa-treated goethite were decreased by 0.5 eV relative to the untreated goethite,and the binding energy of Fe 2p3/2and Fe 2p1/2for SSa-treated hematite was decreased by 0.8 eV relative to the untreated hematite,which indicates that the adsorbed soidium salicylate may be correspondingly adsorbed on the goethite and hematite surface as a bidentate binuclear(V)structure and a bidentate mononuclear(IV)structure.

    3.3Quantum chemical calculations

    In this section,we present the optimized interfacial structure, energetics,electronic structures and the CLS of Fe 2p of the in-terfacial structures of sodium salicylate adsorbed on goethite or hematite surfaces after a quantum chemical calculation of sodium salicylate adsorbed on the periodic surface slab of goethite or hematite was carried out.

    Table 3 Interatomic distances and the lattice parameters for optimized bulk goethite or hematite in this work and in references

    Table 4 Calculated interatomic distances(d)and bond angles for the interfacial structures of SSa adsorbed on goethite(101)or hematite(001)surface

    3.3.1Interfacial structures

    The OH―OHdistance(0.2925 nm)at iron site of goethite(101) surface matches well the O―OHdistance(0.2702 nm)of the free sodium salicylate,which allows sodium salicylate to form a bidentate binuclear(V)structure(Fig.6(a))on the goethite(101) surface.Moreover,a bidentate mononuclear(IV)structure(Fig.6 (b))on the goethite(101)surface was also modeled in order to further identify the possible structure.While the OH―OHdistances (0.2925 nm)at the iron site of goethite(101)surface are slightly greater than the distance(0.2251 nm)between two oxygen atoms of carboxylate of the free sodium salicylate.Thus,the structure that the two oxygen atoms of the―COO-group are adsorbed with a bidentate mononuclear(II)structure or bidentate binuclear(III) on the goethite(101)surface may not be favorable.

    On the hematite(001)surface,the Fe―Fe distance is 0.5035 nm,and the OH―OHdistance at one surface dangling iron atom of the hematite(001)surface passivated by the dissociative water functional groups is 0.2622 nm,which also matches well with the O―OHdistance(0.2702 nm)of the free sodium salicylate,and thus allow sodium salicylate adsorbed as a bidentate mononuclear (IV)structure(Fig.6(c)).However,because the Fe―Fe and the OH―OHdistance at two dangling iron atoms on the hematite(001) surface is 0.5035 nm,which is significantly larger than the O―OHdistance(0.2702 nm)of the free sodium salicylate,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group of sodium salicylate cannot attach to two adjacent surface iron atoms of hematite(001)with a reasonable interatomic distance in the range of chemical bond,which excludes the formation of a bidentate binuclear(V)structure for the adsorbed sodium salicylate on the hematite(001)surface.Moreover,the OH―OHdistances(0.2622 nm)at the iron site of the hematite(001)surface are slightly greater than the distance(0.2251 nm)between two oxygen atoms of carboxylate of the free sodium salicylate.And the structure that the two oxygen atoms of the carboxylate group are adsorbed with a bidentate mononuclear(II)structure or bidentate binuclear(III)on the hematite(001)surface may not be favorable.

    Therefore,the bidentate binuclear(V)and bidentate mononuclear(IV)structures on the goethite surface and a bidentate mononuclear(IV)structure on the hematite surface as the starting interfacial structure was verified in detail.Later we will report the significant changes upon structural relaxation.

    The interatomic distances and the lattice parameters for bulk goethite or hematite are listed in Table 3.The Fe―O distances in optimized bulk goethite are in the range from 0.1864 to 0.2008 nm,which owns a difference within 0.0128 nm relative to the previously calculated data in the range from 0.1901 to 0.2136 nm for bulk goethite38.The Fe―O distances in optimized bulk hematite are 0.2000 and 0.2024 nm,which are in agreement with the observed data of 0.19511 and 0.21028 nm from the single crystal of hematite39.The results indicate that the calculation method used in this work is reasonable.

    The interatomic distances and bond angles for the interfacial structures of sodium salicylate on goethite(101)and hematite (001)surfaces are listed in Table 4.As listed in Table 4,the interatomic distances of Fe18―O2and Fe2―O3are correspondingly 0.2016 and 0.2042 nm in the bidentate binuclear(V)structure of SSa adsorbed on goethite(101)surface,while the interatomic distances of Fe14―O2and Fe14―O3are correspondingly 0.1896 and 0.1861 nm in bidentate mononuclear(IV)structure of SSa ad-sorbed on goethite(101)surface.And the interatomic distances of Fe23―O2and Fe23―O3are correspondingly 0.1944 and 0.1947 nm in the interfacial structures of SSa adsorbed on hematite(001) surface.

