唐旭毛, 戚 迪, 王導(dǎo)新
(重慶醫(yī)科大學(xué)附屬第二醫(yī)院呼吸內(nèi)科,重慶400010)
Adipolin/CTRP12對LPS致ARDS小鼠的保護作用及肺泡上皮鈉離子通道的調(diào)節(jié)*
唐旭毛, 戚 迪, 王導(dǎo)新△
(重慶醫(yī)科大學(xué)附屬第二醫(yī)院呼吸內(nèi)科,重慶400010)
目的:探討adipolin/CTRP12對LPS致ARDS小鼠的作用及肺泡上皮鈉離子通道(ENaC)的調(diào)節(jié)。方法:40只C57BL/6J小鼠按隨機數(shù)字表分為對照組、LPS組、adipolin組和wortmannin(PI3K抑制劑)組,每組10只。蘇木精-伊紅(HE)染色觀察肺組織病理改變;伊文氏藍標(biāo)記蛋白檢測肺水清除率(AFC),BCA法測支氣管肺泡灌洗液(BALF)中蛋白含量,評估肺組織通透性改變;ELISA檢測BALF中白細胞介素(IL)-1β和腫瘤壞死因子(TNF)-α含量,髓過氧化物酶(MPO)試劑盒檢測MPO活性,吉姆薩染色計數(shù)BALF總細胞數(shù)和多形核白細胞數(shù),Western blot法檢測肺組織α-ENaC蛋白表達和Akt磷酸化水平,實時熒光定量PCR檢測肺組織α-ENaC的mRNA轉(zhuǎn)錄水平。結(jié)果:與control組相比,LPS組表現(xiàn)出典型的ARDS病理改變,肺損傷明顯(P<0.05),濕干重比(W/ D)和BALF蛋白含量明顯增高而AFC明顯減弱(P<0.05),BALF細胞計數(shù)、MPO活性、IL-1β含量和TNF-α含量明顯升高(P<0.05),而肺α-ENaC表達和Akt磷酸化水平顯著下調(diào)(P<0.05)。與LPS組相比,adipolin組肺損傷明顯減輕(P<0.05),W/D和BALF蛋白含量明顯降低而AFC明顯增強(P<0.05),且BALF細胞計數(shù)、MPO活性、IL-1β含量和TNF-α含量均較LPS組顯著降低(P<0.05),伴α-ENaC表達和Akt磷酸化水平顯著上調(diào)(P<0.05)。而PI3K抑制劑wortmannin組與adipolin組相比,其肺損傷明顯加重(P<0.05),W/D和BALF蛋白含量明顯增高,AFC明顯減弱(P<0.05),BALF細胞計數(shù)、MPO活性、IL-1β含量和TNF-α含量明顯升高(P<0.05),同時伴α-ENaC表達和Akt磷酸化水平顯著下調(diào)(P<0.05)。結(jié)論:Adipolin/CTRP12可通過PI3K/Akt信號通路介導(dǎo)的α-ENaC上調(diào)機制,增強肺水腫液清除能力,從而對LPS所致ARDS小鼠發(fā)揮保護性調(diào)控作用。
急性呼吸窘迫綜合征;Adipolin/CTRP12;上皮鈉離子通道;PI3K/Akt信號通路
急性呼吸窘迫綜合癥(acute respiratory distress syndrome,ARDS)是以氣體交換嚴(yán)重?fù)p害為特征的難治性低氧血癥,其特征為以中性粒細胞為主的炎癥細胞肺內(nèi)浸潤,大量富含蛋白的水腫液累積于肺泡腔,氧合指數(shù)顯著降低[1]。因而有效地清除肺泡腔水腫液對維持正常氣體交換功能及降低ARDS死亡率有重要意義[2]。肺上皮細胞鈉通道(epithelial sodium channel,ENaC)由α、β和γ 3個亞基組成,廣泛分布于肺I型[3-4]和II型[5-6]上皮細胞,是肺泡腔水腫液清除(alveolar fluid clearance,AFC)的關(guān)鍵作用環(huán)節(jié)[7]。
新發(fā)現(xiàn)的脂肪因子adipolin/CTRP12與脂聯(lián)素(adiponectin)同源,并具有胰島素增敏效應(yīng)[8]。研究發(fā)現(xiàn)adipolin能抑制脂肪組織炎癥細胞浸潤及炎癥因子表達[9],從而發(fā)揮抗炎性保護作用。本課題組前期研究中證實,胰島素可通過PI3K/Akt信號通路抑制肺炎癥反應(yīng),并上調(diào)α-ENaC的表達,增強肺水腫液清除,從而多方面參與對ARDS的保護性調(diào)節(jié)效應(yīng)[10-11]。因而,我們推測adipolin可減輕ARDS炎癥反應(yīng)并通過PI3K/Akt信號通路調(diào)節(jié)α-ENaC表達,增強肺水腫液清除能力,從而改善ARDS預(yù)后。
