• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈉與惰性氣體及烷烴準(zhǔn)分子對(duì)吸收系數(shù)的實(shí)驗(yàn)與理論評(píng)價(jià)

    2016-09-05 13:04:00蓋寶棟曹戰(zhàn)利郭敬為中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室遼寧大連603四川大學(xué)原子與分子物理研究所成都60064
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:基組結(jié)合能準(zhǔn)分子

    胡 墅 蓋寶棟 曹戰(zhàn)利 郭敬為,* 王 繁(中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室,遼寧大連603;四川大學(xué)原子與分子物理研究所,成都60064)

    鈉與惰性氣體及烷烴準(zhǔn)分子對(duì)吸收系數(shù)的實(shí)驗(yàn)與理論評(píng)價(jià)

    胡墅1蓋寶棟1曹戰(zhàn)利2郭敬為1,*王繁2
    (1中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室,遼寧大連116023;2四川大學(xué)原子與分子物理研究所,成都610064)

    準(zhǔn)分子泵浦鈉金屬激光器(XPNaL)在鈉導(dǎo)星中有著極為重要的應(yīng)用。但是,傳統(tǒng)的準(zhǔn)分子對(duì),例如Na-He和Na-Ar等對(duì)相對(duì)于泵浦源的吸收系數(shù)很小。本文對(duì)Na-Ar、Na-Xe、Na-CH4、Na-C2H6四個(gè)體系進(jìn)行了研究,從熒光實(shí)驗(yàn)和結(jié)合能的高精度量化理論計(jì)算兩方面來(lái)探究比較好的準(zhǔn)分子對(duì)。實(shí)驗(yàn)結(jié)果表明:這四個(gè)準(zhǔn)分子對(duì)體系的熒光強(qiáng)度曲線峰面積比為1.0:6.4:4.9:10.4。同時(shí),通過(guò)CCSD(T)手段和基組外推法對(duì)Na-Ar、Na-Xe、Na-CH4和Na-C2H6準(zhǔn)分子對(duì)的結(jié)合能計(jì)算結(jié)果分別為52.8、124.5、117.7和150.0 cm-1。因此,可以推斷量化計(jì)算與實(shí)驗(yàn)結(jié)果能夠較好地符合。隨后,Na-C2H6準(zhǔn)分子對(duì)從實(shí)驗(yàn)和理論兩方面被發(fā)現(xiàn)是效率最高的體系,更有希望被發(fā)展成為高能準(zhǔn)分子寬帶泵浦鈉金屬激光器。本工作還證明了采用大基組對(duì)結(jié)合能的高精度量化計(jì)算,對(duì)用于準(zhǔn)分子寬帶泵浦堿金屬激光器的準(zhǔn)分子對(duì)篩選是很好的評(píng)判標(biāo)準(zhǔn)。

    準(zhǔn)分子對(duì);準(zhǔn)分子寬帶泵浦堿金屬激光器;CCSD(T);基組;熒光;吸收系數(shù)

    [Article]

    www.whxb.pku.edu.cn

    1 Introduction

    Sodium guide star enables the adaptive optics(AO)systems on the ground to observe the target at high altitude with high resolution,and this is crucial for applications such as universe observation,laser telecommunications etc.The key prerequisite to realize sodium guide star is sodium beacon laser,which must be accurately tuned to the wavelength of the sodium D2line(32P3/2→32S1/2)at 589.16 nm(vacuum)in order to obtain resonant backscatter from the sodium layer1,2.All the prevalent sodium beacon lasers are not based on the stimulated emission of sodium atoms, such as sum-frequency generation(SFG)3,4,stimulated Raman scattering(SRS)5,and optical parametric amplifier(OPA)6.Sodium beacon laser requires very accurate wavelength and narrow linewidth(less than 3 GHz)to obtain resonance efficiently.This special requirement complicated all the prevalent sodium beacon laser system,and led to a higher price and liability of system malfunction.Furthermore,sodium beacon lasers based on the mechanism mentioned above have relatively poorer power scalability in comparison with gas lasers.

    Excimer pumped sodium laser(XPNaL)is one kind of excimer pumped alkali lasers(XPAL)7-11,and it could overcome problems of the prevalent sodium beacon lasers.The mechanism of XPNaL is illustrated in Fig.1.Excimer pairs of sodium-rare gas system or sodium-alkane system are firstly formed by collision,and the excess energy are converted to the thermal energy of collision pairs or the third party.Excimer pairs are excited from X2Σ+1/2state to B2Σ+1/2state by the blue satellite pumping11.This blue satellite absorption was also explained as the free-free transitions of transient collision pairs in earlier literature12.Potential curve of thestate is repulsive and excimer pairs quickly dissociate to produce Na of excited state(32P3/2,32P1/2).Lasers of 589.16 and 589.76 nm can thus be observed from the stimulated emissions of 32P3/2→32S1/2(D2)and 32P1/2→32S1/2(D1).An etalon or a Volume Bragg Grating(VBG)could be used to select the output of D1or D2line.Although XPNaL has been fulfilled in Na-He system13,the output power is rather limited.The major reason is,similar to all XPALs,the pumping efficiency is too low.Therefore it is essential to explore Na-M(M=Ar,Xe,CH4,C2H6)excimer pair systems and find the optimal system with a large absorption coefficient.In this work,excimer systems of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6were studied by fluorescence spectroscopy.Under the same pumping condition,the stronger intensity of fluorescence means larger absorption coefficient and higher pumping efficiency. Binding energies for these excimer systems,which are closely related to the absorption coefficients,were also investigated based on quantum chemistry calculations.Both experimental and computational results provided the same ordering among the four excimer pairs studied in terms of absorption coefficient;and showed that Na-C2H6was the optimal system for XPNaL.

    Fig.1 Schematic diagram of XPNaLoperation mechanism The excimer pair is Na-Ar.

