• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫基離子液體電解質(zhì)拓寬量子點(diǎn)敏化太陽能電池的應(yīng)用溫度范圍

    2016-09-05 13:03:58史繼富黃啟章萬青翠徐雪青李春生中國科學(xué)院廣州能源研究所中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室廣州50640中國科學(xué)院大學(xué)北京00049華北理工大學(xué)化工學(xué)院河北唐山06009
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:敏化中國科學(xué)院電解質(zhì)

    史繼富 黃啟章, 萬青翠 徐雪青,* 李春生 徐 剛,*(中國科學(xué)院廣州能源研究所,中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州50640;中國科學(xué)院大學(xué),北京00049;華北理工大學(xué)化工學(xué)院,河北唐山06009)

    硫基離子液體電解質(zhì)拓寬量子點(diǎn)敏化太陽能電池的應(yīng)用溫度范圍

    史繼富1黃啟章1,2萬青翠1徐雪青1,*李春生3,*徐剛1,*
    (1中國科學(xué)院廣州能源研究所,中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州510640;2中國科學(xué)院大學(xué),北京100049;3華北理工大學(xué)化工學(xué)院,河北唐山063009)

    制備了1-甲基-3-丙基咪唑硫離子液體電解質(zhì),并應(yīng)用在量子點(diǎn)敏化太陽能電池中。通過優(yōu)化S和Na2S的濃度,電解質(zhì)的電導(dǎo)率在25°C下達(dá)到了12.96 mS?cm-1。差示掃描量熱法分析表明離子液體電解質(zhì)的玻璃化轉(zhuǎn)變溫度為-85°C。采用該電解質(zhì)的量子點(diǎn)敏化太陽能電池在25°C下達(dá)到了3.03%的光電轉(zhuǎn)化效率(η),與采用水基電解質(zhì)的電池的效率3.34%接近。由于本文中的離子液體電解質(zhì)具有低玻璃化轉(zhuǎn)變溫度和不易揮發(fā)的優(yōu)點(diǎn),采用離子液體電解質(zhì)的量子點(diǎn)敏化太陽能電池在-20°C(η=2.32%)及80°C(η=1.90%)的溫度下表現(xiàn)出了比水基電解質(zhì)優(yōu)異的光電轉(zhuǎn)化性能。

    量子點(diǎn)敏化太陽能電池;離子液體電解質(zhì);1-甲基-3-丙基咪唑硫;應(yīng)用溫度;效率

    [Communication]

    www.whxb.pku.edu.cn

    1 Introduction

    Dye-sensitized solar cells(DSCs)with organic solvent-based electrolytes containing I3-/I-

    redox couples and ruthenium complex dye have been intensively studied over the past decade and regarded as an alternative to the conventional inorganic device due to their high efficiency(η,~13%)and lowcost1,2.Recently,narrowband gap inorganic quantum dots(QDs,such as CdSe,CdS,etc.) as next-generation sensitizers for DSCs have attracted more attention owing to their tunable band gaps3,higher extinction coefficient4,5.Moreover,the solar cells sensitized by quantum dots (quantum-dot-sensitized solar cells,QDSCs)have the possibility of utilizing hot electrons to produce multiple electron-hole pairs per photon6,and thus have a higher theoretical efficiency.For these QDSCs,the electrolyte plays an important role in the determination of the photovoltaic performance7,8.On one hand,it transfers the electrons to the oxidized QDs around the photoanode to make the QDs regeneration.On the other hand,the electrolyte accepts electrons around the photocathode to complete a cycle.At present,the most commonly used electrolyte in the QDSCs was the water-based polysulfide electrolyte7,9,in which the polysulfide redox couples served as high efficient charge carriers.However, the temperature range of this water-based polysulfide electrolyte used is too narrow to meet the requirement of practical application10.When the temperature is lower,this water-based electrolyte will be freezed,which not only hinders the transport of the charge carriers in the electrolyte but also makes the interfacial contact between the electrolyte and porous TiO2film become poor. However,when the temperature is higher,this water-based electrolyte may suffer from volatilization,leading to ineffective link between photoanode and photocathode.Thus,the freeze and volatilization of the water-based electrolyte will lead to serious decrease of the η of the QDSCs.Using the organic solvent to replace the water is considered to be an alternative choice11. Nevertheless,the organic solvent will be also evaporated at high temperature and the solubility of S and Na2S in organic solvent is too low to afford high photocurrent11.

    Ionic liquids(ILs)with 1,3-dialkylimidazolium cations and iodide anion have been successfully used in DSCs due to their favorable properties such as thermal stability,high ionic conductivity,and nonvolatility(negligible vapor pressure)12,13.For example,the DSCs with eutectic melts contained 1,3-dimethylimidazolium iodide,1-ethyl-3-methylimidazolium iodide,1-allyl-3-methylimidazolium iodide,and iodine yielded an η of 7.1%13. We also synthesized 1-ethyl-3-methylimidazolium isonicotinate electrolyte for DSCs with 4.3%efficiency recently14.However, these iodide-based IL electrolytes cannot be well applied to QDSCs because the presence of I3-/I-redox couples will cause serious photocorrosion of QDs,which promotes us to explore the new ILs-based electrolyte to substitute the water-based electrolyte for the QDSCs.Thus,in this paper,we synthesized the 1-methyl-3-propylimidazolium sulfide(MPIS)IL,and applied this IL to QDSCs.This MPIS-based IL electrolyte can be used in a wide temperature range and shows a high η.