    Table 5 Calculated adsorption energies(ΔEads)of the sodium salicylate adsorbed on goethite(101)and hematite(001)surfaces

    Table 6 Calculated Mulliken charges,charge transfer,and photoemmission CLS of atoms for different structures

    3.3.2Adsorption energies of the optimized interfacial

    structures

    In order to further verify the preferable interfacial structures, we also discuss the adsorption energy of the sodium salicylate on the goethite or hematie surface(Table 5).As listed in Table 5,the bidentate binuclear(V)structure of the sodium salicylate on the goethite(101)surface is favorable with adsorption energy of-5.46 eV,while no adsorption of sodium salicylate on the goethite(101)surface as a bidentate mononuclear(IV)structure occurred with a positive adsorption energy of 3.80 eV.And on the hematite(001)surface,the bidentate mononuclear(IV)structure has the adsorption energy of-4.07 eV,which is a further evidence for the formation of the bidentate mononuclear(IV)structure of the adsorbed sodium salicylate on the hematite(001)surface.

    3.3.3Electronic properties and core level shift

    The electronic structures and core level shifts of the possible interfacial structures of sodium salicylate adsorbed on goethite (101)and hematite(001)surfaces were calculated,respectively. The calculated Mulliken charges,charge transfer,and CLS values of atoms are listed in Table 6.

    First,the calculated Mulliken charge values of free sodium salicylate and the surface complexes are listed in Table 6.Table 6 indicates that the negative charges of free sodium salicylate were mainly clustered on O1and O2atoms of carboxylate group and O3of the ortho phenol group.Hence both oxygen atoms in free sodium salicylate were electron-donating centers and the chemically reactive centers.

    After the adsorption of sodium salicylate occurred on the goethite or hematite surface,our calculation results indicate that the charges of oxygen atoms of both the carboxylate group and the ortho phenol group of adsorbed sodium salicylate increased,especially for O1of carboxylate group and O3of the ortho phenol group,and the charges of the surface Fe atom on the adsorbed site decreased.This means that negative charges are transferred from oxygen atoms of sodium salicylate to the surface Fe atom,which results in a lower binding energy of the Fe 2p peaks of the adsorbed surface iron sites than that of unadsorbed surface iron atoms.

    On the other hand,we compare the calculated charge transfers and CLS with the experimentally observed core-level shifts of Fe 2p from XPS measurements.We consider that the consistence between the calculated CLS and the experimentally observed CLS is a good indicator of the pertinence of our model.According to the calculated results(listed in Table 6),the calculated CLS of Fe 2p(-0.68 eV)for the adsorbed iron site on goethite(101)surface is consistent with the experimentally observed CLS of Fe 2p(-0.5 eV)for SSa-treated goethite(listed in Table 2).Thus,the goethite (101)surfaces can be predicted to be capable of adsorbing sodium salicylate as a bidentate binuclear(V)structure.On the other hand, our calculated CLS of Fe 2p(-0.80 eV)for the adsorbed iron site on hematite(001)surface is in good agreement with the experimentally observed CLS of Fe 2p(-0.8 eV)for SSa-treated hematite(listed in Table 2).This consistency suggests that our optimized interfacial structure with a bidentate mononuclear(IV) complex for sodium formate-hematite(001)system can be regarded as a reasonable and realistic structure.

    4 Conclusions

    The adsorption of sodium salicylate on goethite or hematite surface was investigated by FT-IR,XPS,and DFT calculations, respectively.The goemetry optimization by DFT indicates that the sodium salicylate adsorbed on goethite(101)forms a bidentate binuclear(V)structure rather than a bidentate mononuclear(IV) structure.Whereas,the formation of a bidentate mononuclear(IV) structure occurs among one oxygen atom of carboxylate group, one oxygen atom of phenolic group and one iron atom on hematite (001)surface.

    The calculated CLS of Fe 2p for the interfacial structure on goethite(101)surface is coincide with the experimental observed CLS of Fe 2p,and the calculated CLS of Fe 2p for the interfacial structure on the hematite(001)surface is in good agreement with the experimentally observed CLS of Fe 2p.Thus,the goethite (101)surface and hematite(001)surface may be predicted to be capable of adsorbing sodium salicylate as bidentate binuclear(V) and bidentate mononuclear(IV)structures,respectively.

