• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    2016-09-09 09:35:30荊鵬飛劉慧君胡勝勇雷蘭林馮志遠
    物理化學學報 2016年8期
    關鍵詞:南華大學甲酰志遠

    荊鵬飛 劉慧君 張 勤 胡勝勇 雷蘭林 馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    荊鵬飛劉慧君*張勤胡勝勇雷蘭林馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    β-環(huán)糊精與對甲苯磺酰氯在低溫堿性溶液中反應合成6-對甲苯磺酰酯-β-環(huán)糊精,并利用紅外光譜和核磁共振氫譜對其進行表征;聯(lián)苯甲酰與6-對甲苯磺酰酯-β-環(huán)糊精以摩爾比為1:2反應合成一種新型的聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精(BB β-CD)材料,并采用紫外可見分光光度法對其合成機理以及BB β-CD和聯(lián)苯甲酰對U(VI)的吸附行為進行研究;同時采用掃描電鏡對材料吸附U(VI)前后的外貌形態(tài)進行表征。通過間歇吸附法考察pH、反應時間、溫度以及干擾離子等因素對吸附過程的影響。結果表明,相比聯(lián)苯甲酰,BB β-CD能更有效地吸附U(VI),在pH=4.5,反應時間為60 min條件下,最大吸附量為12.16 mg·g-1,吸附率高達91.2%。動力學和熱力學擬合結果表明,吸附過程更符合準二級動力學速率方程,Langmuir等溫吸附模型比Freundlich等溫吸附模型更適合模擬吸附過程,且吸附是自發(fā)吸熱的過程。

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精;鈾(VI)吸附;動力學;平衡;熱力學

    www.whxb.pku.edu.cn

    1 Introduction

    With the continuous development of the global atomic energy industry,uranium and its compounds are nuclear fuels in power generation,which plays an important role in the military,civilian nuclear science,and technology.But with the rapid development of the nuclear industry,a large amount of wastewater containing uranium has been discharged into the environment,which has resulted in widespread environmental contamination1-5.Therefore, the efficient separation of uranium from aqueous phase,especially from industrial effluents,has attracted high attention of researchers6-8.To remove U(VI)from aqueous solution,several methods,such as chemical precipitation9,evaporation concentration10,ion exchange11,film processing method12,adsorption and solvent extraction13-15,have been developed to date.Currently, adsorption is an attractive method due to its high efficiency and diversity of adsorption.Many different sorbents,such as alumina, sepiolite,activated carbon,carbon nanotube,silica gel,goethite, chitosan and so on,have been investigated16-22.However,how to get a quick and resultful material for the determination and adsorption of U(VI)is still a work badly in need for us to do.

    β-cyclodextrins(β-CD)is a cyclic oligosaccharide with seven glucose units containing a hydrophilic exterior and hydrophobic internal cavity.The cavity structure of β-cyclodextrin can selectively form BB β-CD with other guest molecules through hostguest interactions.Sun et al.23had studied the adsorption and desorption of U(VI)on functionalized graphene oxides.Liu et al.24had studied the selective adsorption of U(VI)from acidic solution by high performance of phosphate-functionalized graphene oxide. Li et al.25had studied the adsorption and recovery of U(VI)from low concentration uranium solution by amidoxime modified Aspergillus niger.Hosseini and Abedi26had studied the adsorption of Th(IV)and U(VI)on mixed-ligands impregnated resin containing antraquinones with that conventional one.However,the study on the adsorption of U(VI)on bridged β-cyclodextrin is rarely reported.

    Benzil consists of two carbonyl(C=O)groups,which can form complexes with metal ions,is a kind of good α-diketone and it is also an excellent metal-chelating agent.To the best of our knowledge,there was still no report of study on the adsorption of U(VI)by BB β-CD.Compared with the reported sorbents,BB β-CD has great application in the adsorption of U(VI)from low concentration U(VI)solution because of low toxicity,biocompatibility,biodegradability and collaborative adsorption with benzil27,28,and expands the adsorption range for U(VI).At the same time,BB β-CD is also a low-cost sorbent with high adsorption capacity for U(VI)from low concentration U(VI)solution.In our work,adsorption material of BB β-CD was prepared by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2. In order to find the optimum adsorption conditions,a series of factors,such as pH value,contact time,temperature,and interfering ions were carried out for investigating the chemical adsorption properties of the sorbent for U(VI).In addition,various kinetic and thermodynamics models are also applied to study the adsorption process.

    2 Experimental

    2.1Materials and methods

    β-cyclodextrin(purity≥98%),benzil(purity≥98%),ptoluenesufonyl chloride(p-TsCl,99%),sodium hydroxide(purity ≥97%).Ammonium uranyl tricarbonate((NH4)4[UO2(CO3)3]), hydrochloric acid,alcohol,acetonitrile,arsenazo III,nitric acid, etc.were analytical reagent and used without further purification. All reagents were purchased fromAladdin Chemical Reagent Co. Ltd.(Shanghai,China).

    U3900 UV-spectrophotometer(Hitachi Ltd,Japan),Shimadzu IR Prestige-21 FTIR(Shimadzu,Japan),Bruker AV-III 400 MHz NMR spectrometer(Bruker BioSpin,Switzerland),S-4800 Scanning Electron Microscope(Hitachi Ltd.,Japan),etc.

    2.2Synthesis of sulfated-β-CD

    5 g of β-CD was dissolved in 100 mL of water,3 g of sodium hydroxide,and 1.68 g of p-TsCl was also added under the condition of ice water bath.The mixture was stirred and reacted for 5 h.Then the unreacted p-TsCl was filtered,the filtrate was adjusted to pH 6-7 by 1 mol·L-1HCl and it was put into a fridge for 24 h at 4°C.The resulting precipitate was filtered and recrystallized 2 times in water,CH3CN/H2O(1/1,V/V)to give sulfatedβ-CD.