    2 Experimental

    2.1Cell fabrication

    2.1.1MPIS-based IL electrolytes

    All reagents used were of analytical grade.The preparation process of the MPIS-based IL electrolytes is shown in Fig.1.1-Methyl-3-propylimidazolium hydroxide(MPIOH)was first synthesized using anion exchange resin(201×7,supplied by the resin company of Nankai university)from 1-methyl-3-propylimidazolium bromide(Qianhui Company of Guangzhou)14.And then the MPIOH aqueous solution was reacted with hydrogen sulfide gas until pH=12 to obtain the MPIS aqueous solution.The above MPIS solution was evaporated to dryness under reduced pressure at 70°C and further dried in vacuum for 2 days at 80°C. Characterization:1H NMR(600 MHz,DMSO):δ 0.84(t,J=7.4 Hz,3H),1.81(m,J=7.3 Hz,2H),3.90(s,3H),4.17(t,J=7.11 Hz,2H),7.72(d,J=1.8 Hz,1H),7.77(d,J=1.8 Hz,1H),9.92 (s,1H);13C NMR(150 MHz,DMSO):δ 138.75,123.97,122.21, 50.43,35.98,23.68,10.67.Addition of the sulfur and Na2S into the MPIS obtained the ILs electrolytes.

    2.1.2Photocathodes

    The TiO2electrode configuration was a compact layer of TiO2, a transparent layer(with thickness of 8 mm and average particle size of 20 nm,Degussa AG of Germany),and a scattering layer (with thickness of 4 mm and average particle size of 300-400 nm). These electrodes were sintered at 450°C for 30 min.The mesoporous TiO2electrodes were in situ sensitized by CdSe QDs grown by successive ionic layer adsorption and reaction(SILAR)9.The Se2-precursor solution(0.03 mol?L-1Se2-in ethanol)was first prepared according to the method developed by the group of Gr?tzel15.For CdSe growth,the electrodes were successively immersed in two different solutions for 1 min each:one consisting of 0.03 mol?L-1Cd(NO3)2dissolved in ethanol,another of 0.03 mol?L-1Se2-precursor ethanol solution.The above sensitizationprocess was carriedoutinthegloveboxunderN2atmosphere.After sensitization,the samples were further coated with ZnS by twice dippingalternatelyinto0.1mol?L-1Zn(CH3COO)2and0.1mol?L-1Na2Ssolutionsfor1min/dip.ThepreparationofCu2Sphotocathodes was followed the optimal procedure of our previous report16.The Cu2S photocathodes were prepared by immersing brass in HCl solutionat70°Cfor45minandsubsequentlydroppingwater-based polysulfideelectrolyteontothemfor10s,resultinginporousCu2S electrodes.Thewater-basedpolysulfideelectrolyteiscomposedof 1mol?L-1S,1mol?L-1Na2S,and0.1mol?L-1NaOHinultrapure water,whichisacommonlyusedformulaforelectrolyteofQDSCs9.

    2.1.3Assembling of QDSC

    Fig.1 Preparation process of the MPIS-based ILelectrolyte

    The QDSC was made by sandwiching the electrolyte between the prepared photoanode and photocathode.The two electrodes were separated by a Surlyn film hot-melt ring and sealed by heating.The photovoltaic measurements employed a class 3A solar simulator.The power of the simulated light was calibrated to be 100 mW?cm-2by using a standard Si solar cell.The area of the cells was 0.21 cm2.

    2.2Instruments and measurements

    1H and13C NMR spectra were carried out on Bruker AVANCE 600 MHz spectrometer(Bruker Company of Switzerland),using TMS as internal standard and DMSO as solvent.The thermograms were carried out with a NETZSCH DSC 204 analyzer(Netzsch Company of Germany)under N2atmosphere at a heating rate of 20°C?min-1.

    The conductivity and its temperature dependence of the electrolyte were determined by impedance measurements PARSTAT 2273 Advanced Electrochemical System(Princeton Applied Research).The electrolyte was sandwiched between two mirrorfinished stainless steel electrodes using a Teflon ring spacer in a constant volume cylindrical cell and was sealed with paraffin in the glove box.The sealed cell was maintained at various constant temperatures for at least 1 h prior to each measurement.The conductivity was calculated from the bulk resistance Rb.The cell constant was determined by calibration before and after measurement with 0.1 mol?L-1KCl aqueous solution.Impedance experiments were performed on a computer-controlled Autolab Electrochemical System in the frequency range from 100 kHz to 100 mHz with an amplitude of 10 mV.

    3 Result and discussion

    3.1Effect of composition on the conductivity of MPIS-based IL electrolyte

    The MPIS-based IL electrolyte was optimized by adjusting the concentrations of S and Na2S.First,the sulfur was added to MPIS to form the polysulfide redox couples.The relation between the sulfur concentration and the conductivity(σ)is shown in Fig.2(a). The ionic conductivity first increases and then decreases as the sulfur concentration increases,achieving the maximum value of 5.34 mS?cm-1at the sulfur concentration of 1.5 mol?L-1.The first increase of the conductivity is due to the formation of polysulfide chains,which makes the electrical conduction become easier.This phenomenon can be explained by a mechanism of electrical conduction in polysulfide chains via a Grotthus relay-type mechanism,where a net transport of charge is achieved by electron exchange reaction without any net transport of mass17.While, when the concentration of sulfur is beyond 1.5 mol?L-1,the conductivity decreases probably because the surplus sulfur reduces the efficiency of carrier transferring17.So,the concentration of sulfur is fixed at 1.5 mol?L-1.

    Fig.2 Influence of(a)S and(b)Na2S concentrations on the conductivity of the MPIS-based ILelectrolytes

    In order to further improve the conductivity of the MPIS-based IL electrolyte system(with 1.5 mol?L-1sulfur),Na2S was added. The presence of Na2S can increase the number of charge carriers. Fig.2(b)presents the variation of ionic conductivity as a function of the concentration of Na2S.As expected,the conductivity is gradually improved as the Na2S content increases.An exciting ionic conductivity of 12.96 mS?cm-1is achieved at the Na2S concentration of 2 mol?L-1,which is about 2.4-fold higher than that without Na2S.This value is also higher than the conductivity of pyrrolidinium sulfide ionic liquids electrolyte(5.34 mS?cm-1), mainly attributing to the imidazolium cation that we employed with better conjugation for the alleviation of the electronstatic interaction between cations and anions as well as fluenter ion transport18.When the concentration of Na2S is more than 2 mol?L-1,the conductivity decreases,which may result from the aggregates or microcrystallites from excessive Na2S blocking the transferring of carriers.The similar phenomenon was also observed in the polyiodide electrolyte system used in DSCs17.Thus,the optimal electrolyte is composed of 1.5 mol?L-1sulfur and 2 mol?L-1Na2S in MPIS.