    References

    (1)Swinkels,D.A.;Chouzadjian,K.;Removal of Organics from Bayer Process Streams.US Patent 4836990,1989-6-6.

    (2)Power,G.;Loh,J.Hydrometallurgy 2010,105(1-2),1. doi:10.1016/j.hydromet.2010.07.006

    (3)Wang,M.;Hu,H.P.;Liu,J.W.;Chen,Q.Y.Journal of Central South University 2016,23,1.[王夢,胡慧萍,劉錦偉,陳啟元.中南大學(xué)學(xué)報,2016,23,1.]

    (4)Wang,M.;Hu,H.P.;Liu,J.W.;Chen,Q.Y.Transactions of Nonferrous Metals Society of China 2016,Accepted.[王夢,胡慧萍,劉錦偉,陳啟元.有色金屬學(xué)報,2016,已接受.]

    (5)Wang,M.;Hu,H.P.;Chen,Q.Y.;Ji,G.F.FT-IR,XPS and Density Functional Theory Study ofAdsorption Mechanism of Sodium Formate onto Goethite or Hematite.InAlumina& Bauxite;Proceedings of the Minerals,Metals&Materials SocietyAnnual Meeting&Exhibition,Nashville,Tennessee, February 14-18,2016;McGlade,P.T.Ed.;Warrendale,PA 15086 USA,2016.

    (6)Tipping,E.Chem.Geol.1981,33(1-4),81.doi:10.1016/0009-2541(81)90086-3

    (7)Tipping,E.Geochim.Cosmochim.Ac.1981,45(2),191. doi:10.1016/0016-7037(81)90162-9

    (8)Smith,R.E.Geoderma 1993,58(1-2),128.doi:10.1016/0016-7061(93)90091-X

    (9)Evanko,C.R.;Dzombak,D.A.Environ.Sci.Technol.1998,32 (19),2846.doi:10.1021/es980256t

    (10)Boily,J.F.;Persson,P.;Sjoberg,S.J.Colloid Interface Sci. 2000,227(1),132.doi:10.1006/jcis.2000.6886

    (11)Yost,E.C.;Tejedor-Tejedor,M.I.;Anderson,M.A.Environ. Sci.Technol.1990,24(6),822.doi:10.1021/es00076a005

    (12)Biber,M.V.;Stumm,W.Environ.Sci.Technol.1994,28(5), 763.doi:10.1021/es00054a004

    (13)Zhao,C.Investigation of the Magnetic Properties of NonthiolatedAu Nano-structures Grown by LaserAblation.Ph.D. Dissertation,Virginia Polytechnic Institute and State University, Blacksburg,Virginia,2014.

    (14)Zeng,Z.;Ma,X.;Ding,W.;Li,W.Science China Chemistry 2010,53(2),402.doi:10.1007/s11426-010-0086-z

    (15)Kubicki,J.D.;Paul,K.W.;Kabalan,L.;Zhu,Q.;Mrozik,M. K.;Aryanpour,M.;Pierre-Louis,A.M.;Strongin,D.R. Langmuir 2012,28(41),14573.doi:10.1021/la303111a

    (16)Miceli,G.;Pasquarello,A.Appl.Phys.Lett.2013,102(20), 201607/1.doi:10.1063/1.4807730

    (17)Goffinet,C.J.;Mason,S.E.J.Environ.Monitor.2012,14(7), 1860.doi:10.1039/c2em30355h

    (18)Yang,Y.;Duan,J.;Jing,C.J.Phys.Chem.C 2013,117(20), 10597.doi:10.1021/jp4027578

    (19)Otte,K.;Schmahl,W.W.;Pentcheva,R.J.Phys.Chem.C 2013, 117(30),15571.doi:10.1021/jp400649m

    (20)Luckas,N.;Gotterbarm,K.;Streber,R.;Lorenz,M.P.A.; Hoefert,O.;Vines,F.;Papp,C.;Goerling,A.;Steinrueck,H.P. Phys.Chem.Chem.Phys.2011,13(36),16227.doi:10.1039/ c1cp21694e

    (21)Schwertmann,U.;Cornell,R.M.Iron Oxides in the Laboratory:Preparation and Characterization;Wiley-VCH: Weinheim,Germany,1991;p 137.