    2 Experimental set-up

    The schematic diagram of the experimental set-up is shown in Fig.2.An Nd:YAG(Spectral Physics,6350,USA)pumped dye laser(Radiant Dyes,NarrowScanK,Germany)was utilized to provide the tunable laser with wavelength over the range of 544-572 nm,the pulse duration of dye laser was~6 ns(FWHM:full width at half maximum)and the repetition frequency was 30 Hz. The pumping laser was focused into the center of the sodium vapor cell.The cell was made of glass and was 20 cm long by 2.5 cm in diameter.An oven and a thermal controller were employed to precisely control the temperature of the sodium vapor cell;the side of the oven had a small opening for the perpendicular fluorescence detection.The fluorescence was coupled into a spectrometer (HOIBA JOBIN YVON,FHR1000,France)by an optical fiber. The spectrometer has very high scatter light annihilation ratio,the pump light had absolutely no effect on the fluorescence detection. The spectrometer has an intensified charge-coupled device(ICCD) detector with maximum gain of 4000.The exposure time of ICCD was set as 1 μs,to efficiently collect the fluorescence and reduce the dark noise as well.The synchronization of experiment was controlled by a time delay generator(Stanford Research System, DG645,USA).The relative positions of oven,vapor cells,optical fiber,and laser focus point were fixed to eliminate discrepancy caused by the fluorescence collection efficiency.

    There were four kinds of buffer gases(Ar,Xe,CH4,and C2H6) used in the sodium vapor cells.All the pressure of buffer gases is 600 torr(1 torr=133 Pa)at room temperature,and the sodium vapor cell was heated to 280°C.Na atom vapor density is 1.24× 1014cm-3at 280°C.

    Fig.2 Experiment scheme of XPNaLfluorescence spectrum

    3 Experiment results and discussion

    The absorption of XPAL is generally very weak at blue satel-lites;it is difficult to obtain the absolute absorption coefficients of different excimer pairs.Fortunately,the fluorescence intensity reflects the absorption condition,and it could be detected easily. Fluorescence intensities of D1and D2lines were recorded while scanning the wavelength of pump laser,and profiles of blue satellites were obtained and shown in Fig.3.The blue satellite spectrum indicated that the wavelength range of absorption was broad,meanwhile,the wavelength corresponding to the maximum fluorescence(named as center wavelength)could be obtained for Na-Ar,Na-Xe,Na-CH4,and Na-C2H6systems(listed in Table 1). Center wavelengths of Na-Ar and Na-Xe systems were 555 and 560 nm,respectively,and they were quite consistent with the results of literature14.Therefore,this demonstrated that our experimental results were reliable.The blue satellite center wavelengths of Na-CH4and Na-C2H6systems were obtained to be 555 and 553 nm,respectively.

    Fig.3 Plots of fluorescence intensity in relationship with wavelength of pump laser for sodium based excimer systems at 280°CThese plots are equivalent to blue satellite absorption spectra of excimer pairs.

    Table 1 Comparison of the four excimer pairs

    After the range of blue satellites was obtained,pumping laser was tuned to the wavelengths that produced the strongest fluorescence(center wavelength)to pump the sodium vapor cell, while fluorescence intensities of D1and D2lines were recorded. The energy of dye laser was kept the same value throughout the fluorescence detection.Fluorescence of Na-Ar,Na-Xe,Na-CH4, and Na-C2H6systems were compared at 280°C and are shown in Fig.4.The fluorescence intensity follows the order of Na-C2H6> Na-Xe>Na-CH4>Na-Ar.In Fig.4,fluorescence linewidths for excimer systems of Na-C2H6and Na-CH4were significantly broader than that of Na-Xe system,and this is mainly due to the collision broadening mechanism.Collision broadening is proportional to collision cross section,and the square root of the reciprocal of reduced mass of collision pair.The square roots of the reciprocal of reduced mass are 0.23,0.32,and 0.28 for collision pairs of Na-Xe,Na-CH4,and Na-C2H6;the collision crosssections are 26′10-16cm2and 36′10-16cm2for collision pairs of Na-Xe and Na-CH4,this gave the linewidth ratio of 0.52 between collision pairs of Na-Xe and Na-CH4.The collision cross section for collision pairs of Na-C2H6is more complicated to calculate.But considering the overall effects of collision cross section and reduced mass,fluorescence linewidths for collision pairs of Na-C2H6and Na-CH4should be similar.The peak area of fluorescence intensity curves should be a better indication of the order of the absorption coefficients(A)of different excimer systems,and it was calculated as A(Na-Ar):A(Na-Xe):A(Na-CH4):A(Na-C2H6)=1.0:6.4:4.9:10.4.

    Fig.4 Comparison of fluorescence intensities of D1and D2lines of sodium based excimer systems at 280°C

    4 Computational method and results

    There are many possible excimer pairs for potential XPNaL applications and it would be really costly to explore every possible excimer pair.Quantum chemistry calculation was thus a very good alternative option to explore optimal excimer pair for XPNaL. Absorption coefficient normally required the calculation of Frank-Condon factor;thus,the full potential curves for the ground state and excited states,as well as transition dipole moments were necessary15.It is important to note that binding energy of the Na-M complex is very small(in a magnitude of 100 cm-1or even smaller)with a long Na-M distance.Also the excited states are normally pre-dissociative states.Methods with high accuracy together with very large basis set augmented with diffused functions is required to obtain reliable potential curves of ground and excited pre-dissociation states.This would be computationally very demanding.On the other hand,larger binding energy will lead to shorter bond length,thus more compact nuclear wavefunction,and bigger transition moment and absorption coefficient was expected.Transition probabilities from loose bond ground state to unbounded state should be closely related to the binding energy of the ground state.Therefore the binding energies of Na-M complexes were calculated,and were employed to relate to the strengths of absorption of the involved complexes.Comparison between fluorescence experiment results and binding energy calculations would provide a good evaluation for this relationship.