    3.2Effect of temperature on the conductivity of the electrolytes

    Fig.3(a)displays the temperature dependence of conductivity of the MPIS-based IL electrolyte.Even at-20°C,the MPIS-based IL electrolyte still exhibits moderate conductivity of 1.46 mS?cm-1and the conductivity increases with temperature because the transportation of charge carriers becomes faster at higher temperature.For example,the conductivity is up to 60.59 mS?cm-1at 80°C.The data in Fig.3(a)can be fitted well byArrhenius equation(Eq.(1)):where A is a constant,Eais the activation energy,kBis the Boltzmann constant,and T is the absolute temperature.The activation energy of the optimal MPIS-based IL electrolyte is calculated to be 27.46 kJ?mol-1,which is similar to the values reported for IL system(20-54 kJ?mol-1)19,20.

    Surprisingly,for the water-based polysulfide electrolyte the increase of conductivity versus temperature doesn′t display a simple linear relationship but two step temperature dependence (Fig.3(b)).In the first step(I,from 35 to 80°C),the Eais 6.95 kJ?mol-1,and in the second step(II,from-20 to 30°C),the Eadramatically increases to 51.95 kJ?mol-1,which is about 2-fold higher than that of MPIS-based IL electrolyte.Such a high value indicates inferior ionic conduction21.

    The different changing trend of the two electrolytes in Fig.3 can be explained by differential scanning calorimetry.Fig.4(a)is the thermogram of the optimal MPIS-based IL electrolyte.The glass transition temperature of this electrolyte is around-85°C and no other phase transition signals can be observed with further increasing the temperature,as shown in Fig.4(a).That′s why the data in Fig.2(a)can be fitted well by Arrhenius equation from-20 to 80°C.This differential scanning calorimetry result also indicates the possibility that the optimal MPIS-based IL electrolyte can be used at lower temperature.Moreover IL has negligible vapor pressure,which can avoid the volatilization of electrolyte at higher temperature.Thus,this MPIS-based IL electrolyte can be used in a wide temperature range.Fig.4(b)is the thermogram of waterbased polysulfide electrolyte.The water-based polysulfide electrolyte displays a melting temperature(Tm)of-2°C.When the temperature is lower than-2°C,this water-based polysulfide electrolyte will be freezed,which will prevent the transport of the charge carriers in the electrolyte.In fact,the conductivity of this water-based polysulfide electrolyte begins to decrease rapidly when the temperature is lower than 30°C as shown in Fig.2(b).

    Fig.3 Temperature dependence of the conductivity of the(a)MPIS-based ILelectrolyte and(b)waterbased polysulfide electrolyte

    Fig.4 Differential scanning calorimetry thermograms of (a)MPIS-based ILelectrolyte and(b)water-based polysulfide electrolyte

    The photocurrent density-voltage curves for the cells with MPIS-based IL electrolyte(cell A)and water-based polysulfide electrolyte(cell B)are presented in Fig.5 and the data are summarized in Table 1.We have prepared 5 cells for each cell,and every cell is measured at least 2 times.The photocurrent densityvoltage curves selected in this paper are the representative curves. For cellAmeasured at 25°C,the open-circuit voltage(Voc),shortcircuit photocurrent density(Jsc),fill factor(FF)are 0.525 V,17.9 mA?cm-2,and 0.322,yielding a high η of 3.03%,which is comparable to the efficiency of QDSC with water-based polysulfide electrolyte(cell B,η=3.34%)prepared and measured under the same condition(Fig.5 and Table 1).The slight lower efficiency of cellAhas relation to the lower Jscas shown in Fig.5 (a)and Table 1,which is mainly caused by the lower conductivity of the MPIS-based IL electrolyte compared with that of waterbased polysulfide electrolyte.

    As mentioned above,the MPIS-based ILelectrolyte can be used in a wide temperature range due to its outstanding thermal properties.The photocurrent density-voltage curves of cell Aand cell B measured at-20 and 80°C are shown in Fig.5(b,c)and the data are also summarized in Table 1.For example,the conversion efficiency of cell Ais 2.32%at-20°C,which is higher than that of cell B(1.50%)at the same temperature.The lower η of cell B is mainly caused by the decreased Jsc(see Table 1).The freeze of water-based polysulfide electrolyte at this temperature hinders the transport of the charge carriers in the electrolyte and makes the interfacial contact between the electrolyte and porous TiO2film become poor,thus decreasing the Jscof cell B.

    When the temperature is increased,for example at 80°C,theVocof both cell A and cell B are obviously decreased due to the serious back reaction at higher temperature.However,the Vocof cell Ais still 113 mV higher than that of cell B probably because of the interaction between the 1-methyl-3-propylimidazolium cations and the TiO2film.This interaction perhaps has influence on the recombination,QDs regeneration,and electron transport in the titania film as observed in dye-sensitized solar cells22.The dark current curves in Fig.6 measured at 80°C indicate MPIS-based IL electrolyte can inhibit the recombination between the electrons in TiO2film and the polysulfide ions in the electrolyte.We further measured the electrochemical impedance spectra(EIS)of cell A and cell B at 80°C under moderate potential of-0.40 V(close to the Vocof cell A)23,24.The calculated electron lifetime of cell Aand cell B are 5.2×10-3and 1.3×10-3s,respectively.This result proves that the interaction between the 1-methyl-3-propylimidazolium cations and the TiO2film can restrain the recombination25, which is in accordance with the dark current results in Fig.6.At 80°C,the Jscof cell B is decreased to 4.59 mA?cm-2mainly because of the volatilization of water.The volatilization of water leads to the ineffective link between photoanode and photocathode,thus limiting the transport of polysulfide ions in the cell.As a result,the η of cell B is sharply reduced to 0.347%.On the contrary,the MPIS-based IL electrolyte is non-volatile and its conductivity is increased at higher temperature.The above two factors together lead to an improved Jscof cellA(Jsc=18.7 mA?cm-2),making cell A maintain a satisfactory η of 1.90%even at 80°C.Fig.5(d)shows the normalized η of the two cells measured at different temperatures.