    (22)Jones,F.;Farrow,J.B.;van Bronswijk,W.Langmuir 1998,14 (22),6512.doi:10.1021/la971126l

    (23)Villalobos,M.;Cheney,M.A.;Alcaraz-Cienfuegos,J.J.Colloid Interface Sci.2009,336(2),412.doi:10.1016/j.jcis.2009.04.052

    (24)Paul,K.W.;Kubicki,J.D.;Sparks,D.L.Eur.J.Soil Sci.2007, 58(4),978.doi:10.1111/j.1365-2389.2007.00936.x

    (25)Manceau,A.;Nagy,K.L.;Spadini,L.;Ragnarsdottir,K.V. J.Colloid Interface Sci.2000,228(2),306.doi:10.1006/ jcis.2000.6922

    (26)Rohrbach,A.;Hafner,J.;Kresse,G.Phys.Rev.B 2004,70(12), 125426.doi:10.1103/PhysRevB.70.125426

    (27)Li,Y.;Gao,Y.;Xiao,B.;Min,T.;Fan,Z.;Ma,S.;Xu,L. J.Alloy.Compd.2010,502(1),28.doi:10.1016/j. jallcom.2010.04.184

    (28)Refson,K.;Tulip,P.R.;Clark,S.J.Phys.Rev.B 2006,73(15), 155114.doi:10.1103/PhysRevB.73.155114

    (29)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.doi:10.1103/PhysRevLett.77.3865

    (30)Guo,H.;Barnard,A.S.Phys.Rev.B 2011,83(9),094112. doi:10.1103/PhysRevB.83.094112

    (31)Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13(12),5188. doi:10.1103/PhysRevB.13.5188

    (32)Hamann,D.R.;Schlüter,M.;Chiang,C.Phys.Rev.Lett.1979, 43(20),1494.doi:10.1103/PhysRevLett.43.1494

    (33)Tavakol,H.J.Mol.Struc.-Theochem 2009,916(1-3),172. doi:10.1016/j.theochem.2009.09.032

    (34)Laasonen,K.;Car,R.;Lee,C.;Vanderbilt,D.Phys.Rev.B 1991,43(8),6796.doi:10.1103/PhysRevB.43.6796

    (35)Varsányi,G.Normal Vibrations of Benzene and Its Derivatives, In Vibrational Spectra of Benzene Derivatives;Academic Press: New York,1969;pp 141-393.doi:10.1016/B978-0-12-714950-9.50007-7

    (36)Grosvenor,A.P.;Kobe,B.A.;Biesinger,M.C.;McIntyre,N.S. Surf.Interface Anal.2004,36(12),1564.doi:10.1002/sia.1984

    (37)Cole,R.J.;Gregory,D.A.C.;Weightman,P.Phys.Rev.B 1994, 49(8),5657.doi:10.1103/PhysRevB.49.5657

    (38)Blanchard,M.;Balan,E.;Giura,P.;Béneut,K.;Yi,H.;Morin, G.;Pinilla,C.;Lazzeri,M.;Floris,A.Phys.Chem.Miner.2013, 41(4),289.doi:10.1007/s00269-013-0648-7

    (39)Sadykov,V.A.;Isupova,L.A.;Tsybulya,S.V.;Cherepanova,S. V.;Litvak,G.S.;Burgina,E.B.;Kustova,G.N.;Kolomiichuk, V.N.;Ivanov,V.P.;Paukshtis,E.A.;Golovin,A.V.; Avvakumov,E.G.J.Solid State Chem.1996,123,191. doi:10.1006/jssc.1996.0168

    FT-IR,XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite

    HU Hui-Ping1WANG Meng1,*DING Zhi-Ying1,*JI Guang-Fu2
    (1College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,P.R.China;2Institute of Fluid Physics,Chinese Academy of Engineering Physics,Mianyang 621900,Sichuan Province,P.R.China)