本研究旨在通過動物實驗探討adipolin在ARDS中的作用及其機制,并豐富對adipolin的生物學(xué)功能認(rèn)識。
1 實驗動物
40 只SPF級雄性C57BL/6小鼠,5~8周齡,體重18~22 g,購自重慶醫(yī)科大學(xué)動物實驗中心,并自由飲食、普通光照飼養(yǎng)于重慶醫(yī)科大學(xué)動物實驗中心。
2 試劑和儀器
脂多糖(lipopolysaccharide,LPS)、PI3K抑制劑渥曼青霉素(wortmannin)及adipolin購自Sigma;總RNA提取試劑盒HiScript 1st Strand cDNA Synthesis Kit、HiScript II One Step RT-qPCR SYBR Green Kit(Vazyme Biotech Co.)和DNA marker DL1000購自大連寶生物工程有限公司;RIPA裂解液、BCA蛋白濃度測定試劑盒及Western blot配膠試劑盒購自碧云天生物技術(shù)研究所;ELISA試劑盒購自北京四正柏生物科技有限公司;髓過氧化物酶(myeloperoxidase,MPO)檢測試劑盒購自南京建成工程生物研究所;甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)、α-ENaC、Akt及p-Akt單克隆抗體購自Abcam;ECL檢測試劑盒購自南京凱基生物科技有限公司。37℃培養(yǎng)箱、60℃烤箱、搖床、水浴鍋、電泳儀、低溫高速離心機等實驗儀器由重慶醫(yī)科大學(xué)生命科學(xué)研究院提供。
3 實驗方法
3.1 小鼠ARDS模型的建立 40只小鼠按隨機數(shù)字表分為對照(control)組、LPS組、adipolin組和wortmannin組,每組10只。腹腔注射4%水合氯醛麻醉小鼠(0.2 mL/20 g)。固定小鼠,adipolin組、LPS組和wortmannin組小鼠通過氣管插管,以5 μg/ g體重滴注無菌20%LPS(10 μg LPS溶于50 μL無菌生理鹽水)建立ARDS模型。對照組給予等量無菌生理鹽水。Wortmannin組在LPS注入前、后90 min分別腹腔注射渥曼青霉素(0.06 μg/g),adipolin組于LPS注射后20 min腹腔注射adipolin(2 mg/ kg),control組給予等量生理鹽水。24 h后,麻醉并腹主動脈放血處死小鼠。
3.2 小鼠肺組織病理切片染色并評分[12]取右下肺組織,4%多聚甲醛固定,制成5 μm的石蠟切片,蘇木精-伊紅(HE)染色,光鏡觀察。肺損傷評分標(biāo)準(zhǔn):(1)肺泡出血;(2)肺泡水腫;(3)肺泡腔或血管內(nèi)中性粒細胞浸潤或聚集;(4)肺泡壁增厚和(或)透明膜形成及炎癥細胞浸潤。依據(jù)病變輕重評0~4分(0分為無病變或非常輕微;1分為輕度病變; 2分為中度病變;3分為重度病變;4分為極重度病變)。ARDS總評分為各項評定分?jǐn)?shù)相加總和。
3.3 小鼠肺濕干重比(W/D) 取左肺,稱量肺濕重,再置于60℃烤箱48 h至恒重后,稱量其干重。根據(jù)公式計算肺W/D值。
3.4 小鼠支氣管肺泡灌洗液(bronchoalveolar lavagefluid,BALF)細胞計數(shù)、蛋白含量、IL-1β含量、TNF-α含量及MPO活性測定 用1 mL PBS反復(fù)灌注小鼠肺組織 3次,并確?;厥章蚀笥?90%。收集BALF,4℃12 000 r/min離心20 min。取上清液,按照BCA蛋白測定試劑盒說明以及各試劑盒要求,測定BALF蛋白含量、IL-1β和TNF-α含量以及MPO活性。無菌PBS重懸下層沉淀后吉姆薩染色,光鏡下計細胞總數(shù)及白細胞數(shù)[13]。
3.5 小鼠肺泡液體清除率(alveolar fluid clearance,AFC) 制備0.15 g/L伊文氏藍標(biāo)記的5%白蛋白無菌等滲生理鹽水,以5 mL/kg氣管滴注,并注入1 mL空氣保證液體分布。于37℃機械通氣1 h后,測定肺泡體內(nèi)液體伊文氏藍標(biāo)記的白蛋白濃度,并計算AFC。肺泡液清除率公式為AFC(%)=(Vi-Vf)/ Vi×100%,Vf=Vi×Pi/Pf,其中Vi為注入肺泡內(nèi)液體的量,Vf為肺泡內(nèi)剩余的液體量,Pi為注入的伊文氏藍標(biāo)記的白蛋白濃度,Pf為最后伊文氏藍標(biāo)記的白蛋白濃度。