    Fig.5 Comparison of photocurrent density-voltage curves(a-c)and η(d)of cellAand cell B at different temperatures

    Table 1 Detailed photovoltaic performance parameters of Voc,Jsc,FF,and η measured at different temperatures

    Fig.6 Dark current density curves of cellAand cell B measured at 80°C

    4 Conclusions

    In summary,sulfur-based ionic liquid 1-methyl-3-propylimidazolium sulfide is prepared and applied in the QDSC for the firsttime.By optimizing the contents of S and Na2S,considerable conductivity of 12.96 mS?cm-1is achieved.This optimal MPIS-based IL electrolyte has outstanding thermal properties of low glass transition temperature and nonvolatility,which make it can be used in a wide temperature range.The QDSC assembled with this MPIS-based IL electrolyte displays a high η of 3.03%at 25°C,which is comparable to the efficiency of QDSC with waterbased polysulfide electrolyte(η=3.34%).Due to the favorable thermal properties of this MPIS-based IL electrolyte,the QDSC can maintain satisfactory η value even at-20 and 80°C,which is obviously superior to the cell with water-based polysulfide electrolyte.This type of IL electrolyte is beneficial to promote the practical application of QDSCs.

    References

    (1)Mathew,S.;Yella,A.;Gao,P.;Humphry-Baker,R.;Curchod, B.F.;Ashari-Astani,N.;Tavernelli,I.;Rothlisberger,U.; Nazeeruddin,M.K.;Gr?tzel,M.Nat.Chem.2014,6(3),242. doi:10.1038/nchem.1861

    (2)Moia,D.;Leijtens,T.;Noel,N.;Snaith,H.J.;Nelson,J.; Barnes,P.R.F.Adv.Mater.2015,27(39),5889.doi:10.1002/ adma.201501919

    (3)Tian,J.;Lv,L.;Fei,C.;Wang,Y.;Liu,X.;Cao,G.J.Mater. Chem.A 2014,2(46),19653.doi:10.1039/C4TA04534C

    (4)Wang,S.M.;Dong,W.W.;Fang,X.D.;Deng,Z.H.;Shao,J. Z.;Hu,L.H.;Zhu,J.Acta Phys.-Chim.Sin.2014,30(5),873.

    [王時(shí)茂,董偉偉,方曉東,鄧贊紅,邵景珍,胡林華,朱俊.物理化學(xué)學(xué)報(bào),2014,30(5),873.]doi:10.3866/PKU. WHXB201403042

    (5)Du,J.;Meng,X.;Zhao,K.;Li,Y.;Zhong,X.J.Mater.Chem. A 2015,3(33),17091.doi:10.1039/C5TA04758G

    (6)Bai,S.L.;Lu,W.H.;Li,D.Q.;Li,X.N.;Fang,Y.Y.;Lin,Y. Acta Phys.-Chim.Sin.2014,30(6),1107.

    [白守禮,陸文虎,李殿卿,李曉寧,方艷艷,林原.物理化學(xué)學(xué)報(bào),2014,30(6), 1107.]doi:10.3866/PKU.WHXB201404111

    (7)Wei,H.Y.;Wang,G.S.;Wu,H.J.;Luo,Y.H.;Li,D.M.; Meng,Q.B.Acta Phys.-Chim.Sin.2016,32(1),201.

    [衛(wèi)會(huì)云,王國帥,吳會(huì)覺,羅艷紅,李冬梅,孟慶波.物理化學(xué)學(xué)報(bào),2016,32(1),201.]doi:10.3866/PKU.WHXB201512031

    (8)Feng,W.L.;Li,Y.;Du,J.;Wang,W.;Zhong,X.H.J.Mater. Chem.A 2016,4(4),1461-1468.doi:10.1039/C5TA08209A

    (9)Sung,S.D.;Lim,I.;Kang,P.;Lee,C.;Lee,W.I.Chem. Commun.2013,49(54),6054.doi:10.1039/c3cc40754c

    (10)Wang,Q.Y.;Chen,C.;Liu,W.;Gao,S.M.;Yang,X.C. J.Nanopart.Res.2016,18(1).doi:10.1007/s11051-015-3314-9

    (11)Lee,Y.L.;Chang,C.H.J.Power Sources 2008,185(1),584. doi:10.1016/j.jpowsour.2008.07.014

    (12)Wang,P.;Zakeeruddin,S.M.;Moser,J.E.;Nazeeruddin,M. K.;Sekiguchi,T.;Gr?tzel,M.Nat.Mat.2003,2(6),402.doi: 10.1038/nmat904

    (13)Bai,Y.;Cao,Y.;Zhang,J.;Wang,M.;Li,R.;Wang,P.; Zakeeruddin,S.M.;Gr?tzel,M.Nat.Mat.2008,7(8),626. doi:10.1038/nmat2224

    (14)Wang,H.;Xu,X.Q.;Shi,J.F.;Xu,G.Acta Phys.-Chim.Sin. 2013,29(3),525.

    [王海,徐雪青,史繼富,徐剛.物理化學(xué)學(xué)報(bào),2013,29(3),525.]doi:10.3866/PKU. WHXB201301091

    (15)Lee,H.;Wang,M.;Chen,P.;Gamelin,D.R.;Zakeeruddin,S. M.;Gr?tzel,M.;Nazeeruddin,M.K.Nano Lett.2009,9(12), 4221.doi:10.1021/nl902438d

    (16)Shi,J.F.;Fan,Y.;Xu,X.Q.;Xu,G.;Chen,L.H.Acta Phys.-Chim.Sin.2012,28(4),857.