    The adsorption of sodium salicylate on goethite or hematite surfaces was investigated by Fourier transform infrared(FT-IR)spectroscopy,X-ray photoemission spectroscopy(XPS),and periodic plane-wave density functional theory(DFT)calculations.The core level shift(CLS)and charge transfer of the adsorbed surface iron sites calculated by DFT with periodic interfacial structures were compared with the X-ray photoemission experiments.The FT-IR results reveal that the interfacial structure of sodium salicylate adsorbed on goethite or hematite surfaces can be classified as bidentate binuclear(V)or bidentate mononuclear(IV), respectively.The DFT calculated results indicate that the bidentate binuclear(V)structure of sodium salicylate is favorable on the goethite(101)surface,with an adsorption energy of-5.46 eV,while the adsorption of sodium salicylate on the goethite(101)surface as a bidentate mononuclear(IV)structure is not predicted,as it has a positive adsorption energy of 3.80 eV.Conversely,on the hematite(001)surface,the bidentate mononuclear (IV)structure of the adsorbed sodium salicylate has anadsorption energy of-4.07 eV,confirming its favorability. Moreover,the calculated CLS of Fe 2p(-0.68 eV)for the adsorbed iron site on the goethite(101)surface isconsistent with the experimentally observed CLS of Fe 2p(-0.5 eV)for SSa-treated goethite(goethite after the treatment of sodium salicylate).Our calculated CLS of Fe 2p(-0.80 eV)for the adsorbed iron site on the hematite(001)surface is likewise in good agreement with the experimentally observed CLS of Fe 2p(-0.8 eV) for SSa-treated hematite(hematite after the treatment of sodium salicylate).Thus,goethite is predicted to adsorb sodium salicylate as a bidentate binuclear(V)structure via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to two surface iron atoms of goethite(101).Meanwhile,on the hematite surface,the bidentate mononuclear(IV)complex formed via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to one surface iron atom of hematite(001)can be regarded as plausible.

    Goethite;Hematite;Sodium salicylate adsorption;FT-IR;XPS;DFT calculation

    January 28,2016;Revised:April 22,2016;Published on Web:April 22,2016.

    O647

    10.3866/PKU.WHXB201604225

    *Corresponding authors.WANG Meng,Email:mengwchem@163.com.DING Zhi-Ying,Email:huierding@126.com;Tel:+86-731-88879616. The project was supported by the National Natural Science Foundation of China(51134007,51174231).