    2.3Preparation of BB β-CD

    BB β-CD was prepared by the reaction of benzil(0.1 g)and sulfated-β-CD(1.2374 g)with the molar ratio of 1:2 in water at 50°C for 4 h,then the mixture was put into a fridge overnight at 4°C.The resulting precipitate was filtered and washed 6 times with deionized water and ethanol and dried by vacuum evaporation at 60°C for 8 h to give BB β-CD.The synthesis routes of sulfated-β-CD and BB β-CD are showed in Fig.1.

    2.4Adsorption studies

    In order to obtain the optimization adsorption conditions,the effects of pH,contact time,temperature,and interfering ions were examined.In the batch adsorption experiments,15 mg BB β-CD was added to the 10 mL U(VI)solution in 25 mL flask for which concentration was 20 mg·L-1,pH value is 2.0-7.0,and time range is 20-180 min.In addition,the flasks were shaken using shakingwater bath for specified durations at desired temperatures(298-338 K).After equilibration,the residual concentration of U(VI) ions was determined by UV-spectrophotometer.The adsorption capacity Q(mg·g-1)of BB β-CD and the remove ratio R(%)of U(VI)were calculated was calculated by the following equations:

    Fig.1 Synthesis route of sulfated-β-CD and BB β-CD

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(L)is the volume of the testing solution,and m(g)is the mass of sorbent.

    2.5Effect of interfering ions

    In order to explore the selective adsorption behavior of U(VI), some important different concentrations of interfering ions such as Na+,Mg2+,Fe3+,and Cu2+were added to 20 mg·L-1U(VI)solution,pH 4.5,shaking to adsorb for 60 min.Centrifuge and UV-spectrophotometer was employed to analyze the U(VI)concentration in the adsorbed solution.

    3 Results and discussion

    3.1Characterization analysis

    Fig.2(A)shows the FTIR spectra of β-CD,sulfated-β-CD,and BB β-CD.Compared with β-CD some new absorption peaks were found in the FTIR spectra of sulfated-β-CD.In the FTIR spectra of sulfated-β-CD,the peaks around 1177 and1364 cm-1resulted from symmetric stretching and antisymmetric stretching vibration of S=O.The peaks at 1599,1078,and 1028 cm-1were ascribed to the νC=Con benzene ring,the νC―O―Cand νC―Oof the template sulfated-β-CD.And the peaks of 837,815 cm-1were ascribed to the νC―Hon the benzene ring29.And compared with sulfated-β-CD, BB β-CD appeared characteristic bands at 1697 cm-1,which was ascribed to the νC=O.

    Fig.2 FTIR spectra of β-CD(1),sulfated-β-CD(2),BB β-CD(3)

    The FTIR spectra of BB β-CD and BB β-CD+U(VI)are respectively shown in Fig.2(B).As shown in Fig.2(B),the FTIR spectra of BB β-CD shows that the template does not change the adsorption peak of each chemical group very much,suggesting that the template only combines with the with hydrophobic interaction and hydrogen bonding interaction,but not forming chemical bonds.The FTIR spectra of BB β-CD+U(VI)displays significant shift in some peaks.The shift of the peak from 1697 to 1702 cm-1reflects the changes in the stretching frequency of carbonyl(C=O)upon binding of U(VI).This observation indicates the involvement of carbonyl(C=O)in the adsorption process30,31.

    Fig.3 shows the1HNMR(DMSO-d6,400 MHz,TMS)spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD.As seen in Fig.3, the1HNMR spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD have obvious difference and the change of chemical shifts of sulfated-β-CD and BB β-CD are shown in Table 1.As shown in Fig.3,the chemical shifts of sulfated-β-CD are different from those of β-CD,and the results of them are consistent with the reported sulfated-β-CD32.Compared with sulfated-β-CD,the chemical shifts of part protons(H3 and H5)of BB β-CD have obvious move and other protons have not apparent movement.Therefore,we canknow that the formation of the BB β-CD by insertion of the aromatic ring of the benzil into the sulfated-β-CD cavity can be confirmed by observing the chemical shifts induced in the H3 and H5 resonances of sulfated-β-CD due to the ring-current effects of the aromatic benzil.As shown in Table 1,the relatively large upfield shift is observed for H3 and H5 of sulfated-β-CD,which indicate that benzil molecule inserted into sulfated-β-CD cavity33. All of these proved that the synthesis of BB β-CD is reliable and successful.

    Fig.3 1HNMR spectra of benzil(a),β-CD(b), sulfated-β-CD(c),and BB β-CD(d)

    The UV-spectrophotometer analysis results shows the changes of absorb and wavelength about different molar ratios of benzil and sulfated-β-CD(Fig.4).Absorption wavelength moved to the maximal from 1:0 to 1:2,however,it went back when the molar ratio went to 1:2 and 1:2.5,and we can preliminarily conclude that the molar ratio of 1:2 is the best molar ratio.

    As the stirring time went on,the mixture solution slowly turned to clarify while it was turbidity at the beginning.Maybe it belonged to the reason that benzil did not dissolute in the water,so it was turbidity at the beginning,but as the stirring went on,the benzil went into the cavity of sulfated-β-CD to format BB β-CD. Besides UV-spectrophotometer,it is also very important to choose the best molar ratio by determining inclusion constants under different molar ratios of benzil and sulfated-β-CD,and the resultsare reported in Table 2.Here,it is the determination and calculation process of inclusion constant under the molar ratio of 1:2 of benzil and sulfated-β-CD.UV-spectrophotometer shows adsorption of benzil in 0.05 g BB β-CD is 2.068,according to the standard concentration of benzil in Fig.5,that means the concentration of benzil in 10 mLethanol is C=1.70×10-3mol·L-1. Defining the mass ratio of benzil and sulfated-β-CD in original sample is k0,and in the BB β-CD is k1,the inclusion constant is K, k1=1.70×10-3×10×10-3×210.23/0.05=0.0714,K=(k1/k0)× 100%=0.0714/0.07477×100%=95.49%.In addition,the determination and calculation process of inclusion constants under other molar ratios of benzil and sulfated-β-CD are the same.The results of UV-spectrophotometer analysis and the determination of inclusion constants show that the molar ratio of 1:2 of benzil and sulfated-β-CD is the best molar ratio.