    The Na-M systems investigated in the present work are van der Waals complexes and their binding energies originate from London dispersion force,i.e.,interaction between the induced dipoles of Na and M.According to the London formula,the interaction energy can be estimated based on the following equation16:

    whereα1′andα2′are the polarizability volumes of Na and M,I1and I2are corresponding ionization potentials,and R is the distance between Na and M.Experimental ionization potentials17as well as polarizability volumes18,19for the involved atoms and molecules are listed in Table 2 together with the calculated C term in Eq.(1). Ionization potential of Na is smaller than those of the others to a large extent,which means that differences in ionization energies of M only has a minor effect on C.On the other hand,polarizabilities of the rare gas atoms or the alkyls have a larger effect on magnitude of C.One can see from this table that C increases in the same order as polarizabilities,i.e.,in the order of Ar,CH4,Xe, C2H6.However,the interaction energy is proportional to the inverse sixth power of R according to Eq.(1)and the distance between Na and M will thus play an important role in the binding energy.

    Alternatively,binding energies between Na and M are calculated with quantum chemistry approach.Electron correlation must be treated reliably to achieve a reasonable description on these systems and the CCSD(T)approach,the so called“gold standard”of quantum chemistry,is employed in the present work.Moreover, Na only has one valence electron and its correlation energy will be zero if core electrons are not considered in calculations of correlation energies.This indicates that contribution of core electrons to correlation energy is important for these systems.The correlation-consistent basis set with core-valence correlation effects augmented with a set of diffuse basis functions,i.e.,aug-ccpCVQZ20-22is employed in calculations for all the involved atoms except for Xe.The ECP28MDF23pseudopotential developed by the Stuttgart/Cologne groups is used for Xe together with the corresponding aug-cc-pWCVQZ24basis set.All electrons that are not treated via pseudopotentials are correlated in calculations and all calculations are carried out using MOLPRO25on clusters of National Supercomputing Center in Shenzhen.It is worth noting that equation-of-motion coupled-cluster approach may also be adopted for such systems26,27.

    Table 2 Experimental ionization potentials(IPs)17and polarizability volumes(α′)18,19for the involved atoms and molecules together with the value of C term in Eq.(1)

    Optimized distance between Na and Ar or Xe can be obtained with ease.On the other hand,structures of CH4and C2H6in Na-CH4and Na-C2H6systems are taken from experimental data of isolated CH428and C2H629molecules and kept frozen in geometry optimization to facilitate calculations.Interaction between Na and CH4or C2H6is rather weak and its effect on structure of CH4or C2H6is neglected.Pilot calculations with a small basis set indeed show that effect of using experimental structure for CH4or C2H6in Na-CH4or Na-C2H6system on binding energy is negligible. Optimized structures for these systems are obtained based on numerical gradients as implemented in MOLPRO.The optimized structures for Na-CH4and Na-C2H6are illustrated in Fig.5.One can see from this figure that both these two systems have a C3vsymmetry.

    Calculated distances between Na and M as well as their binding energies are listed in Table 3.Experimental results30,31for Na-Ar and Na-Xe are also listed for comparison.It should be noted that due to their weak interaction,interaction energies are in fact insensitive to the obtained distances when they are not far from those in the optimal structures.One can see from Table 3 that the calculated bond lengths for Na-Ar and Na-Xe are in good agreement with experimental values.Furthermore,binding energies between Na and M are in consistent with polarizabilities of M.To further investigate effects of basis set on the calculated results, interaction energies with the aug-cc-pCV5Z basis set at the optimized structures obtained with the aug-cc-pCVQZ basis set are also calculated for these systems.Unfortunately,the number of basis functions for the Na-C2H6system is too large and we are not able to carry out calculation for this system due to limited computational resources.The calculated results are also listed in Table 3 and result for Na-C2H6is estimated based on difference in binding energy of Na-CH4with these two basis sets.One can see from this table that binding energies with the aug-cc-pCV5Z basis set are consistent with those using the aug-cc-pCVQZ basis set. Effect of basis set superposition error(BSSE)32is usually considered to correct binding energies of weak interaction systems. However,BSSE correction will decrease the obtained interaction energies.According to results in Table 3,we can see that the binding energies actually increase with the size of the basis set. BSSE correction thus should not be used to improve results for the investigated systems.On the other hand,basis set extrapolation is employed to estimate binding energies at the basis set limit with the following equations33:

    The Hartree-Fock energy used in Eq.(2)is taken from result with aug-cc-pCV5Z basis set.is the CCSD(T)correlation energy obtained with the aug-cc-pCVXZ basis set.The parameters a and the extrapolated complete basis set limit CCSD(T)correlation energyin Eq.(3)are determined from correlation energies with the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets. The obtained results are listed in Table 3 and once again,the binding energies are consistent with those using the aug-ccpCVQZ basis set.In comparison with experimental results,the achieved binding energies for Na-Ar and Na-Xe are about 10 cm-1larger.

    Fig.5 Optimized structures of Na-CH4and Na-C2H6systems

    Table 3 Optimized distance(R)between Na and M and binding energies(De)of Na-M(M=Ar,Xe,CH4,C2H6)

    Binding energies of the Na-M complexes follow the order of Na-C2H6>Na-Xe>Na-CH4>Na-Ar.According to the analysis above,the absorption coefficients were expected to follow the same order.Fluorescence experimental results from Fig.4 and Table 1 showed exactly same order and even with similar pattern. Both binding energy and fluorescence intensity of Na-C2H6are significant larger than those of Na-Xe and Na-CH4,and are much larger than those of Na-Ar.This shows that theoretical and experimental results are consistent with each other.This result indicates that binding energy calculated by high precision quantum chemistry method in combination with large basis set is a very good approximation for the ordering of the absorption coefficients and fluorescence intensities of Na-M complexes.This result pavedthe road to the optimal Na-M excimer system by exploring Nacomplexes in a very large scale.The fluorescence experiment results also showed that Na-Xe and Na-C2H6are optimal systems for possible XPNaL system,although lasering experiment is still required to support this conclusion.