    國家自然科學(xué)基金(51134007,51174231)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    水楊酸鈉王夢氧原子
    臭氧層為何在大氣層上空
    你聽
    椰城(2021年12期)2021-12-10 06:08:52
    HPLC 法測定水楊酸鈉注射液中水楊酸鈉的含量
    在愛和自由里成長——《狼王夢》讀后感
    小讀者(2021年4期)2021-06-11 05:42:26
    萬千閱讀“相”,你中了哪一項
    NiTi(110)表面氧原子吸附的第一性原理研究?
    《狼王夢》讀后感
    氧原子輻射作用下PVDF/POSS納米復(fù)合材料的腐蝕損傷模擬
    腐蝕與防護(2016年7期)2016-09-14 09:30:56
    藥物水楊酸鈉與5%碳酸氫鈉耳靜脈注射治療豬風(fēng)濕性后肢癱瘓
    13%井岡霉素·水楊酸鈉水劑中水楊酸鈉的紫外分光光度法測定
    江西化工(2015年6期)2015-03-20 12:52:20
    久久天躁狠狠躁夜夜2o2o| 国产成人欧美在线观看 | 丝袜人妻中文字幕| 久久久精品94久久精品| 激情在线观看视频在线高清 | 亚洲av美国av| 亚洲av国产av综合av卡| av网站在线播放免费| 黄色毛片三级朝国网站| h视频一区二区三区| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| 国产精品免费大片| 我要看黄色一级片免费的| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| 91大片在线观看| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 精品福利观看| 国产精品国产高清国产av | 日韩制服丝袜自拍偷拍| 在线观看免费视频网站a站| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 一级毛片女人18水好多| 午夜精品国产一区二区电影| 久久精品人人爽人人爽视色| 桃花免费在线播放| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 免费看十八禁软件| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 国产精品免费一区二区三区在线 | 嫁个100分男人电影在线观看| 777米奇影视久久| 国产亚洲精品一区二区www | 91av网站免费观看| 777米奇影视久久| 免费日韩欧美在线观看| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 多毛熟女@视频| 美女国产高潮福利片在线看| 免费少妇av软件| 少妇裸体淫交视频免费看高清 | 久久中文字幕人妻熟女| av又黄又爽大尺度在线免费看| 看免费av毛片| 少妇粗大呻吟视频| 成在线人永久免费视频| 日韩中文字幕视频在线看片| 国产精品久久久久成人av| 国产在线一区二区三区精| 成人亚洲精品一区在线观看| 18禁黄网站禁片午夜丰满| 一级毛片精品| 亚洲成人免费av在线播放| 亚洲性夜色夜夜综合| 久久这里只有精品19| 热re99久久国产66热| 国产深夜福利视频在线观看| 亚洲av第一区精品v没综合| 久久久久视频综合| 9热在线视频观看99| 欧美亚洲日本最大视频资源| 宅男免费午夜| 高清毛片免费观看视频网站 | 国产欧美亚洲国产| 精品一区二区三区四区五区乱码| 9191精品国产免费久久| 免费看a级黄色片| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 成人永久免费在线观看视频 | 午夜激情久久久久久久| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区三| 亚洲精品自拍成人| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av欧美aⅴ国产| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 欧美变态另类bdsm刘玥| 国产欧美日韩一区二区精品| 丰满少妇做爰视频| 国产精品久久久av美女十八| av超薄肉色丝袜交足视频| 黑人猛操日本美女一级片| 久久国产精品影院| 欧美激情极品国产一区二区三区| 免费观看a级毛片全部| 99精品在免费线老司机午夜| 91成人精品电影| 国产精品自产拍在线观看55亚洲 | 久久青草综合色| 久久婷婷成人综合色麻豆| 国产欧美亚洲国产| av网站在线播放免费| 少妇 在线观看| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 一本大道久久a久久精品| 亚洲第一av免费看| 最新的欧美精品一区二区| 9色porny在线观看| 99国产极品粉嫩在线观看| 叶爱在线成人免费视频播放| www.熟女人妻精品国产| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸| 国产成人一区二区三区免费视频网站| 一本大道久久a久久精品| 一区福利在线观看| 十八禁人妻一区二区| 国产成人av激情在线播放| 大型黄色视频在线免费观看| 国产亚洲精品久久久久5区| av网站在线播放免费| 国产日韩欧美视频二区| 极品教师在线免费播放| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 丝袜美腿诱惑在线| 久久人妻av系列| 男人舔女人的私密视频| 99国产精品一区二区蜜桃av | 肉色欧美久久久久久久蜜桃| 久久久精品94久久精品| 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 欧美精品av麻豆av| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 亚洲av成人一区二区三| 考比视频在线观看| 人人妻人人澡人人看| 精品高清国产在线一区| 久久久精品免费免费高清| 嫁个100分男人电影在线观看| av一本久久久久| 久久国产精品人妻蜜桃| 午夜福利视频精品| 777久久人妻少妇嫩草av网站| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 高清av免费在线| 麻豆乱淫一区二区| 大陆偷拍与自拍| 一级片'在线观看视频| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 国产精品1区2区在线观看. | 亚洲七黄色美女视频| 高清在线国产一区| 午夜福利视频在线观看免费| 久久久久国内视频| 丰满少妇做爰视频| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 欧美日韩黄片免| 国产一区二区三区在线臀色熟女 | 99久久国产精品久久久| 九色亚洲精品在线播放| 露出奶头的视频| 