    Table 1 Chemical shifts of part protons of sulfated-β-CD and BB β-CD

    Fig.4 UV absorption of different molar ratios of benzil and sulfated-β-CD

    SEM shows that the surface of BB β-CD was uneven and rough while that of BB β-CD absorbed U(VI)was homogeneous.The reason is that pores in BB β-CD provides necessary channel and adsorption space for the adsorption.Therefore,BB β-CD can effectively adsorb U(VI)(Fig.6).

    3.2Effect of pH

    pH is one of the important factors that affect the adsorption efficiency,and the effect of pH on the adsorption of U(VI)from aqueous solutions is showed in Fig.7.The results showed that the adsorption of U(VI)increased gradually as pH increases from 2.0 to 4.5,then decreases when the pH value is higher than 4.5.Because at low pH,it is difficult for diketone to chelate metal ions and there are two reasons to explain it.On the one hand,the lower uptake at low pH may be attributed to the higher acidities which made the protonation of O in BB β-CD on benzil by H+34,and formed positively charged BB β-CD surface which prevent the adsorption of metal ions due to electrostatic repulsion35-37.On the other hand,the low adsorption can be due to the competition of H+and metal ions in the solution for the adsorption sites of BB β-CD38.And when the pH continues to increase,U(VI)may hydrolyse to UO2OH+and(UO2)2(OH)22+)or precipitation39,resultingin a false impression or adsorption error40.In order to get quantitative adsorption of U(VI)at higher pH values while avoid hydrolysis and precipitation,pH 4.5 was considered as the optical value,and the adsorption capacity of U(VI)was 12.16 mg·g-1.

    Fig.5 Standard concentration of benzil

    Table 2 Inclusion constants under different molar ratios of benzil and sulfated-β-CD

    Fig.6 SEM spectra of BB β-CD(a)and BB β-CD+U(VI)(b) (a)BB β-CD;(b)BB β-CD+U(VI)

    Fig.7 Effect of pH on the adsorption of U(VI)

    3.3Effect of contact time and kinetic studies

    The effect of contact time was investigated to determine the equilibrium point,and the result was given in Fig.8.The results showed that the adsorption capacity of U(VI)gradually increased during the 20-120 min and then tended to equilibrate in the following contact time for benzil.However,the sorbent BB β-CD tended to equilibrate in 60 min.This observation is due to the fact that the hydrophobic space of β-CD inclusion hydrophobic benzene ring of benzil,two oxygen atoms of benzil exposed and U (VI)adsorbed quickly and fully.Therefore,the U(VI)can be easier adsorbed on BB β-CD than benzil.The BB β-CD in this study had good adsorption capacity at pH 4.5,and the adsorption equilibrium could reach a balance in 60 min.

    Fig.8 Effect of contact time on the adsorption of U(VI)

    To analyze the kinetic adsorption behaviors of U(VI)on BB β-CD,two kinetic models namely pseudo-first-order and pseudosecond-order models were used to fit the adsorption process.The pseudo-first-order kinetic model is given by the following equation41:

    where Qeand Qt(mg·g-1)are the amount of U(VI)adsorbed at equilibrium and at time t(min),respectively.K1(min-1)is the rate constant of pseudo-first-order,and t(min)is the reaction time. Values of Qeand K1were calculated from the intercept and slope values of the straight line by plotting lg(Qe-Qt)versus t are reported in Table 3 and as shown in Fig.9.The results showed that the linear plot of lg(Qe-Qt)and time followed pseudo-first-order kinetic model of U(VI)adsorption on BB β-CD.

    At the same time,the kinetic adsorption behaviors of U(VI)on BB β-CD was also described according to the pseudo-secondorder kinetic using the following equation42:

    where K2(mg·g-1·min-1)is the rate constant of pseudo-secondorder,and t(min)is the reaction time.Values of Qeand K2were calculated from the slope and intercept values of the straight line by plotting t/Qtversus t are reported in Table 3 and as shown in Fig.10.The results showed that the linear plot of t/Qtand time followed pseudo-second-order kinetic model of U(VI)adsorption on BB β-CD.The calculated Qevalue from pseudo-second-order kinetic equation agreed very well with the experimental Qevalue. The kinetic data showed that the adsorption of U(VI)followed pseudo-second-order kinetic model(R2=0.9944),and the experimental Qe(exp)value(12.16 mg·g-1)was close to the model Qevalue(12.165 mg·g-1).

    Table 3 Kinetic data for adsorption of U(VI)

    Fig.9 Pseudo-first-order plot for adsorption of U(VI)

    3.4Adsorption isotherms

    Generally speaking,adsorption isotherms can provide some significant information in optimizing the application of BB β-CD, Langmuir and Freundlich isotherms were used to simulate the adsorption isotherms of U(VI).According to the Langmuir isotherm model,adsorption process commonly occurs on the surface of sorbent until monolayer coverage is obtained.The linear equation of the Langmuir adsorption model can be expressed as follows43:

    where Qe(mg·g-1)and Qm(mg·g-1)are the equilibrium and maximum adsorption capacities,respectively.Ce(mg·L-1)is the equilibrium concentration of metal ions in solution,Ka(L·mg-1) is the Langmuir constant related to energy of adsorption.The values of Qmand Kacalculated from the intercept and slope values of the straight line by plotting 1/Qeversus 1/Ceare reported in Table 4 and as shown in Fig.11.The results showed that the linear plot of 1/Qeand 1/Cefollowed the Langmuir adsorption model of U(VI)adsorption on BB β-CD.