    5 Conclusions

    In this work,we measured fluorescence intensity for excimer systems of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6to investigate absorption coefficients of these systems.Under the condition of same pump energy,the bigger the absorption coefficient was,the intenser fluorescence was expected.The peak area ratio of fluorescence intensity curves for these systems was given as 1.0:6.4: 4.9:10.4 by experiment.On the other hand,Binding energies for excimer pairs of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6with the CCSD(T)approach and basis set extrapolation were calculated as 52.8,124.5,117.7,and 150.0 cm-1,respectively.Therefore predication by quantum chemistry calculation was in good consistent with experimental results.This demonstrated that quantum chemistry calculations could play an important role in the selection of excimer pairs of XPNaL,and it was expected to be applicable for all XPAL as well.Experimental results showed that for XPNaL laser operation,excimer pair of Na-C2H6was the best choice among the four systems studied in this work,and it was 10 times more efficient than excimer pairs of Na-Ar.For the application for sodium beacon light purpose,both excimer pairs of Na-C2H6and Na-Xe were good choice and they were approximately 6 times more efficient than Na-Ar system.The fluorescence experimental results were crucial for the development of high power XPNaL,because to achieve the same amount of output energy,Na-C2H6system was expected to only require one tenth of pumping energy of Na-Ar system.

    References

    (1)Max,C.E.;Olivier,S.S.;Friedman,H.W.;An,J.;Avicola, K.;Beeman,B.V.;Bissinger,H.D.;Brase,J.M.;Erbert,G. V.;Gavel,D.T.;Kanz,K.;Liu,M.C.;Macintosh,B.;Neeb, K.P.;Patience,J.;Waltjen,K.E.Science 1997,277,1649.doi: 10.1126/science.277.5332.1649

    (2)Rochester,S.M.;Otarola,A.;Boyer,C.;budker,D.; Ellerbroek,B.;Holzl?hner,R.;Wang,L.J.Opt.Soc.Am.B 2012,29(8),2176.doi:10.1364/JOSAB.29.002176

    (3)Lee,I.;Jalali,M.;Vanasse,N.;Prezkuta,Z.;Groff,K.;Roush, J.;Rogers,N.;Andrews,E.;Moule,G.;Tiemann,B.;Hankla, A.K.;Adkins,S.M.;d'Orgeville.C.Proc.SPIE Adaptive Optics Systems 2008,7015,70150N.doi:10.1117/12.790534

    (4)Wang,P.;Xie,S.;Bo,Y.;Wang,B.;Zuo,J.;Wang,Z.;Shen, Y.;Zhang,F.;Wei,K.;Jin,K.;Xu,Y.;Xu,J.;Peng,Q.;Zhang, J.;Lei,W.;Cui,D.;Zhang,Y.;Xu,Z.Chin.Phys.B 2014,23 (11),094208.doi:10.1088/1674-1056/23/9/094208

    (5)Cong,Z.;Zhang,X.;Wang,Q.;Chen,X.;Fan,S.;Liu,Z.; Zhang,H.;Tao,X.;Wang,J.;Zhao,H.;Li,S.Laser Phys.Lett. 2010,7(12),862.doi:10.1002/lapl.201010076

    (6)Duering,M.;Kolev,V.;Luther-Davies,B.Opt.Express 2009, 17(2),437.doi:10.1364/OE.17.000437

    (7)Dhiflaoui,J.;Berriche,H.;Heaven,M.C.AIP Conf.Proc. 2011,1370,234.doi:10.1063/1.3638107

    (8)Merritt,J.M.;Han,J.;Chang,T.;Heaven,M.C.Proc.SPIE 2009,7196,71960H.doi:10.1117/12.815155

    (9)Readle,J.D.;Verdeyen,J.T.;Eden,J.G.;Davis,S.J.; Galbally-Kinney,K.L.;Rawlins,W.T.;Kessler,W.J.Opt. Lett.2009,34(23),3638.doi:10.1364/OL.34.003638

    (10)Hewitt,J.D.;Houlahan,T.J.,Jr.;Gallagher,J.E.;Carroll,D. L.;Palla,A.D.;Verdeyen,J.T.;Perram,G.P.;Eden,J.G. Appl.Phys.Lett.2013,102,111104.doi:10.1063/1.4796040

    (11)Palla,A.D.;Carroll,D.L.;Verdeyen,J.T.;Heaven,M.C. J.Phys.B:At.Mol.Opt.Phys.2011,44,135402.doi:10.1088/ 0953-4075/44/13/135402

    (12)Szudy,J.;Baylis,W.E.J.Quantum Spectrosc.Ra.1975,15 (7-8),641.doi:10.1016/0022-4073(75)90032-1

    (13)Markov,R.V.;Plekhanov,A.I.;Shalagin,A.M.Phys.Rev. Lett.2002,88(21),213601.doi:10.1103/ PhysRevLett.88.213601

    (14)Chung,H.K.;Shurgalin,M.;Babb,J.F.AIP Conf.Proc.2002, 645,211.doi:10.1063/1.1525457

    (15)Alioua,K.;Bouledroua,M.;Allouche,A.R.;Aubert-Frecon, M.J.Phys.B:At.Mol.Opt.Phys.2008,41(17),175102.doi: 10.1088/0953-4075/41/17/175102

    (16)Atkins,P.;De Paula,J.Physical Chemistry,8th ed.;Oxford University Press:Oxford,UK,2006;p 634.