3.6 qPCR法測定小鼠肺組織α-ENaC的mRNA表達水平 按照總RNA提取試劑盒說明書提取小鼠肺組織總RNA,紫外分光光度計測總RNA濃度。再根據(jù)反轉(zhuǎn)錄試劑盒說明書,以小鼠肺組織總RNA為模板,反轉(zhuǎn)錄合成cDNA。隨后按照擴增試劑盒說明書進行 PCR擴增。α-ENaC的上游引物為 5’-TACAACTCTTCCTACACTCGCCA-3’,下游引物為5’-CTGGTTGAAACGACAGGTAAAGAT-3’;內(nèi)參照β-actin的上游引物5’-CGAGCGGGCTACAGCTTC-3’,下游引物為5’-GTCACGCACGATTCCCTCT-3’。qPCR檢測α-ENaC的mRNA水平。PCR反應(yīng)條件: 94℃5 min;94℃30 s,57℃ 30 s,72℃ 60 s,72 ℃ 10 min,共35個循環(huán)。用2-ΔΔCt法計算mRNA相對表達量。
3.7 Western blot法檢測小鼠肺組織α-ENaC和p-Akt的蛋白水平 按RIPA試劑盒要求提取小鼠肺組織蛋白,BCA法測定蛋白濃度,行聚丙烯酰氨凝膠電泳分離蛋白,濕轉(zhuǎn)法轉(zhuǎn)移至聚偏二氟乙烯膜(PVDF 膜),5%脫脂奶粉或5%BSA封閉1 h后,加α-ENaC抗體(1∶500)、Akt(1∶1 000)、p-Akt(1∶800)或GAPDH抗體(1∶1 000)4℃孵育過夜。TBST洗膜10 min 3次,加入相應(yīng)辣根過氧化物酶標(biāo)記的II抗37℃孵育1 h,再以TBST洗膜3次,每次10 min,最后ECL法顯像,Quantity One軟件分析條帶吸光度值。
4 統(tǒng)計學(xué)處理
采用SPSS 13.0統(tǒng)計軟件進行統(tǒng)計分析,計量資料用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間比較采用單因素方差分析(one-way ANOVA),各組均數(shù)間兩兩比較采用SNK-q檢驗法,以P<0.05為差異有統(tǒng)計學(xué)意義。
1 小鼠肺組織HE染色及損傷評分
HE染色病理切片光鏡下可見control組肺組織無炎性細胞浸潤,肺泡未見出血、水腫,肺泡間隔均一,無明顯病理變化;LPS組可見大量炎癥細胞浸潤,肺泡間隔明顯增厚,肺泡出血、水腫明顯,肺組織可見明顯炎癥細胞聚集;adipolin組可見肺泡間隔輕度增厚伴少量炎性細胞浸潤,肺泡輕度出血、水腫,肺泡腔未見透明膜;wortmannin組肺泡出血、水腫較明顯,肺泡間隔中度增厚伴中量炎性細胞浸潤,見圖1。
2 小鼠肺組織W/D值的變化
與control組比較,LPS組、adipolin組和wortmannin組的W/D值明顯增高(P<0.05),而adipolin組的W/D值較LPS組和wortmannin組明顯降低(P<0.05),見圖2。
3 各組小鼠BALF中的蛋白含量、TNF-α含量、IL-6含量及MPO活性的比較
LPS組、adipolin組和wortmannin組的蛋白含量、TNF-α含量、IL-1β含量及MPO活性均較control組明顯增高(P<0.05),LPS組和wortmannin組總蛋白含量、TNF-α含量、IL-1β含量及MPO活性均較adipolin組明顯增高(P<0.05),見圖2、3。
4 小鼠BALF的細胞計數(shù)
LPS組、adipolin組和wortmannin組小鼠BALF細胞總數(shù)及白細胞數(shù)較control組明顯增高(P<0.05),而adipolin組細胞總數(shù)及白細胞數(shù)較LPS組和wortmannin組明顯減少(P<0.05),見圖3。
5 不同處理對小鼠AFC的影響
LPS組、adipolin組和wortmannin組小鼠肺組織AFC明顯低于control組(P<0.05),而adipolin組小鼠 AFC明顯高于 LPS組和 wortmannin組(P<0.05),見圖2。
6 小鼠肺組織α-ENaC mRNA及蛋白水平的檢測
qPCR及 Western blot實驗結(jié)果顯示,LPS組、adipolin組和wortmannin組α-ENaC的mRNA及蛋白水平均較control組明顯降低(P<0.05),LPS組和wortmannin組較adipolin組明顯降低(P<0.05),見圖4。
Figure 1.Pathological changes in the lung tissues and the lung injury scores in the mice(×400).Mean±SD.n=3.*P<0.05 vs control group;#P<0.05 vs LPS group;△P<0.05 vs adipolin group.圖1 小鼠的肺組織病理改變和肺損傷評分