    Fig.10 Pseudo-second-order plot for adsorption of U(VI)

    Unlike the Langmuir adsorption model,the Freundlich adsorption model is an empirical model,which is based on heterogeneous surfaces and allows for several kinds of adsorption sites on the surface of adsorption material.The model can be represented by the following equation44,45:

    where Qe(mg·g-1)and Ce(mg·L-1)are the equilibrium concentrations of metal ions in solution,respectively.and KFand n are Freundlich constants,which mean adsorption capacity and adsorption intensity,respectively.The values of KFand n calculated from the intercept and slope values of the straight line by plotting lnQeversus lnCeare reported in Table 4 and as shown in Fig.12. The values of KFand n were found to be 1.01 and 1.35.The value of 1

    3.5Effect of temperature and adsorption

    thermodynamics

    The effect of temperature on the adsorption of U(VI)on thestudied BB β-CD were investigated at 298,308,318,328,and 338 K,respectively.Thermodynamic parameters were calculated to confirm the thermodynamic feasibility and the nature of the adsorption process.The thermodynamic parameters corresponding toU(VI)adsorptionontheBB β-CDcanbeexpressedusingvan′t Hoff equation46:

    Table 4 Isotherm model constant parameters for adsorption of U(VI)

    Fig.11 Langmuir plots for adsorption of U(VI)

    Fig.12 Freundlich plots for adsorption of U(VI)

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(mL)is the volume of the testing solution,m(g)is the mass of sorbent,Kd(mL·g-1)is the distribution coefficient,ΔS0(J·mol-1·K-1)is standard entropy,ΔH0(kJ·mol-1) is the standard enthalpy,ΔG0(kJ·mol-1)is the standard Gibbs free energy,T(K)is the absolute temperature,and R(8.314 J·mol-1· K-1)is the gas constant.

    The curve of temperature and distribution coefficient is reported in Table 5 and as shown in Fig.13.As shown in Table 5,ΔH0is positive because the adsorption of U(VI)on BB β-CD is endothermic.The values of free energy are negative,and the decrease in the value of ΔG0with increase in temperature shows that the reaction is spontaneous and more favorable at higher temperature.

    Table 5 Thermodynamic parameters for the adsorption of U(VI)

    Fig.13 van′t Hoff plots for the adsorption of U(VI)

    Fig.14 Infection on the adsorption of U(VI)by interfering irons

    Fig.15 Possible adsorption mechanism of U(VI)

    3.6Interfering ions analysis

    In order to evaluate the selective adsorption of U(VI)by the BB β-CD,the effect of interfering ions on adsorption of U(VI)were carried out(Fig.14).The results showed that interfering ions had different influence on adsorption capacity of U(VI).Na+didn′t obviously affect the adsorption of U(VI).The adsorption of U(VI) could have the similar capacity when the concentration of Mg2+, Fe3+,and Cu2+were lower than 10 mg·L-1.The possible adsorption mechanism of U(VI)is shown in Fig.15.

    4 Conclusions

    Anovel BB β-CD was synthesised by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2,and it was successfully used for the adsorption of U(VI).The BB β-CD used as sorbent had good adsorption capacity(12.16 mg·g-1)and remove ratio (91.2%)of U(VI)at the optimum conditions.The adsorption capacity of U(VI)showed no obvious change in the presence of Na+,Mg2+,Fe3+,and Cu2+when concentration was lower than 10 mg·L-1.Kinetic study showed that the pseudo-second-order model was appropriate to describe the adsorption process,indicating the chemical adsorption.Among different models used for describing equilibrium isotherm data,Langmuir model is in good agreement with the experimental data with high R2(0.9907).The adsorption of U(VI)dependence on temperature was investigated and the thermodynamic parameters DH0,DS0,and DG0were calculated. The results showed that it was a feasible,spontaneous and endothermic adsorption process.In this paper,the raw materials are commercially available,the experimental method for the adsorption of U(VI)is reliable and feasible and it can provide certain reference value for future research.

    References

    (1)Olszewski,G.;Bory?o,A.;Skwarzec,B.J.Environ.Radioactiv. 2015,146,56.doi:10.1016/j.jenvrad.2015.04.001

    (2)Liu,P.H.;Wei,C.S.;Zhang,S.M.;Zhu,C.M.;Xie,S.R. Asian J.Chem.2015,27,1049.doi:10.14233/ ajchem.2015.18056

    (3)Cesare,M.D.;Cesare,N.D.;D'Onofrio,A.Appl.Radiat. Isotopes.2015,103,166.doi:10.1016/j.apradiso.2015.06.011

    (4)Bourgeois,D.;Burt-Pichat,B.;Goff,X.L.Anal.Bioanal. Chem.2015,407(22),6619.doi:10.1007/s00216-015-8835-7

    (5)Bonato,M.;Ragnarsdottir,K.V.Wat.Air Soil.Pollut.2012,223 (7),3845.doi:3846.10.1007/s11270-012-1153-1

    (6)Gu,Z.X.;Tu,C.N.;Wang,Y.;Yang,J.J.;Liu,N.;Liao,J.L.; Yang,Y.Y.;Tang,J.Acta Phys.-Chim.Sin.2015,31(Suppl), 95.[顧澤興,涂昌能,王云,楊吉軍,劉寧,廖家莉,楊遠友,唐軍.物理化學學報,2015,31(Suppl),95.]doi:10.3866/ PKU.WHXB2014Ac13

    (7)Yousif,A.M.;El-Afandy,A.H.;AbdelWahab,G.M.;Mubark, A.E.;Ibrahim,I.A.J.Radioanal.Nucl.Chem.2015,303(3), 1821.doi:10.1007/s10967-014-3688-7

    (8)Sun,T.X.;Shen,X.H.;Chen,Q.D.Acta Phys.-Chim.Sin. 2015,31(Suppl),32.[孫濤祥,沈興海,陳慶德.物理化學學報,2015,31(Suppl),32.]doi:10.3866/PKU.WHXB2014Ac10

    (9)Mellah,A.;Chegrouche,S.Barkat,M.Hydrometallurgy 2007, 85,163.doi:10.1016/j.hydromet.2006.08.011

    (10)Duff,M.C.;Morris,D.E.;Hunter,D.B.;Bertsch,P.M. Geochim.Cosmochim.Ac.2000,64(9),1535.doi:10.1016/ S0016-7037(99)00410-X

    (11)Zou,W.H.;Zhao,L.;Han,R.P.Chin.J.Chem.Eng.2009,17, 586.doi:10.1016/S1004-9541(08)60248-7