    (17)Martin,W.C.;Musgrove,A.;Kotochigova,S.;Sansonetti,J. E.2011,Ground Levels and Ionization Energies for the NeutralAtoms(version 1.3).National Institute of Standards and Technology,Gaithersburg,MD.[Online]Available:http:// physics.nist.gov/IonEnergy[Wednesday,22-Apr-2015,21: 45:55 EDT].

    (18)Olney,T.N.;Cann,N.M.;Cooper,G.;Brion,C.E.Chem. Phys.1997,223(1),59.doi:10.1016/S0301-0104(97)00145-6

    (19)Langhoff,P.W.;Karplus,M.J.Opt.Soc.Am.1969,59(7), 863.doi:10.1364/JOSA.59.000863

    (20)Dunning,T.H.,Jr.J.Chem.Phys.1989,90(2),1007.doi: 10.1063/1.456153

    (21)Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1994,100(4), 2975.doi:10.1063/1.466439

    (22)Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1993,98(2), 1358.doi:10.1063/1.464303

    (23)Peterson,K.A.;Figgen,D.;Goll,E.;Stoll,H.;Dolg,M. J.Chem.Phys.2003,119(21),11113.doi:10.1063/1.1622924

    (24)Peterson,K.A.;Yousaf,K.E.J.Chem.Phys.2010,133(17), 174116.doi:10.1063/1.3503659

    (25)Werner,H.J.;Knowles,P.J.;Knizia,G.;Manby,F.R.;Schütz, M.Wires Comput.Mol.Sci.2012,2,242;MOLPRO,version 2012.1,http://www.molpro.net.doi:10.1002/wcms.82

    (26)Liang,Y.N.;Wang,F.Acta Phys.-Chim.Sin.2014,30(8), 1447.[梁艷妮,王繁.物理化學(xué)學(xué)報(bào),2014,30(8),1447.] doi:10.3866/PKU.WHXB201405302

    (27)Cao,Z.L.;Wang,Z.F.;Yang,M.L.;Wang,F.Acta Phys.-Chim.Sin.2014,30(3),431.[曹戰(zhàn)利,王治釩,楊明理,王繁.物理化學(xué)學(xué)報(bào),2014,30(3),431.]doi:10.3866/PKU. WHXB201401023

    (28)Sverdlov,L.M.;Kovner,M.A.;Krainov,E.P.Vibrational Spectra of Polyatomic Molecule;Wiley:New York,1974.

    (29)Benran,K.Bond Lengths and Angles in Gas-Phase Molecules, 3rd ed.II;Maruzen Company,LTD.:Tokyo,Japan,1984;p 649.

    (30)Baumann,P.;Zimmermann,D.;Brühl,R.J.Mol.Spec.1992, 155(2),277.doi:10.1016/0022-2852(92)90517-R

    (31)Schwarzhans,D.;Zimmermann,D.Eur.Phys.J.D 2003,22 (2),193.doi:10.1140/epjd/e2002-00242-8

    (32)Boys,S.F.;Bernardi,F.Mol.Phys.1970,19(4),553.doi: 10.1080/00268977000101561

    (33)Pahl,E.;Figgen,D.;Thierfelder,C.;Peterson,K.A.;Calvo,F.; Schwerdtfeger,P.J.Chem.Phys.2010,132(11),114301.doi: 10.1063/1.3354976

    Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes

    HU Shu1GAI Bao-Dong1CAO Zhan-Li2GUO Jing-Wei1,*WANG Fan2
    (1Key Laboratory of Chemical Lasers,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, Liaoning Province,P.R.China;2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610064,P.R.China)

    The excimer-pumped sodium laser(XPNaL)is very important for its application in sodium guide star.However,the absorption coefficients(for the pumping source)of traditional excimer pairs,such as Na-He and Na-Ar,are very small.In this work,four systems(Na-Ar,Na-Xe,Na-CH4,and Na-C2H6)are investigated based on both fluorescence experiment and theoretical binding energies obtained from highly accurate quantum chemistry calculations to determine better excimer pairs.The experiment results show that the peak area ratio of fluorescence intensity curves for the excimer pairs of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6was 1.0:6.4:4.9: 10.4.Meanwhile,using the CCSD(T)approach and basis set extrapolation,binding energies for these four systems were calculated as 52.8,124.5,117.7,and 150.0 cm-1,respectively.Therefore,predication by quantum chemistry calculation was consistent with experimental results.The Na-C2H6system was found to be the most efficient system both experimentally and theoretically,and has the potential to be used in the development of a high power XPNaL.This work also demonstrates that the binding energy from highly accurate quantum chemistry calculations with a large basis set is a very good criterion for the selection of excimer pairs for the excimer-pumped alkali laser(XPAL).

    Excimer pair;XPAL;CCSD(T);Basis set;Fluorescence;Absorption coefficient

    October 28,2015;Revised:January 13,2016;Published on Web:January 15,2016.*Corresponding author.Email:jingweiguo@dicp.ac.cn;Tel:+86-411-84379715. The project was supported by the National Natural Science Foundation of China(11475177,11304311,61505210,61405197).