7 小鼠肺組織Akt和p-Akt蛋白水平的變化
Western blot實驗結(jié)果顯示LPS組、adipolin組和wortmannin組的p-Akt蛋白水平較control組明顯降低(P<0.05),LPS組和wortmannin組較adipolin組明顯降低(P<0.05)。而各組小鼠間Akt表達無明顯差異,見圖5。
ARDS主要由重癥肺炎和膿毒血癥發(fā)展而來,因其死亡率高、無特異性治療手段[14-15],而一直是呼吸與危重癥醫(yī)學(xué)研究的重點和難點。ARDS主要病理特征為肺泡腔內(nèi)大量富含蛋白的水腫液聚集,導(dǎo)致呼吸窘迫和頑固性低氧血癥。因而有效地清除肺泡腔水腫液對維持正常氣體交換及降低ARDS死亡率有重要意義[2]。研究發(fā)現(xiàn),ENaC功能失調(diào)在新生兒呼吸窘迫綜合癥及高原性肺水腫中起關(guān)鍵作用[16],表明ENaC在肺泡水腫液的清除中起重要作用[7]。ENaC包括α、β和γ 3個同源亞基,其中α-ENaC基因敲除小鼠因肺水腫液清除能力低下而在出生后死于ARDS[17],提示α亞基在ARDS肺水清除作用中發(fā)揮決定性作用。新近發(fā)現(xiàn)的脂肪因子 adipolin/ CTRP12屬于C1q腫瘤壞死因子相關(guān)蛋白家族,與adiponectin同源,主要表達于脂肪組織,不僅具有胰島素增敏作用,還可抑制肥胖模型小鼠脂肪組織巨噬細胞浸潤,并下調(diào)脂肪組織和巨噬細胞TNF-α、IL-1β及單核細胞趨化蛋白-1的表達[9],表現(xiàn)出抗炎作用。
Figure 2.The lung wet/dry weight(W/D)ratio,MPO activity,the protein level in the BALF and AFC were detected.Mean±SD.n=3~4.*P<0.05 vs control group;#P<0.05 vs LPS group;△P<0.05 vs adipolin group.圖2 肺組織濕/干重比、MPO活性、BALF中蛋白含量及AFC的測定
Figure 3.IL-1β level,TNF-α level,total cell counts and PMN counts in the BALF.Mean±SD.n=4.*P<0.05 vs control group;#P<0.05 vs LPS group;△P<0.05 vs adipolin group.圖3 BALF中IL-1β含量、TNF-α含量、總細胞計數(shù)及白細胞計數(shù)的測定
Figure 4.The mRNA and protein levels of α-ENaC in the mouse lung tissues determined by RT-qPCR and Western blot.Mean±SD.n=4.*P<0.05 vs control group;#P<0.05 vs LPS group;△P<0.05 vs adipolin group.圖4 α-ENaC mRNA和蛋白表達的檢測
本實驗所選小鼠的體重、年齡無明顯差異,并且其血糖及胰島素水平在實驗期間亦無明顯差異。采用氣管插管,滴注LPS建立肺內(nèi)源性ARDS小鼠模型,旨在觀察adipolin干預(yù)對小鼠ARDS的影響及潛在機制。本實驗發(fā)現(xiàn)adipolin組肺組織損傷減輕,W/D降低,BALF蛋白含量、炎癥細胞數(shù)量降低,同時BALF中IL-1β、TNF-α水平及MPO活性在adipolin干預(yù)后降低,證明adipolin對ARDS有抗炎保護作用。
磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)及其靶蛋白——蛋白激酶B(protein kinase B/Akt)是機體應(yīng)對損傷的一條重要內(nèi)源性負(fù)反饋通路[18],并且參與了ARDS中α-ENaC的調(diào)控[19-21]。研究發(fā)現(xiàn),adipolin能上調(diào)小鼠肝組織和脂肪組織Akt磷酸化水平;亦能上調(diào)鼠H4IIE細胞Akt磷酸化水平,并且此效應(yīng)被PI3K抑制劑LY29004阻斷[22]。