    (12)John,A.M.S.;Cattrall,R.W.;Kolev,S.D.J.Memb.Sci.2012, 409(4),242.doi:10.1016/j.memsci.2012.03.061

    (13)Gok,C.;Aytas,S.J.Hazard.Mater.2009,168(1),369.doi: 10.1016/j.jhazmat.2009.02.063

    (14)Joseph,C.;Schmeide,K.;Sachs,S.;Brendler,V.;Geipel,G.; Bernhard,G.Chem.Geol.2011,284(3),240.doi:10.1016/j. chemgeo.2011.03.001

    (15)Oshita,K.;Sabarudin,A.;Takayanagi,T.;Oshima,M.; Motomizu,S.Talanta 2009,79(2),1031.doi:10.1016/j. talanta.2009.03.035

    (16)Qian,L.;Ma,M.;Cheng,D.J.Radioanal.Nucl.Chem.2015, 303,161.doi:10.1007/s10967-014-3352-2

    (17)Branislava,M.M.;Milijan,J.;Mirjana,L.M.Radiat.Environ. Bioph.2015,54(2),217.doi:10.1007/s00411-015-0589-2

    (18)Ahmed,S.H.;Sharaby,C.M.;Gammal,E.M.E. Hydrometallurgy 2013,134,150.doi:10.1016/j. hydromet.2013.02.003

    (19)Tan,L.;Liu,Q.;Jing,X.Chem.Eng.J.2015,273,307. doi:10.1016/j.cej.2015.01.110

    (20)Basu,H.;Singhal,R.K.;Pimple,M.V.Int.J.Environ.Sci. Technol.2015,12,1899.doi:10.1007/s10967-014-3677-x

    (21)Sun,Y.;Yang,S.;Wang,Q.Radiochim.Acta 2014,102,797. doi:10.1515/ract-2013-2204

    (22)Chao,X.;Wang,J.;Yang,T.Carbohyd.Polym.2015,121,79. doi:10.1016/j.carbpol.2014.12.024

    (23)Sun,Y.B.;Yang,S.B.;Chen,Y.;Ding,C.C.;Cheng,W.C.; Wang,X.K.Environ.Sci.Technol.2015,49(7),4255. doi:10.1021/es505590j

    (24)Liu,X.;Li,J.;Wang,X.J.Nucl.Mater.2015,466(45),56. doi:10.1016/j.jnucmat.2015.07.027

    (25)Li,L.;Hu,N.;Ding,D.X.;Xin,X.;Wang,Y.D.;Xue,J.H.; Zhang,H.;Tan,Y.RSC Adv.2015,5,65827.doi:10.1039/ C5RA13516H

    (26)Hosseini,M.S.;Abedi,F.J.Radioanal.Nucl.Chem.2015,303, 2173.doi:10.1007/s10967-014-3366-9

    (27)Mirzajani,R.;Pourreza,N.;Najjar,S.S.A.Res.Chem. Intermediat.2014,40(8),2667.doi:10.1007/s11164-013-1120-5 (28)Ogoshi,T.;Harada,A.Sensors 2008,8,4961.doi:10.3390/ s8084961

    (29)Wang,Y.L.;Feng,R.S.;Guo,Y.J.Chin.J.Appl.Chem.2011, 28,1269.doi:10.3724/SP.J.1095.2011.00680

    (30)Xiao,Y.Q.;Xia,L.S.;Li,R.R.;Li,G.;Huang,X.Atom Energy Science and Technology 2015,49,2130.doi:10.7538/ yzk.2015.49.12.2130

    (31)Wang,J.S.;Zou,X.L.;Jia,L.Atom Energy Science and Technology 2015,49,255.doi:10.7538/yzk.2015.49.02.0255

    (32)Huang.Y.;Fan,X.D.Journal of Northwest University(Natural Science Edition)2003,33,41.doi:1000-274X(2003)01-0041-04

    (33)Ding,H.;Chao,J.;Zhang,G.Spectrochim.Acta A 2003,59, 3421.doi:10.1016/S1386-1425(03)00176-8

    (34)Ji,X.Z.;Liu,H.J.;Wang,L.L.J.Radioanal.Nucl.Chem. 2013,295,265.doi:10.1007/s10967-012-1979-4

    (35)Chen,S.P.;Hong,J.X.;Yang,H.X.J.Environ.Radioactiv. 2013,126,253.doi:10.1016/j.jenvrad.2013.09.002

    (36)Huang,G.L.;Zou,L.X.;Su,Y.;Lv,T.T.;Wang,L.L. J.Radioanal.Nucl.Chem.2016,307(2),1135.doi:10.1007/ s10967-015-4275-2

    (37)Hosseini,S.H.;Rahmanisani,A.;Jalalabadi,Y.Int.J.Environ. Anal.Chem.2015,95(4),277.doi:10.1080/ 03067319.2015.1016009

    (38)Chen,F.;Tan,N.;Long,W.;Yan,X.M.;Chen,F.Mar.Pollut. Bull.2013,74,213.doi:10.1016/j.marpolbul.2013.06.055

    (39)Long,D.J.;Liu,J.H.;Wang,X.M.Nuclear Power Engineering 2012,33,1.doi:10.1128/JVI.06957-11

    (40)Tong,K.S.;Kassim,M.J.;Azraa,A.Chem.Eng.J.2011,170, 145.doi:10.1016/j.cej.2011.03.044

    (41)Starvin,A.M.;Rao,T.P.Talanta 2004,63(2),225. doi:10.1016/j.talanta.2003.11.001

    (42)Li,Z.;Chen,F.;Yuan,L.;Liu,Y.;Zhao,Y.;Chai,Z.;Shi,W. Chem.Eng.J.2012,210,539.doi:10.1016/j.cej.2012.09.030

    (43)Zhou,L.M.;Shang,C.;Liu,Z.R.;Huang,G.L.Adesina,A.A. J.Colloid Interface Sci.2012,366(1),165.doi:10.1016/j. jcis.2011.09.069

    (44)Mellah,A.;Chegrouche,S.;Barkat,M.J.Colloid Interface Sci. 2006,296(2),434.doi:10.1016/j.jcis.2005.09.045