    [史繼富,樊燁,徐雪青,徐剛,陳麗華.物理化學(xué)學(xué)報(bào),2012,28(4),857.] doi:10.3866/PKU.WHXB201202204

    (17)Wu,J.;Hao,S.;Lan,Z.;Lin,J.;Huang,M.;Huang,Y.;Li,P.; Yin,S.;Sato,T.J.Am.Chem.Soc.2008,130(35),11568. doi:10.1021/ja802158q

    (18)Jovanovski,V.;González-Pedro,V.;Giménez,S.;Azaceta,E.; Caba?ero,G.N.;Grande,H.;Tena-Zaera,R.;Mora-Seró,I. N.;Bisquert,J.J.Am.Chem.Soc.2011,133(50),20156.doi: 10.1021/ja2096865

    (19)Abbott,A.P.;Boothby,D.;Capper,G.;Davies,D.L.;Rasheed, R.K.J.Am.Chem.Soc.2004,126(29),9142.doi:10.1021/ ja048266j

    (20)Zhou,Z.B.;Matsumoto,H.;Tatsumi,K.ChemPhysChem 2005,6(7),1324.doi:10.1002/cphc.200500094

    (21)Shi,J.;Chen,J.;Li,Y.;Zhu,Y.;Xu,G.;Xu,J.J.Power Sources 2015,282,51.doi:10.1016/j.jpowsour.2015.02.022

    (22)Hagfeldt,A.;Boschloo,G.;Sun,L.;Kloo,L.;Pettersson,H. Chem.Rev.2010,110(11),6595.doi:10.1021/cr900356p

    (23)Huo,Z.P.;Tao,L.;Wang,S.M.;Wei,J.F.;Zhu,J.;Dong,W. W.;Liu,F.;Chen,S.H.;Zhang,B.;Dai,S.Y.J.Power Sources 2015,284,582.doi:10.1016/j.jpowsour.2015.03.049

    (24)Farooq,W.A.;Fatehmulla,A.;Aslam,M.;Atif,M.;Ali,S.M.; Yakuphanoglu,F.;Yahia,I.S.J.Nanoelectron.Optoe.2014,9 (5),671.doi:10.1166/jno.2014.1653

    (25)Chen,J.;Lei,W.;Deng,W.Q.Nanoscale 2011,3(2),674.doi: 10.1039/C0NR00591F

    Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells

    SHI Ji-Fu1HUANG Qi-Zhang1,2WAN Qing-Cui1XU Xue-Qing1,*LI Chun-Sheng3,*XU Gang1,*
    (1Guangzhou Institute of Energy Conversion,Key Laboratory of Renewable Energy and Gas Hydrate,Guangdong Key Laboratory of New and Renewable Energy Research and Development,Chinese Academy of Sciences,Guangzhou 510640,P.R.China;2University of Chinese Academy of Sciences,Beijing 100049,P.R.China;3College of Chemical Engineering,North China University of Science and Technology,Tangshan 063009,Hebei Province,P.R.China)

    We report the preparation and application of a 1-methyl-3-propylimidazolium sulfide-based ionic liquid electrolyte for quantum-dot-sensitized solar cells.By optimizing the concentrations of S and Na2S,a considerable conductivity of 12.96 mS?cm-1is achieved at 25°C.Differential scanning calorimetry indicates that the glass transition temperature of the electrolyte is-85°C.The quantum-dot-sensitized solar cell assembled with this ionic liquid electrolyte displays a high energy conversion efficiency(η)of 3.03%at 25°C, which is comparable to the efficiency of quantum-dot-sensitized solar cells using a water-based polysulfide electrolyte(η=3.34%).Due to the favorable thermal properties of this ionic liquid electrolyte(lower glass transition temperature and nonvolatility at higher temperatures),the quantum-dot-sensitized solar cell maintains satisfactory η even at-20°C(η=2.32%)and 80°C(η=1.90%),which is superior to the cell using the water-based polysulfide electrolyte.

    January 22,2016;Revised:February 25,2016;Published on Web:February 26,2016.*Corresponding authors.XU Gang,Email:xugang@ms.giec.ac.cn.XU Xue-Qing,Email:xuxq@ms.giec.ac.cn;Tel:+86-20-87057592. LI Chun-Sheng,Email:lichsheng@163.com. The project was supported by the National Natural Science Foundation of China(21103194,51506205),Science and Technology Planning Project of Guangdong Province,China(2014A010106018,2013A011401011),Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China (2014B050505015),Special Support Program of Guangdong Province,China(2014TQ01N610),Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(y307p81001),and Solar PhotothermalAdvanced Materials Engineering Research Center Construction Project of Guangdong Province,China(2014B090904071).

    Quantum-dot-sensitized solar cell;Ionic liquid electrolyte;1-Methyl-3-propylimidazolium sulfide;Application temperature;Efficiency

    O646

    10.3866/PKU.WHXB201602262

    國家自然科學(xué)基金(21103194,51506205),廣東省科技計(jì)劃(2014A010106018,2013A011401011),粵港合作項(xiàng)目(2014B050505015),廣東省特支計(jì)劃(2014TQ01N610),中國科學(xué)院廣州能源研究所所長創(chuàng)新基金(y307p81001)及廣東省太陽能光熱先端材料工程技術(shù)研究中心建設(shè)項(xiàng)目(2014B090904071)資助