    O641

    10.3866/PKU.WHXB201601151

    國(guó)家自然科學(xué)基金(11475177,11304311,61505210,61405197)資助項(xiàng)目

    猜你喜歡
    基組結(jié)合能準(zhǔn)分子
    晶體結(jié)合能對(duì)晶格動(dòng)力學(xué)性質(zhì)的影響
    借鑒躍遷能級(jí)圖示助力比結(jié)合能理解*
    高能炸藥CL-20分子結(jié)構(gòu)的理論模擬方法探究
    火工品(2019年6期)2019-06-05 02:35:44
    精確計(jì)算核磁共振屏蔽常數(shù)的擴(kuò)展焦點(diǎn)分析方法
    基組遞推方法的研究進(jìn)展
    308 nm準(zhǔn)分子光聯(lián)合復(fù)方卡力孜然酊治療白癜風(fēng)的療效及護(hù)理
    ε-CL-20/F2311 PBXs力學(xué)性能和結(jié)合能的分子動(dòng)力學(xué)模擬
    對(duì)“結(jié)合能、比結(jié)合能、質(zhì)能方程、質(zhì)量虧損”的正確認(rèn)識(shí)
    308nm準(zhǔn)分子激光治療白癜風(fēng)臨床研究
    308nm準(zhǔn)分子光治療36例白癜風(fēng)患者臨床觀察
    亚洲美女搞黄在线观看| av天堂久久9| 欧美精品一区二区免费开放| 免费人成在线观看视频色| 欧美成人精品欧美一级黄| 日韩一区二区三区影片| 能在线免费看毛片的网站| 成人影院久久| 精品午夜福利在线看| 搡女人真爽免费视频火全软件| 日日啪夜夜撸| av.在线天堂| 国产高清不卡午夜福利| 国产精品蜜桃在线观看| 精品少妇内射三级| 91久久精品国产一区二区三区| 最新中文字幕久久久久| 天天操日日干夜夜撸| 内射极品少妇av片p| 欧美精品高潮呻吟av久久| 韩国高清视频一区二区三区| 日韩欧美精品免费久久| 国产精品女同一区二区软件| 精品一区二区免费观看| 中文天堂在线官网| 99精国产麻豆久久婷婷| 麻豆成人av视频| 又黄又爽又刺激的免费视频.| 亚洲成人一二三区av| 老司机亚洲免费影院| 日韩亚洲欧美综合| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 午夜激情福利司机影院| 国产成人a∨麻豆精品| 精品久久国产蜜桃| 一级片'在线观看视频| 亚洲综合色惰| 我的女老师完整版在线观看| 日韩制服骚丝袜av| 久久精品久久久久久噜噜老黄| 自拍偷自拍亚洲精品老妇| 永久网站在线| 免费av不卡在线播放| a级片在线免费高清观看视频| 精品视频人人做人人爽| 亚洲国产成人一精品久久久| 亚洲人与动物交配视频| 亚洲国产最新在线播放| 国产极品天堂在线| 熟女av电影| 亚洲美女搞黄在线观看| 亚洲国产欧美日韩在线播放 | av专区在线播放| 国产日韩欧美在线精品| tube8黄色片| 久久久国产欧美日韩av| 自线自在国产av| 免费黄网站久久成人精品| 一级av片app| 嘟嘟电影网在线观看| 亚洲精品第二区| 日韩亚洲欧美综合| 色婷婷久久久亚洲欧美| 一本大道久久a久久精品| 99九九在线精品视频 | 免费人成在线观看视频色| 久久久久久久亚洲中文字幕| 涩涩av久久男人的天堂| 99久久人妻综合| 日韩一区二区三区影片| 美女cb高潮喷水在线观看| 色婷婷久久久亚洲欧美| 老司机影院成人| 99久久综合免费| 国产免费视频播放在线视频| 久久精品久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩综合在线一区二区 | 欧美另类一区| 国产精品免费大片| av免费在线看不卡| 亚洲怡红院男人天堂| 国产一区二区三区av在线| av网站免费在线观看视频| 全区人妻精品视频| 国产黄片美女视频| 欧美日本中文国产一区发布| 免费大片18禁| 一边亲一边摸免费视频| 亚洲av.av天堂| 日本wwww免费看| 亚洲综合色惰| 精品一区二区免费观看| 色哟哟·www| 午夜久久久在线观看| 亚洲欧洲精品一区二区精品久久久 | .国产精品久久| 中文资源天堂在线| 在线观看一区二区三区激情| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三区在线 | 晚上一个人看的免费电影| 亚洲不卡免费看| 国产在线一区二区三区精| 久久久久久久久久久丰满| 免费人成在线观看视频色| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 黄片无遮挡物在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品94久久精品| 欧美精品一区二区大全| 男人舔奶头视频| 成年人免费黄色播放视频 | 午夜福利在线观看免费完整高清在| 国产淫语在线视频| 亚洲av在线观看美女高潮| 80岁老熟妇乱子伦牲交| 国产在线一区二区三区精| 精品99又大又爽又粗少妇毛片| 日韩免费高清中文字幕av| √禁漫天堂资源中文www| 大码成人一级视频| 在线观看免费日韩欧美大片 | freevideosex欧美| 黄色配什么色好看| 在线观看免费视频网站a站| 久久久久久久亚洲中文字幕| 日韩 亚洲 欧美在线| 观看美女的网站| 国产日韩一区二区三区精品不卡 | 在线播放无遮挡| 欧美激情国产日韩精品一区| 乱人伦中国视频| 午夜视频国产福利| 青春草视频在线免费观看| 80岁老熟妇乱子伦牲交| 精品少妇黑人巨大在线播放| 你懂的网址亚洲精品在线观看| 伊人亚洲综合成人网| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区视频9| 欧美精品国产亚洲| 丰满迷人的少妇在线观看| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 亚洲图色成人| 亚洲性久久影院| 久久99一区二区三区| 日本午夜av视频| 国产精品免费大片| 91精品国产国语对白视频| 亚洲精品成人av观看孕妇| 丁香六月天网| 黄色配什么色好看| 国产亚洲5aaaaa淫片| 午夜激情久久久久久久| 毛片一级片免费看久久久久| 水蜜桃什么品种好| 久久精品夜色国产| 啦啦啦啦在线视频资源| av线在线观看网站| 国产乱人偷精品视频| 中文在线观看免费www的网站| 97在线人人人人妻| 91成人精品电影| 国产色婷婷99| 国产又色又爽无遮挡免| 欧美最新免费一区二区三区| 精品国产露脸久久av麻豆| 精品人妻偷拍中文字幕| 国产极品天堂在线| 日韩中字成人| 亚洲怡红院男人天堂| 欧美另类一区| 人人妻人人添人人爽欧美一区卜| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 