    (45)Oguz,E.J.Colloid Interface Sci.2005,281(1),62. doi:10.1016/j.jcis.2004.08.074

    (46)Aksoyoglu,S.J.Radioanal.Nucl.Chem.1989,134(2),393. doi:10.1007/BF02278276

    Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)

    JING Peng-FeiLIU Hui-Jun*ZHANG QinHU Sheng-Yong LEI Lan-LinFENG Zhi-Yuan
    (College of Chemistry and Chemical Engineering,University of South China,Hengyang 421001,Hunan Province,P.R.China)

    Sulfated β-cyclodextrin(β-CD)was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide.The product was analyzed by Fourier transform infrared spectroscopy(FTIR)and proton nuclear magnetic resonance(1H NMR).The novel benzil-bridged β-CD(BB β-CD)was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1:2.UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI).Scanning electron microscopy(SEM)was used to analyze the surface properties of the materials.The adsorption of BB β-CD onto U(VI)was investigated as a function of pH,contact time, temperature,and interfering ions using the batch adsorption technique.It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil.The optimum experimental conditions were pH=4.5 and shaking for 60 min,achieving the maximum adsorption capacity of 12.16 mg·g-1and a U(VI)removal ratio of 91.2%.Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI)and followed a pseudo-second-order rate equation.The isothermal data correlated with the Langmuir model better than with the Freundlich model.The thermodynamic data indicated the spontaneous and endothermic nature of the process.

    BB β-CD;Uranium(VI)adsorption;Kinetics;Equilibrium;Thermodynamics

    January 4,2016;Revised:April 20,2016;Published on Web:April 21,2016.

    O642;O643

    10.3866/PKU.WHXB201604212

    *Corresponding author.Email:liuhuijun@usc.edu.cn;Tel:+86-13607341186.

    The project was supported by the National Natural Science Foundation of China(11375084)and Hunan Provincial Innovation Foundation for Postgraduate,China(CX2015B399).