精品午夜福利视频在线观看一区 | 在线看a的网站| 亚洲精品国产色婷婷电影| 欧美 日韩 精品 国产| 精品免费久久久久久久清纯 | 国产视频一区二区在线看| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 久久久国产成人免费| 我的亚洲天堂| 在线观看免费视频网站a站| 久久中文字幕人妻熟女| 国产片内射在线| 在线亚洲精品国产二区图片欧美| 日韩视频一区二区在线观看| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女 | 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| 热99久久久久精品小说推荐| 最新在线观看一区二区三区| 一级a爱视频在线免费观看| 久久久水蜜桃国产精品网| 久久精品国产99精品国产亚洲性色 | 热99国产精品久久久久久7| kizo精华| av又黄又爽大尺度在线免费看| 国产日韩欧美视频二区| 99国产精品一区二区蜜桃av | 老司机深夜福利视频在线观看| av视频免费观看在线观看| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 亚洲中文av在线| 亚洲精品国产一区二区精华液| 国产一区二区三区视频了| 18禁美女被吸乳视频| 欧美久久黑人一区二区| 亚洲国产毛片av蜜桃av| 99香蕉大伊视频| 女性被躁到高潮视频| 99re6热这里在线精品视频| 在线av久久热| 国产深夜福利视频在线观看| 一区在线观看完整版| 在线十欧美十亚洲十日本专区| 宅男免费午夜| 国产精品免费大片| 无遮挡黄片免费观看| 欧美乱妇无乱码| 欧美性长视频在线观看| 91成年电影在线观看| 一级毛片电影观看| 丁香欧美五月| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 精品福利永久在线观看| 又黄又粗又硬又大视频| 女人久久www免费人成看片| √禁漫天堂资源中文www| 亚洲 国产 在线| 日韩人妻精品一区2区三区| 真人做人爱边吃奶动态| 一本一本久久a久久精品综合妖精| 国产麻豆69| 亚洲五月色婷婷综合| 少妇裸体淫交视频免费看高清 | 午夜精品久久久久久毛片777| 香蕉久久夜色| 黄色视频不卡| 最近最新中文字幕大全电影3 | 国产免费av片在线观看野外av| 久久香蕉激情| 热re99久久精品国产66热6| 性色av乱码一区二区三区2| 黄色怎么调成土黄色| 精品一区二区三卡| 国产区一区二久久| 大型黄色视频在线免费观看| 嫁个100分男人电影在线观看| 一本久久精品| 性高湖久久久久久久久免费观看| 久久久久精品国产欧美久久久| 999久久久国产精品视频| 18在线观看网站| 在线十欧美十亚洲十日本专区| 91精品三级在线观看| 久久久国产一区二区| 99久久人妻综合| tocl精华| 日韩一区二区三区影片| av网站免费在线观看视频| 国产亚洲精品一区二区www | 欧美性长视频在线观看| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 国产高清激情床上av| 精品一区二区三区四区五区乱码| 国产亚洲一区二区精品| 亚洲精华国产精华精| 我要看黄色一级片免费的| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久网色| 日本a在线网址| 国产免费视频播放在线视频| 在线天堂中文资源库| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| 别揉我奶头~嗯~啊~动态视频| 亚洲一区中文字幕在线| a级片在线免费高清观看视频| 大型av网站在线播放| aaaaa片日本免费| 久久青草综合色| www.自偷自拍.com| 国产精品一区二区在线观看99| 两性夫妻黄色片| 一级毛片女人18水好多| 少妇粗大呻吟视频| 成在线人永久免费视频| 大码成人一级视频| www日本在线高清视频| 亚洲精品久久成人aⅴ小说| 纵有疾风起免费观看全集完整版| 亚洲欧洲日产国产| 久久久精品区二区三区| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 国产深夜福利视频在线观看| 黄色片一级片一级黄色片| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 我要看黄色一级片免费的| 国产一区二区激情短视频| 青青草视频在线视频观看| 国产主播在线观看一区二区| 午夜激情久久久久久久| av在线播放免费不卡| 精品久久久久久电影网| 飞空精品影院首页| 中文字幕人妻熟女乱码| 蜜桃国产av成人99| 日本av免费视频播放| 中文亚洲av片在线观看爽 | 最黄视频免费看| 国产视频一区二区在线看| 亚洲av欧美aⅴ国产| 久久精品亚洲熟妇少妇任你| 在线看a的网站| 一本大道久久a久久精品| 黑丝袜美女国产一区| 成人精品一区二区免费| av有码第一页| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| tocl精华| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 久久免费观看电影| 九色亚洲精品在线播放| 人成视频在线观看免费观看| 久久久久网色| 久久免费观看电影| 一边摸一边做爽爽视频免费| 18在线观看网站| 侵犯人妻中文字幕一二三四区| 久久久水蜜桃国产精品网| 婷婷丁香在线五月| 精品一区二区三区av网在线观看 | 成人18禁在线播放| 9热在线视频观看99| 国产在线视频一区二区| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| www.自偷自拍.com| 纵有疾风起免费观看全集完整版| 亚洲国产欧美在线一区| 日韩免费av在线播放| 午夜福利在线观看吧| av电影中文网址| 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 嫩草影视91久久| 欧美乱妇无乱码| 水蜜桃什么品种好| 大陆偷拍与自拍| 久久ye,这里只有精品| 久久婷婷成人综合色麻豆| 国产免费现黄频在线看| 制服人妻中文乱码| 一个人免费看片子| 美女主播在线视频| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 极品人妻少妇av视频| 激情在线观看视频在线高清 | 成年人免费黄色播放视频| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 80岁老熟妇乱子伦牲交| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区mp4| 黑丝袜美女国产一区| 看免费av毛片| 国产一卡二卡三卡精品| 在线av久久热| 少妇粗大呻吟视频| 欧美乱妇无乱码| 9热在线视频观看99| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久小说| 