丰满饥渴人妻一区二区三| 97超碰精品成人国产| 国产极品天堂在线| 亚洲欧洲日产国产| 午夜福利视频精品| 日本欧美国产在线视频| 丝袜脚勾引网站| a级毛色黄片| 亚洲国产欧美日韩在线播放 | 中文字幕人妻丝袜制服| 中文天堂在线官网| 久久免费观看电影| 91aial.com中文字幕在线观看| 搡女人真爽免费视频火全软件| 一本色道久久久久久精品综合| 九色成人免费人妻av| 中国国产av一级| 国精品久久久久久国模美| 2021少妇久久久久久久久久久| 一级黄片播放器| 免费看日本二区| 丁香六月天网| 97超碰精品成人国产| 成人亚洲精品一区在线观看| 亚洲电影在线观看av| 久久免费观看电影| 国产欧美日韩综合在线一区二区 | 午夜福利视频精品| 日韩亚洲欧美综合| 建设人人有责人人尽责人人享有的| 久久久久久久国产电影| 亚洲av在线观看美女高潮| h视频一区二区三区| av天堂中文字幕网| 亚洲激情五月婷婷啪啪| 日韩中字成人| 久久久久久久精品精品| 成年人午夜在线观看视频| 中文字幕制服av| tube8黄色片| 尾随美女入室| 永久免费av网站大全| 亚洲美女黄色视频免费看| 亚洲欧美成人综合另类久久久| 国产亚洲欧美精品永久| 国模一区二区三区四区视频| 热re99久久精品国产66热6| 国产精品蜜桃在线观看| 黄色欧美视频在线观看| 国产男女超爽视频在线观看| 久久热精品热| 国产亚洲午夜精品一区二区久久| 欧美日韩av久久| 国产精品蜜桃在线观看| 人人妻人人爽人人添夜夜欢视频 | 我的女老师完整版在线观看| 日日爽夜夜爽网站| 国产精品久久久久久久久免| 日本黄色日本黄色录像| 亚洲欧美精品自产自拍| 丰满人妻一区二区三区视频av| 色视频在线一区二区三区| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av天美| 五月开心婷婷网| av播播在线观看一区| 久久人人爽人人爽人人片va| 啦啦啦视频在线资源免费观看| 99热全是精品| 国产高清三级在线| 免费看光身美女| 男女边摸边吃奶| 亚洲国产精品专区欧美| 亚洲av电影在线观看一区二区三区| 少妇人妻精品综合一区二区| 日日啪夜夜爽| 亚洲久久久国产精品| 美女大奶头黄色视频| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| a级一级毛片免费在线观看| 免费av不卡在线播放| 亚洲欧美精品专区久久| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 狠狠精品人妻久久久久久综合| 午夜福利,免费看| 国产免费福利视频在线观看| 最新中文字幕久久久久| av天堂久久9| 亚洲精品日本国产第一区| 成年av动漫网址| 高清视频免费观看一区二区| 久久久午夜欧美精品| 久久久精品94久久精品| 一区二区三区乱码不卡18| 涩涩av久久男人的天堂| 人人妻人人澡人人爽人人夜夜| 国产精品成人在线| 免费久久久久久久精品成人欧美视频 | 亚洲自偷自拍三级| 视频中文字幕在线观看| 国产成人aa在线观看| 国产伦精品一区二区三区四那| 天堂中文最新版在线下载| 七月丁香在线播放| 日日爽夜夜爽网站| 日日爽夜夜爽网站| 丰满迷人的少妇在线观看| 日韩不卡一区二区三区视频在线| 精品久久久久久久久亚洲| 美女主播在线视频| 国产熟女午夜一区二区三区 | 天堂俺去俺来也www色官网| 欧美精品亚洲一区二区| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 一本大道久久a久久精品| 欧美成人精品欧美一级黄| 欧美高清成人免费视频www| 寂寞人妻少妇视频99o| 丰满人妻一区二区三区视频av| 嫩草影院入口| 建设人人有责人人尽责人人享有的| 少妇精品久久久久久久| 日本黄大片高清| 色吧在线观看| 丰满少妇做爰视频| 亚洲精品乱码久久久v下载方式| 日韩,欧美,国产一区二区三区| 七月丁香在线播放| 免费黄色在线免费观看| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 黄色怎么调成土黄色| 亚洲精品中文字幕在线视频 | 欧美老熟妇乱子伦牲交| 久久久午夜欧美精品| 国产精品一区二区在线不卡| 丰满饥渴人妻一区二区三| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美视频二区| 国产精品人妻久久久久久| 亚洲真实伦在线观看| 国产av国产精品国产| 亚洲欧美一区二区三区国产| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 在线观看免费日韩欧美大片 | 一级片'在线观看视频| 春色校园在线视频观看| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| 成人影院久久| 十八禁高潮呻吟视频 | 天堂8中文在线网| 久久精品夜色国产| 免费人成在线观看视频色| 边亲边吃奶的免费视频| 777米奇影视久久| 国产美女午夜福利| 在线观看免费视频网站a站| 成人毛片60女人毛片免费| 国产精品三级大全| 水蜜桃什么品种好| 国产在线男女| 这个男人来自地球电影免费观看 | 午夜福利,免费看| 国产精品无大码| 亚洲,一卡二卡三卡| 国产精品蜜桃在线观看| av有码第一页| 亚洲国产av新网站| 91久久精品国产一区二区成人| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 精品久久国产蜜桃| 韩国av在线不卡| 岛国毛片在线播放| 草草在线视频免费看| 午夜老司机福利剧场| 成人美女网站在线观看视频| 人妻夜夜爽99麻豆av| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 久久久欧美国产精品| 成人黄色视频免费在线看| 91在线精品国自产拍蜜月| 成年av动漫网址| 国产熟女欧美一区二区| 一级片'在线观看视频| 久久久久国产精品人妻一区二区| 日韩在线高清观看一区二区三区| 久久99精品国语久久久| 亚洲色图综合在线观看| 久久精品国产亚洲av天美| 肉色欧美久久久久久久蜜桃| 国产国拍精品亚洲av在线观看| 三级国产精品片| 亚洲中文av在线| 久久久久久久久大av| av不卡在线播放| 国产在线男女| 欧美日韩在线观看h| 一二三四中文在线观看免费高清| 99热这里只有精品一区| 人体艺术视频欧美日本| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 黄色一级大片看看| 高清av免费在线| 少妇熟女欧美另类| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频 | 十八禁网站网址无遮挡 | 亚洲国产成人一精品久久久| 久久久久久久久久人人人人人人| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 国产精品.