    國家自然科學基金(11375084)和湖南省研究生科研創(chuàng)新項目(CX2015B399)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    南華大學甲酰志遠
    南華大學召開學習丁德馨同志先進事跡座談會
    N-氨甲酰谷氨酸對灘羊乏情期誘導同期發(fā)情效果的影響
    中國飼料(2021年17期)2021-11-02 08:15:14
    獲批57項!南華大學2021年度自然科學基金立項取得好成績
    喜訊!南華大學2021年省級一流本科課程認定再創(chuàng)佳績!
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    Wang Chuanshan
    大東方(2018年8期)2018-09-10 03:43:57
    N-氨基甲酰谷氨酸在仔豬生產(chǎn)中的應用
    廣東飼料(2016年5期)2016-12-01 03:43:22
    香噴噴的年喲
    新型meso-四(4-十四氨基甲酰苯基)卟啉及其金屬(Co)配合物的合成與液晶性能
    合成化學(2015年10期)2016-01-17 08:56:37
    99久久综合免费| 午夜久久久在线观看| 高清av免费在线| 国产精品人妻久久久影院| 国产一区二区在线观看av| 亚洲一级一片aⅴ在线观看| 色吧在线观看| 一本色道久久久久久精品综合| 一级毛片 在线播放| 色综合欧美亚洲国产小说| 亚洲av男天堂| 久久久国产一区二区| 嫩草影院入口| av在线app专区| 亚洲精品美女久久av网站| 十八禁人妻一区二区| 一本—道久久a久久精品蜜桃钙片| 男男h啪啪无遮挡| 老司机靠b影院| 尾随美女入室| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜一区二区 | 麻豆乱淫一区二区| 国产毛片在线视频| 亚洲色图 男人天堂 中文字幕| 久久ye,这里只有精品| 欧美日韩av久久| 国产又爽黄色视频| 亚洲国产欧美一区二区综合| 多毛熟女@视频| 欧美日韩精品网址| 亚洲,欧美精品.| 丝袜人妻中文字幕| 成人漫画全彩无遮挡| 精品少妇一区二区三区视频日本电影 | 午夜福利视频在线观看免费| 在线天堂最新版资源| 一区二区av电影网| 欧美人与性动交α欧美软件| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 久久久久国产一级毛片高清牌| 人妻人人澡人人爽人人| 青春草视频在线免费观看| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 色94色欧美一区二区| 又大又黄又爽视频免费| 卡戴珊不雅视频在线播放| 蜜桃国产av成人99| 亚洲人成77777在线视频| 久久久久精品久久久久真实原创| 一本久久精品| 日韩一区二区视频免费看| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 侵犯人妻中文字幕一二三四区| 午夜免费观看性视频| 国产精品久久久久久人妻精品电影 | 精品国产超薄肉色丝袜足j| 久久天堂一区二区三区四区| 亚洲熟女精品中文字幕| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 国产成人精品在线电影| 亚洲国产欧美在线一区| 亚洲五月色婷婷综合| 免费看不卡的av| 18在线观看网站| 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 18禁动态无遮挡网站| 精品人妻熟女毛片av久久网站| 国产精品一国产av| 精品国产国语对白av| 中文字幕亚洲精品专区| 国产有黄有色有爽视频| 一级片'在线观看视频| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区| 国产精品偷伦视频观看了| 国产精品女同一区二区软件| 黄色 视频免费看| 九草在线视频观看| 精品久久久久久电影网| 曰老女人黄片| 高清视频免费观看一区二区| 日韩伦理黄色片| 精品少妇内射三级| 涩涩av久久男人的天堂| 女人久久www免费人成看片| 日韩av在线免费看完整版不卡| 国产精品人妻久久久影院| 国产精品女同一区二区软件| 韩国精品一区二区三区| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 国产成人欧美| 在线天堂最新版资源| 成人三级做爰电影| 国产亚洲av高清不卡| 一本一本久久a久久精品综合妖精| 波多野结衣一区麻豆| 一区二区三区四区激情视频| www.自偷自拍.com| 午夜福利网站1000一区二区三区| 亚洲情色 制服丝袜| 丝袜在线中文字幕| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜一区二区 | 国产免费又黄又爽又色| 一级,二级,三级黄色视频| 日本色播在线视频| 99久久综合免费| 搡老岳熟女国产| 日韩一本色道免费dvd| 久久久久久久久免费视频了| videos熟女内射| 男女之事视频高清在线观看 | 久久久久久久精品精品| tube8黄色片| 亚洲成色77777| 一本色道久久久久久精品综合| 男人爽女人下面视频在线观看| 免费看不卡的av| av免费观看日本| 王馨瑶露胸无遮挡在线观看| 国产免费又黄又爽又色| 波多野结衣一区麻豆| av国产久精品久网站免费入址| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 自线自在国产av| 中文字幕人妻丝袜制服| 伦理电影免费视频| 97在线人人人人妻| 超色免费av| 亚洲色图综合在线观看| 精品亚洲成国产av| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 免费不卡黄色视频| 国产精品一区二区精品视频观看| 不卡视频在线观看欧美| 久久久久视频综合| 丝袜在线中文字幕| 美女大奶头黄色视频| 观看美女的网站| 亚洲av在线观看美女高潮| 51午夜福利影视在线观看| 一级毛片电影观看| av在线app专区| a级毛片在线看网站| 最近中文字幕高清免费大全6| 伊人久久国产一区二区| 超色免费av| av卡一久久| 日韩视频在线欧美| 大香蕉久久成人网| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 自线自在国产av| 国产女主播在线喷水免费视频网站| 久久人人爽av亚洲精品天堂| 久久精品国产a三级三级三级| 纵有疾风起免费观看全集完整版| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 免费观看a级毛片全部| 亚洲综合精品二区| 亚洲视频免费观看视频| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| a级毛片在线看网站| 中文字幕av电影在线播放| 男女午夜视频在线观看| 波多野结衣一区麻豆| 我要看黄色一级片免费的| 18禁国产床啪视频网站| 中文精品一卡2卡3卡4更新| 性色av一级| 成人亚洲欧美一区二区av| 国产精品免费大片| 亚洲国产成人一精品久久久| 久久99一区二区三区| 精品一区二区三区av网在线观看 | 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影 | 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 免费观看人在逋| 亚洲国产精品一区三区| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| www日本在线高清视频| 久久av网站| 十分钟在线观看高清视频www| 黄网站色视频无遮挡免费观看| 色94色欧美一区二区| 男女国产视频网站| 18禁观看日本| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看| 久久久久视频综合| 99久久人妻综合| 亚洲一区二区三区欧美精品| 卡戴珊不雅视频在线播放| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 免费看av在线观看网站| 国产精品 国内视频| 热re99久久国产66热| 人妻 亚洲 视频| 亚洲国产av影院在线观看| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网 | 天堂中文最新版在线下载| 日本爱情动作片www.在线观看| 精品国产一区二区三区四区第35| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 亚洲av日韩在线播放| 久久精品久久精品一区二区三区| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码 | 丝瓜视频免费看黄片| 日韩大码丰满熟妇| 欧美日韩av久久| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 1024香蕉在线观看| www.