激情在线观看视频在线高清 | 国产有黄有色有爽视频| 国产在线精品亚洲第一网站| 亚洲第一av免费看| 大香蕉久久成人网| 一本久久精品| 日韩精品免费视频一区二区三区| 久久香蕉激情| 国产精品亚洲一级av第二区| 欧美激情高清一区二区三区| 国产精品免费大片| 免费在线观看影片大全网站| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频| 另类精品久久| 久久免费观看电影| 老司机亚洲免费影院| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 伊人久久大香线蕉亚洲五| 汤姆久久久久久久影院中文字幕| 精品国产乱子伦一区二区三区| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 满18在线观看网站| 制服人妻中文乱码| 在线观看免费视频网站a站| 性少妇av在线| 九色亚洲精品在线播放| 2018国产大陆天天弄谢| 在线 av 中文字幕| 欧美激情极品国产一区二区三区| 欧美日韩视频精品一区| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 人人澡人人妻人| 在线观看一区二区三区激情| 久久精品亚洲av国产电影网| 国产精品国产高清国产av | 啦啦啦免费观看视频1| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| 亚洲人成电影免费在线| 下体分泌物呈黄色| 色94色欧美一区二区| av天堂久久9| 精品国产一区二区三区四区第35| 国产免费福利视频在线观看| 怎么达到女性高潮| 成年动漫av网址| 日本av免费视频播放| 777久久人妻少妇嫩草av网站| 99re在线观看精品视频| 亚洲熟女精品中文字幕| 无限看片的www在线观看| 午夜福利一区二区在线看| 操美女的视频在线观看| 不卡一级毛片| 性高湖久久久久久久久免费观看| av福利片在线| 中文字幕精品免费在线观看视频| 国产深夜福利视频在线观看| 亚洲性夜色夜夜综合| av网站在线播放免费| 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 免费人妻精品一区二区三区视频| av一本久久久久| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲综合一区二区三区_| 高清在线国产一区| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 妹子高潮喷水视频| 亚洲精华国产精华精| 亚洲精品一卡2卡三卡4卡5卡| 18禁美女被吸乳视频| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 亚洲av美国av| 搡老乐熟女国产| 国产精品香港三级国产av潘金莲| 无人区码免费观看不卡 | 国产一区二区激情短视频| 丁香六月欧美| 啦啦啦 在线观看视频| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| 夫妻午夜视频| 日韩欧美一区视频在线观看| 成人三级做爰电影| videos熟女内射| 99热网站在线观看| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 在线观看人妻少妇| 精品久久久久久电影网| 亚洲av成人不卡在线观看播放网| tocl精华| 国产精品久久久久久精品古装| 一本一本久久a久久精品综合妖精| 色婷婷av一区二区三区视频| 悠悠久久av| 一区在线观看完整版| 大型黄色视频在线免费观看| 人人妻人人澡人人看| 午夜免费成人在线视频| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 男女下面插进去视频免费观看| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 国精品久久久久久国模美| 91麻豆精品激情在线观看国产 | 多毛熟女@视频| 中文字幕制服av| av福利片在线| 不卡一级毛片| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 午夜福利视频精品| 久久中文看片网| 狂野欧美激情性xxxx| 国产野战对白在线观看| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品一区二区www | 精品亚洲乱码少妇综合久久| 两性夫妻黄色片| 欧美日韩av久久| 成年人免费黄色播放视频| 国产高清国产精品国产三级| 1024香蕉在线观看| 成人国产av品久久久| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 超碰97精品在线观看| 欧美在线一区亚洲| 午夜福利视频精品| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 中文字幕高清在线视频| 在线永久观看黄色视频| 欧美成人免费av一区二区三区 | 国产黄色免费在线视频| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 久久久久国内视频| 一区二区三区乱码不卡18| 亚洲精品粉嫩美女一区| 国产高清国产精品国产三级| 亚洲成人国产一区在线观看| 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 午夜老司机福利片| 国产成人系列免费观看| 午夜久久久在线观看| 国产又色又爽无遮挡免费看| 午夜精品久久久久久毛片777| 999精品在线视频| 久久这里只有精品19| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 大片电影免费在线观看免费| 国产欧美日韩一区二区三| 脱女人内裤的视频| 老司机影院毛片| 欧美性长视频在线观看| 中国美女看黄片| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 香蕉国产在线看| 国产一区二区三区视频了| 亚洲人成电影免费在线| www.自偷自拍.com| 日本wwww免费看| 日韩制服丝袜自拍偷拍| 国产极品粉嫩免费观看在线| 嫩草影视91久久| 性少妇av在线| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx| 成年动漫av网址| √禁漫天堂资源中文www| 美女午夜性视频免费| 久久人妻av系列| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲久久久国产精品| 欧美乱码精品一区二区三区| 男女免费视频国产| 亚洲精品中文字幕在线视频| 成人国产av品久久久| 国产成人av教育| 国产高清激情床上av| 国产成人免费无遮挡视频| 69av精品久久久久久 | 高清毛片免费观看视频网站 | av网站免费在线观看视频| 麻豆成人av在线观看| 99久久国产精品久久久|