    猜你喜歡
    敏化中國科學(xué)院電解質(zhì)
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    電解質(zhì)溶液高考熱點(diǎn)直擊
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    欧美精品人与动牲交sv欧美| 91精品三级在线观看| 91国产中文字幕| 国产日韩欧美亚洲二区| 亚洲精品一二三| 中国国产av一级| 亚洲欧洲国产日韩| 老鸭窝网址在线观看| 两个人免费观看高清视频| 国产精品熟女久久久久浪| 青草久久国产| 国产精品香港三级国产av潘金莲 | 欧美人与善性xxx| 国产在线一区二区三区精| 日本欧美国产在线视频| 91老司机精品| 成人国产av品久久久| 我的亚洲天堂| 欧美精品av麻豆av| svipshipincom国产片| √禁漫天堂资源中文www| 久久久国产精品麻豆| 日韩 亚洲 欧美在线| 亚洲欧洲日产国产| 中文欧美无线码| 国产精品久久久av美女十八| 午夜福利视频精品| 哪个播放器可以免费观看大片| 国产精品久久久人人做人人爽| 2021少妇久久久久久久久久久| e午夜精品久久久久久久| 精品少妇黑人巨大在线播放| 如何舔出高潮| 黄频高清免费视频| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 两性夫妻黄色片| 好男人电影高清在线观看| 在线观看舔阴道视频| 精品欧美国产一区二区三| 岛国视频午夜一区免费看| 午夜福利高清视频| netflix在线观看网站| 99久久国产精品久久久| 91精品三级在线观看| 久久婷婷人人爽人人干人人爱 | 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| av网站免费在线观看视频| 午夜精品在线福利| 国产麻豆成人av免费视频| 国产一区二区三区在线臀色熟女| 男女午夜视频在线观看| 久久人人97超碰香蕉20202| 中文字幕人成人乱码亚洲影| 长腿黑丝高跟| 久久久久久久午夜电影| 免费高清在线观看日韩| a级毛片在线看网站| 亚洲成国产人片在线观看| 国产精品一区二区在线不卡| 丁香六月欧美| 亚洲国产高清在线一区二区三 | 亚洲精品一卡2卡三卡4卡5卡| 精品卡一卡二卡四卡免费| 黄色丝袜av网址大全| 桃红色精品国产亚洲av| ponron亚洲| 一边摸一边抽搐一进一出视频| 亚洲av片天天在线观看| 窝窝影院91人妻| 国产成人av激情在线播放| 久久久国产成人精品二区| 香蕉国产在线看| 亚洲国产欧美一区二区综合| 老汉色av国产亚洲站长工具| 日韩 欧美 亚洲 中文字幕| 国产午夜福利久久久久久| 咕卡用的链子| 一区二区三区国产精品乱码| 性少妇av在线| 成在线人永久免费视频| 老司机深夜福利视频在线观看| x7x7x7水蜜桃| tocl精华| 宅男免费午夜| 亚洲国产看品久久| 国产av在哪里看| 人人妻人人澡欧美一区二区 | 黑人巨大精品欧美一区二区蜜桃| 成年版毛片免费区| 一本综合久久免费| 中文字幕高清在线视频| 中文字幕av电影在线播放| 丰满人妻熟妇乱又伦精品不卡| 首页视频小说图片口味搜索| 极品人妻少妇av视频| 国产av又大| 一本久久中文字幕| 嫁个100分男人电影在线观看| 禁无遮挡网站| e午夜精品久久久久久久| 久久精品国产清高在天天线| 欧美精品啪啪一区二区三区| 欧美中文日本在线观看视频| 午夜亚洲福利在线播放| 久久中文看片网| 欧美在线黄色| 此物有八面人人有两片| 夜夜看夜夜爽夜夜摸| 亚洲中文字幕日韩| 又紧又爽又黄一区二区| netflix在线观看网站| 亚洲午夜理论影院| 男男h啪啪无遮挡| 免费在线观看日本一区| 黄片播放在线免费| 日韩欧美在线二视频| www国产在线视频色| 首页视频小说图片口味搜索| 欧美成人免费av一区二区三区| 国产极品粉嫩免费观看在线| 国产av又大| 一进一出抽搐动态| bbb黄色大片| 日本 欧美在线| 制服丝袜大香蕉在线| 午夜福利免费观看在线| 久久中文看片网| 亚洲成av片中文字幕在线观看| 宅男免费午夜| 国产精品香港三级国产av潘金莲| 成人三级黄色视频| 日韩精品免费视频一区二区三区| 一区福利在线观看| 男女做爰动态图高潮gif福利片 | 波多野结衣av一区二区av| 最好的美女福利视频网| 国产男靠女视频免费网站| 欧美av亚洲av综合av国产av| 国产成人精品久久二区二区免费| 午夜福利成人在线免费观看| 欧美中文综合在线视频| 成年人黄色毛片网站| 桃红色精品国产亚洲av| 亚洲av电影在线进入| 午夜a级毛片| 日韩欧美一区视频在线观看| 亚洲美女黄片视频| 一级黄色大片毛片| 国产精品99久久99久久久不卡| 黄色成人免费大全| 九色亚洲精品在线播放| 亚洲熟女毛片儿| 韩国av一区二区三区四区| 黑人操中国人逼视频| 国产精品国产高清国产av| 伦理电影免费视频| 亚洲欧美精品综合久久99| 99久久精品国产亚洲精品| bbb黄色大片| 久久婷婷人人爽人人干人人爱 | 国产一区二区激情短视频| 国产精品二区激情视频| 午夜福利,免费看| 18禁国产床啪视频网站| 精品人妻在线不人妻| 国产又爽黄色视频| 男女午夜视频在线观看| 91字幕亚洲| 中文字幕精品免费在线观看视频| 国产在线精品亚洲第一网站| svipshipincom国产片| 一级毛片精品| 中文字幕高清在线视频| 国产成人精品久久二区二区免费| 无限看片的www在线观看| 久久香蕉精品热| 亚洲电影在线观看av| 中文亚洲av片在线观看爽| 侵犯人妻中文字幕一二三四区| 一级毛片高清免费大全| 91精品国产国语对白视频| 国产精品综合久久久久久久免费 | 成人手机av| 露出奶头的视频| 女生性感内裤真人,穿戴方法视频| 男女做爰动态图高潮gif福利片 | 99热只有精品国产| 日本精品一区二区三区蜜桃| 男女午夜视频在线观看| 999久久久国产精品视频| 亚洲国产毛片av蜜桃av| 色在线成人网| av欧美777| 中文字幕人成人乱码亚洲影| 一二三四社区在线视频社区8| 18禁国产床啪视频网站| 亚洲精品国产精品久久久不卡| 国产精品九九99| 天堂动漫精品| 长腿黑丝高跟| av在线天堂中文字幕| 一区二区三区高清视频在线| 熟女少妇亚洲综合色aaa.