精华液| 99久久人妻综合| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 国产精品 国内视频| 亚洲欧美一区二区三区久久| 黄色视频不卡| 久久人人爽av亚洲精品天堂| 久久天堂一区二区三区四区| 国产精品三级大全| 国产免费又黄又爽又色| 精品一区二区三区四区五区乱码 | 十八禁高潮呻吟视频| 中文欧美无线码| 久久久久网色| 你懂的网址亚洲精品在线观看| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 妹子高潮喷水视频| 久久免费观看电影| 精品国产国语对白av| 在线精品无人区一区二区三| 久久热在线av| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久国产精品视频| 18在线观看网站| 老司机亚洲免费影院| 成人免费观看视频高清| 一区二区三区四区激情视频| 捣出白浆h1v1| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 美女主播在线视频| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 亚洲欧美一区二区三区久久| www.av在线官网国产| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 国产精品人妻久久久影院| av线在线观看网站| 国产精品秋霞免费鲁丝片| 建设人人有责人人尽责人人享有的| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 高清视频免费观看一区二区| 久久久久久久久免费视频了| 人妻一区二区av| 日韩av免费高清视频| 波多野结衣av一区二区av| 视频区图区小说| 国产精品一二三区在线看| 久久久久久久久久久久大奶| 水蜜桃什么品种好| 国产精品 国内视频| 欧美国产精品va在线观看不卡| 人人妻人人澡人人爽人人夜夜| 色视频在线一区二区三区| 亚洲精品一二三| 夫妻午夜视频| avwww免费| 久久久久国产一级毛片高清牌| 高清在线视频一区二区三区| 日本vs欧美在线观看视频| 18禁观看日本| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 在线观看人妻少妇| 十分钟在线观看高清视频www| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 久久精品久久久久久久性| 男女边摸边吃奶| 国产 精品1| 国产女主播在线喷水免费视频网站| 老司机深夜福利视频在线观看 | 欧美人与善性xxx| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 国产激情久久老熟女| 日韩视频在线欧美| 亚洲欧洲日产国产| 考比视频在线观看| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 欧美精品av麻豆av| 国产一卡二卡三卡精品 | 日本欧美视频一区| 午夜激情久久久久久久| 久久精品aⅴ一区二区三区四区| 精品午夜福利在线看| tube8黄色片| 国产成人欧美在线观看 | 免费女性裸体啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 伦理电影大哥的女人| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 91老司机精品| 亚洲精品美女久久久久99蜜臀 | 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 亚洲精品国产av蜜桃| av福利片在线| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 国产深夜福利视频在线观看| 一级毛片 在线播放| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 精品亚洲成国产av| av网站在线播放免费| 免费少妇av软件| xxx大片免费视频| 国产成人系列免费观看| 久久久国产一区二区| 男女无遮挡免费网站观看| 亚洲精品国产一区二区精华液| 欧美97在线视频| 午夜激情久久久久久久| 赤兔流量卡办理| 激情五月婷婷亚洲| 欧美黄色片欧美黄色片| 高清不卡的av网站| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 无限看片的www在线观看| 你懂的网址亚洲精品在线观看| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 男人爽女人下面视频在线观看| 国产精品久久久久久人妻精品电影 | 伦理电影大哥的女人| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 亚洲一区中文字幕在线| 1024视频免费在线观看| 999精品在线视频| 国产欧美日韩综合在线一区二区| av在线app专区| 国产一区亚洲一区在线观看| 精品一品国产午夜福利视频| 男女国产视频网站| 久久久久精品人妻al黑| 好男人视频免费观看在线| 国产av精品麻豆| 亚洲自偷自拍图片 自拍| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 韩国精品一区二区三区| 中文字幕色久视频| 久久久欧美国产精品| av天堂久久9| 亚洲在久久综合| 免费观看性生交大片5| 亚洲中文av在线| 日韩欧美精品免费久久| 男女下面插进去视频免费观看| 一二三四在线观看免费中文在| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 亚洲国产av新网站| 精品一区二区三卡| 久久热在线av| 色94色欧美一区二区| 一本大道久久a久久精品| 人成视频在线观看免费观看| 韩国av在线不卡| 日本av免费视频播放| 国产爽快片一区二区三区| 精品一区二区免费观看| 国产精品香港三级国产av潘金莲 | 麻豆精品久久久久久蜜桃| 国产精品无大码| 国产爽快片一区二区三区| 亚洲免费av在线视频| 日本欧美视频一区| 丰满迷人的少妇在线观看| 日韩,欧美,国产一区二区三区| 91精品伊人久久大香线蕉| 性高湖久久久久久久久免费观看| 狂野欧美激情性bbbbbb| 国产精品国产三级专区第一集| 亚洲国产欧美日韩在线播放| 99热网站在线观看| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 亚洲av电影在线进入| 久久久久久久大尺度免费视频| 国产精品成人在线| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区久久| 日韩,欧美,国产一区二区三区| 久久影院123| 久久久欧美国产精品| av天堂久久9| 99国产精品免费福利视频| 久久ye,这里只有精品| 尾随美女入室| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区 | 老司机靠b影院| 午夜福利网站1000一区二区三区| av女优亚洲男人天堂| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 国产黄色免费在线视频| 日韩一区二区三区影片| 一级,二级,三级黄色视频| 国产乱来视频区| 亚洲熟女精品中文字幕| 午夜精品国产一区二区电影| 波多野结衣一区麻豆| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| 亚洲专区中文字幕在线 | 大码成人一级视频| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 性少妇av在线| 涩涩av久久男人的天堂| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕| 亚洲av福利一区| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美亚洲二区| 99热网站在线观看| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 天美传媒精品一区二区| 另类亚洲欧美激情| 成人三级做爰电影| 婷婷色av中文字幕| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 不卡av一区二区三区| 色网站视频免费| 丝袜美足系列| 黄色一级大片看看| 日本av手机在线免费观看| 国产精品久久久人人做人人爽| 国产成人啪精品午夜网站| 一个人免费看片子| 少妇人妻 视频| 成年av动漫网址| 欧美日韩福利视频一区二区| 狠狠精品人妻久久久久久综合| 成人三级做爰电影| 黄色视频不卡| 国产 精品1| 又大又黄又爽视频免费| 午夜免费观看性视频| 国产免费视频播放在线视频| 日韩人妻精品一区2区三区| 久久人人97超碰香蕉20202| 免费久久久久久久精品成人欧美视频| 国产成人精品福利久久| 欧美精品亚洲一区二区| 国产麻豆69| 国产不卡av网站在线观看| 亚洲婷婷狠狠爱综合网| 汤姆久久久久久久影院中文字幕| 国产亚洲精品第一综合不卡| 亚洲情色 制服丝袜| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品古装| 18禁裸乳无遮挡动漫免费视频| 久久亚洲国产成人精品v| 丰满少妇做爰视频| 成人手机av| 丝袜喷水一区| 亚洲精品久久午夜乱码| 天天操日日干夜夜撸| 如何舔出高潮| 国产亚洲午夜精品一区二区久久| 午夜福利免费观看在线| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 1024香蕉在线观看| 又黄又粗又硬又大视频| 日本午夜av视频| 在线观看免费视频网站a站| 男男h啪啪无遮挡| 国产黄色免费在线视频| 在线观看人妻少妇| 看免费av毛片| 天天躁夜夜躁狠狠久久av| 国产深夜福利视频在线观看| 久久久久人妻精品一区果冻| av.在线天堂| 国产精品蜜桃在线观看| 国产精品 欧美亚洲| 黑丝袜美女国产一区| 性色av一级| 啦啦啦在线观看免费高清www| 亚洲中文av在线| 亚洲五月色婷婷综合| 一本—道久久a久久精品蜜桃钙片| 久久精品国产亚洲av涩爱| 下体分泌物呈黄色| 日本wwww免费看| 蜜桃在线观看..| 最近手机中文字幕大全| 国产一区二区三区av在线| 国产色婷婷99| 日日摸夜夜添夜夜爱| 亚洲精品日韩在线中文字幕| 国产野战对白在线观看| 久久青草综合色| 母亲3免费完整高清在线观看| 日日啪夜夜爽| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠久久av| 精品亚洲成a人片在线观看| 久久久久久久精品精品| 日韩人妻精品一区2区三区| 极品少妇高潮喷水抽搐| 91老司机精品| 电影成人av| 午夜福利视频在线观看免费| 一区二区三区四区激情视频| 亚洲一区二区三区欧美精品| 无遮挡黄片免费观看| 91老司机精品| 老鸭窝网址在线观看| 国产亚洲av片在线观看秒播厂| 久久青草综合色| 亚洲精品日韩在线中文字幕| 在线观看一区二区三区激情| 国精品久久久久久国模美| 最新的欧美精品一区二区| 国产xxxxx性猛交| 好男人视频免费观看在线| 制服诱惑二区| 在线观看免费视频网站a站| 一级毛片我不卡| 日本午夜av视频| 亚洲精华国产精华液的使用体验|