久久久| 各种免费的搞黄视频| 少妇人妻精品综合一区二区| 欧美+日韩+精品| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 日韩一区二区视频免费看| 国产极品粉嫩免费观看在线 | 国产精品一二三区在线看| 少妇高潮的动态图| 国产精品人妻久久久影院| 亚洲精品第二区| 成人亚洲精品一区在线观看| 五月玫瑰六月丁香| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 国产视频首页在线观看| 久久精品国产亚洲av天美| 在线看a的网站| 久久99热这里只频精品6学生| 一个人免费看片子| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 人妻 亚洲 视频| 亚洲美女视频黄频| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 国产高清三级在线| 亚洲美女黄色视频免费看| 日韩欧美精品免费久久| 国产精品人妻久久久久久| 国产一区二区在线观看av| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 2018国产大陆天天弄谢| 久久精品久久久久久久性| 99视频精品全部免费 在线| 我要看日韩黄色一级片| av在线app专区| 欧美亚洲 丝袜 人妻 在线| 色视频www国产| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 一级av片app| av网站免费在线观看视频| 日韩免费高清中文字幕av| 少妇高潮的动态图| 国产亚洲最大av| 十八禁高潮呻吟视频 | 插阴视频在线观看视频| 国产成人午夜福利电影在线观看| 女人精品久久久久毛片| 嘟嘟电影网在线观看| 大话2 男鬼变身卡| 国产av国产精品国产| 一级爰片在线观看| 最黄视频免费看| 国产成人aa在线观看| 欧美区成人在线视频| 91精品国产国语对白视频| 国产伦精品一区二区三区四那| 人人妻人人澡人人看| 如何舔出高潮| 蜜臀久久99精品久久宅男| 我要看黄色一级片免费的| 国产在线免费精品| 一级a做视频免费观看| 伊人久久国产一区二区| 少妇丰满av| 久久久久国产精品人妻一区二区| 亚洲成色77777| av国产精品久久久久影院| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 香蕉精品网在线| 亚洲欧美精品专区久久| 五月天丁香电影| 亚洲av二区三区四区| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 久久久久久久久大av| 亚洲成人一二三区av| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 亚洲国产日韩一区二区| a级毛片免费高清观看在线播放| 老女人水多毛片| 美女主播在线视频| 韩国av在线不卡| 久久久亚洲精品成人影院| 一级毛片我不卡| 国产欧美亚洲国产| 日韩强制内射视频| 日韩一区二区视频免费看| 桃花免费在线播放| 久久精品国产a三级三级三级| 国产 一区精品| 成人二区视频| 日日啪夜夜撸| 男人爽女人下面视频在线观看| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 久久久国产欧美日韩av| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 天堂中文最新版在线下载| 一区二区三区免费毛片| 精品人妻熟女毛片av久久网站| 激情五月婷婷亚洲| 男女无遮挡免费网站观看| 色吧在线观看| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 色视频www国产| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 国产免费一级a男人的天堂| 插阴视频在线观看视频| 老司机影院毛片| 国精品久久久久久国模美| 久久久久久久久久成人| 激情五月婷婷亚洲| h视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 最新的欧美精品一区二区| 最近2019中文字幕mv第一页| 久久久久久久久久久久大奶| av不卡在线播放| 99视频精品全部免费 在线| 精品少妇内射三级| av福利片在线观看| 久久国内精品自在自线图片| 久久热精品热| 最近2019中文字幕mv第一页| 三级国产精品欧美在线观看| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 久久女婷五月综合色啪小说| 久久6这里有精品| 国产男女超爽视频在线观看| 精品少妇内射三级| 亚洲经典国产精华液单| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 免费大片黄手机在线观看| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 啦啦啦中文免费视频观看日本| 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 亚洲国产日韩一区二区| 啦啦啦中文免费视频观看日本| 国产成人freesex在线| 嫩草影院新地址| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 黄色日韩在线| 欧美日韩国产mv在线观看视频| 国产高清不卡午夜福利| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 一本久久精品| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 中文天堂在线官网| 欧美日韩av久久| 亚洲精品亚洲一区二区| 一级黄片播放器| 街头女战士在线观看网站| 成人二区视频| 26uuu在线亚洲综合色| videos熟女内射| 日韩三级伦理在线观看| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| 久久婷婷青草| 人人妻人人添人人爽欧美一区卜| 国产白丝娇喘喷水9色精品| 亚洲精品国产av成人精品| 久久免费观看电影| 免费看av在线观看网站| 最新中文字幕久久久久| 中文字幕人妻熟人妻熟丝袜美| 又粗又硬又长又爽又黄的视频| 少妇被粗大的猛进出69影院 | 亚洲精品456在线播放app| 只有这里有精品99| 国产无遮挡羞羞视频在线观看| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 国产精品人妻久久久影院|