| 在线av久久热| 精品无人区乱码1区二区| 女人精品久久久久毛片| 久久久久久亚洲精品国产蜜桃av| 女人被狂操c到高潮| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人的天堂狠狠| 国产精品永久免费网站| 欧美最黄视频在线播放免费| 国产日韩一区二区三区精品不卡| 国产成人av激情在线播放| 久久 成人 亚洲| 亚洲一区二区三区不卡视频| www日本在线高清视频| 亚洲专区字幕在线| 中文字幕最新亚洲高清| 首页视频小说图片口味搜索| av片东京热男人的天堂| 中文字幕最新亚洲高清| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 动漫黄色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品在线观看二区| 成人三级黄色视频| 国产蜜桃级精品一区二区三区| 国产三级在线视频| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器 | 黄色毛片三级朝国网站| 窝窝影院91人妻| 久久久久久久久久久久大奶| 男女下面进入的视频免费午夜 | 亚洲av电影在线进入| 婷婷六月久久综合丁香| 欧美日韩黄片免| 日韩中文字幕欧美一区二区| 欧美日本视频| 亚洲色图av天堂| 成人国产综合亚洲| 亚洲欧美激情在线| 欧美亚洲日本最大视频资源| 国产三级在线视频| 免费少妇av软件| 91麻豆精品激情在线观看国产| 19禁男女啪啪无遮挡网站| 女性生殖器流出的白浆| 男女之事视频高清在线观看| 亚洲国产精品成人综合色| 久久香蕉激情| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区免费欧美| 可以在线观看毛片的网站| 一级毛片女人18水好多| 99精品在免费线老司机午夜| 麻豆一二三区av精品| 久久 成人 亚洲| 国产亚洲精品av在线| 香蕉久久夜色| 欧美不卡视频在线免费观看 | 乱人伦中国视频| 波多野结衣av一区二区av| 中文字幕av电影在线播放| 一卡2卡三卡四卡精品乱码亚洲| 久久精品亚洲熟妇少妇任你| 亚洲电影在线观看av| 成熟少妇高潮喷水视频| 欧美一级毛片孕妇| 欧美日韩亚洲国产一区二区在线观看| 国产精品永久免费网站| 在线国产一区二区在线| 色老头精品视频在线观看| 亚洲午夜精品一区,二区,三区| 国产亚洲av高清不卡| 女人被躁到高潮嗷嗷叫费观| 免费av毛片视频| 在线天堂中文资源库| 久久久久久久精品吃奶| av超薄肉色丝袜交足视频| 夜夜夜夜夜久久久久| 成人18禁在线播放| 欧美最黄视频在线播放免费| 亚洲色图av天堂| 欧美乱色亚洲激情| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 悠悠久久av| 黄网站色视频无遮挡免费观看| 国产亚洲精品第一综合不卡| 日本 av在线| 日本免费a在线| 国产成人av教育| 久久久久久久久免费视频了| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线观看二区| 国产精品香港三级国产av潘金莲| 变态另类丝袜制服| 高清黄色对白视频在线免费看| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产在线观看| 波多野结衣巨乳人妻| 50天的宝宝边吃奶边哭怎么回事| 岛国在线观看网站| 精品国产国语对白av| av电影中文网址| 又黄又粗又硬又大视频| 美国免费a级毛片| 黄色成人免费大全| 亚洲国产精品合色在线| 久久欧美精品欧美久久欧美| 91成人精品电影| 亚洲第一青青草原| 久久久水蜜桃国产精品网| 91国产中文字幕| 99国产精品99久久久久| 亚洲电影在线观看av| 男女做爰动态图高潮gif福利片 | 国产成人系列免费观看| 一二三四社区在线视频社区8| 日本免费a在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 村上凉子中文字幕在线| 12—13女人毛片做爰片一| 国产主播在线观看一区二区| 久久久国产欧美日韩av| 免费在线观看完整版高清| 久久亚洲真实| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 欧美日本视频| 一级a爱视频在线免费观看| 欧美老熟妇乱子伦牲交| 黑丝袜美女国产一区| 成熟少妇高潮喷水视频| 好看av亚洲va欧美ⅴa在| 黄色女人牲交| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频| 亚洲精品中文字幕在线视频| 国产一区二区三区视频了| 国产av一区二区精品久久| 亚洲狠狠婷婷综合久久图片| 最近最新免费中文字幕在线| 两人在一起打扑克的视频| 国产在线精品亚洲第一网站| 熟妇人妻久久中文字幕3abv| 国产视频一区二区在线看| 国产av在哪里看| 国产精品二区激情视频| 免费女性裸体啪啪无遮挡网站| 波多野结衣一区麻豆| 日韩大尺度精品在线看网址 | 亚洲中文日韩欧美视频| 成人国产一区最新在线观看| 国产一卡二卡三卡精品| 香蕉丝袜av| 欧美色视频一区免费| 91麻豆av在线| 91精品国产国语对白视频| 精品国产超薄肉色丝袜足j| 亚洲视频免费观看视频| 久久亚洲真实| 多毛熟女@视频| 看片在线看免费视频| 免费一级毛片在线播放高清视频 | 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 狠狠狠狠99中文字幕| 久久性视频一级片| 在线播放国产精品三级| 亚洲成国产人片在线观看| 国产av一区在线观看免费| 丁香六月欧美| 精品少妇一区二区三区视频日本电影| 色在线成人网| 免费观看人在逋| 夜夜夜夜夜久久久久| 亚洲天堂国产精品一区在线| 正在播放国产对白刺激| 亚洲最大成人中文| 精品久久久久久,| 黑丝袜美女国产一区| 久久九九热精品免费| 亚洲一区高清亚洲精品| www.熟女人妻精品国产| 99国产精品99久久久久| 欧美精品亚洲一区二区| 无遮挡黄片免费观看| 亚洲九九香蕉| 久9热在线精品视频| 9色porny在线观看| 亚洲av五月六月丁香网| 精品一品国产午夜福利视频| 一级片免费观看大全| 怎么达到女性高潮| 欧美在线黄色| 高清毛片免费观看视频网站| 免费观看精品视频网站| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片 | 日韩欧美三级三区| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 亚洲一区中文字幕在线| 村上凉子中文字幕在线| 亚洲九九香蕉| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 天天躁夜夜躁狠狠躁躁| 久久人妻福利社区极品人妻图片| 欧美色视频一区免费| 一级毛片女人18水好多| 亚洲电影在线观看av| 一区福利在线观看| 桃红色精品国产亚洲av| 国产成人av激情在线播放| 午夜两性在线视频| 久久天堂一区二区三区四区| 一区二区三区精品91| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 国产高清激情床上av| 好男人在线观看高清免费视频 | 99久久精品国产亚洲精品| 亚洲中文字幕日韩| av有码第一页| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 露出奶头的视频| 国产高清videossex| 亚洲va日本ⅴa欧美va伊人久久| 老熟妇仑乱视频hdxx| 久久天堂一区二区三区四区| 一级片免费观看大全| 国产精品一区二区免费欧美| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 国产在线精品亚洲第一网站| 日韩国内少妇激情av| 在线观看免费视频网站a站| 亚洲五月天丁香| 久99久视频精品免费| 无限看片的www在线观看| 日本 av在线| 老司机午夜十八禁免费视频| 黑人操中国人逼视频| 久久狼人影院| 一级,二级,三级黄色视频| 天堂√8在线中文| 国产一区二区三区综合在线观看| 欧美乱妇无乱码| 超碰成人久久| 欧美激情极品国产一区二区三区| 91大片在线观看| 午夜福利欧美成人| 精品国产一区二区久久| 成人av一区二区三区在线看| a级毛片在线看网站| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 欧美一级毛片孕妇| 国产精品综合久久久久久久免费 | 久久精品aⅴ一区二区三区四区| 国产精品二区激情视频| 黄色 视频免费看| 精品国产美女av久久久久小说| tocl精华| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 极品教师在线免费播放| www.精华液| 国产麻豆69| 久久人妻av系列| 激情在线观看视频在线高清| 露出奶头的视频| 国产av一区在线观看免费| 在线观看www视频免费| cao死你这个sao货| 国内精品久久久久精免费| 成人特级黄色片久久久久久久| 国产91精品成人一区二区三区| 三级毛片av免费| 老司机深夜福利视频在线观看| 精品人妻在线不人妻| 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 国产99白浆流出| 中文字幕人成人乱码亚洲影| 后天国语完整版免费观看| 久久精品亚洲精品国产色婷小说| 国产在线观看jvid| 欧美色欧美亚洲另类二区 | 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清 | 老司机午夜十八禁免费视频| 成人国产综合亚洲| videosex国产| 老司机福利观看| 亚洲电影在线观看av| 久久久国产精品麻豆| 欧美另类亚洲清纯唯美| 亚洲精品国产区一区二| 丝袜美腿诱惑在线| 高潮久久久久久久久久久不卡| 久久人人精品亚洲av| av超薄肉色丝袜交足视频| 亚洲欧美日韩高清在线视频| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 精品高清国产在线一区| 亚洲av美国av| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 久久香蕉国产精品| 午夜久久久在线观看| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 精品日产1卡2卡| 少妇熟女aⅴ在线视频| 亚洲第一青青草原| 亚洲精品久久国产高清桃花| 91在线观看av| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 91九色精品人成在线观看| 一本综合久久免费| av免费在线观看网站| 久久精品人人爽人人爽视色| 亚洲国产中文字幕在线视频| 91字幕亚洲| tocl精华| 777久久人妻少妇嫩草av网站| 琪琪午夜伦伦电影理论片6080| 久久人人爽av亚洲精品天堂| 亚洲国产精品sss在线观看| 亚洲黑人精品在线| 在线观看舔阴道视频| 18禁国产床啪视频网站| 大码成人一级视频| 搞女人的毛片| 亚洲国产看品久久| 女警被强在线播放| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 母亲3免费完整高清在线观看| 国产1区2区3区精品| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 免费无遮挡裸体视频| 90打野战视频偷拍视频| 久久青草综合色| 丁香欧美五月| 久久九九热精品免费| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 国产三级黄色录像| www.精华液| 韩国精品一区二区三区| 久久久久九九精品影院| 国产精品亚洲美女久久久| 亚洲国产毛片av蜜桃av| aaaaa片日本免费| 国产视频一区二区在线看| 国产精品av久久久久免费| 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| 女警被强在线播放| 久热爱精品视频在线9| 久久久水蜜桃国产精品网| 看免费av毛片| 久久婷婷人人爽人人干人人爱 | 精品高清国产在线一区| 欧美日本中文国产一区发布| www国产在线视频色| 日韩免费av在线播放| 亚洲黑人精品在线| netflix在线观看网站| 色综合站精品国产| 制服人妻中文乱码| 国产私拍福利视频在线观看| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费 | 亚洲精华国产精华精| 亚洲av五月六月丁香网| 性色av乱码一区二区三区2| 久久青草综合色| 99精品欧美一区二区三区四区| 九色国产91popny在线| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 操美女的视频在线观看| 好男人电影高清在线观看| 成年人黄色毛片网站| 黄色 视频免费看|