本課題組的前期研究證實了胰島素[10-11]可通過PI3K/Akt通路上調(diào)ENaC從而對LPS介導(dǎo)的小鼠ARDS發(fā)揮保護作用。而本實驗通過對ARDS小鼠的AFC能力評估和肺組織α-ENaC的mRNA轉(zhuǎn)錄及α-ENaC蛋白表達水平檢測證實,adipolin干預(yù)可明顯上調(diào)肺組織α-ENaC的表達,增強肺水清除能力,減輕肺水腫,從而對ARDS發(fā)揮保護性作用。本實驗中,渥曼青霉素能下調(diào)小鼠肺組織Akt磷酸化水平并阻斷adipolin的保護效應(yīng),進一步說明了adipolin可通過激活PI3K/Akt信號通路,促進Akt磷酸化而上調(diào)α-ENaC。不足的是,本實驗未深入研究adipolin激活PI3K/Akt后的下游信號通路,也未對adipolin的抗炎作用作進一步探討。
Figure 5.The protein level of p-Akt in the mouse lung tissues determined by Western blot.Mean±SD.n=4.*P<0.05 vs control group;#P<0.05 vs LPS group;△P<0.05 vs adipolin group.圖5 p-Akt的蛋白水平檢測
綜上所述,adipolin可通過激活PI3K/Akt信號通路,促進 Akt磷酸化,介導(dǎo) α-ENaC上調(diào),增強AFC,從而發(fā)揮對LPS所致ARDS的保護作用。
[1] Ranieri VM,Rubenfeld GD,Thompson BT,et al.Acute respiratory distress syndrome:the Berlin Definition[J].JAMA,2012,307(23):2526-2533.
[2] Kolosova IA,Mirzapoiazova T,Moreno-Vinasco L,et al.Protective effect of purinergic agonist ATPγS against acute lung injury[J].Am J Physiol Lung Cell Mol Physiol,2008,294(2):L319-L324.
[3] Johnson MD,Widdicombe JH,Allen L,et al.Alveolar epithelial type I cells contain transport proteins and transport sodium,supporting an active role for type I cells in regulation of lung liquid homeostasis[J].Proc Natl Acad Sci U S A,2002,99(4):1966-1971.
[4] Borok Z,Liebler JM,Lubman RL,et al.Na transport proteins are expressed by rat alveolar epithelial type I cells [J].Am J Physiol Lung Cell Mol Physiol,2002,282 (4):L599-L608.
[5] Talbot CL,Bosworth DG,Briley EL,et al.Quantitation and localization of ENaC subunit expression in fetal,newborn,and adult mouse lung[J].Am J Respir Cell Mol Biol,1999,20(3):398-406.
[6] Yue G,Russell WJ,Benos DJ,et al.Increased expression and activity of sodium channels in alveolar type II cells of hyperoxic rats[J].Proc Natl Acad Sci U S A,1995,92(18):8418-8422.
[7] Matalon S,O’Brodovich H.Sodium channels in alveolar epithelial cells:molecular characterization,biophysical properties,and physiological significance[J].Annu Rev Physiol,1999,61:627-661.
[8] Ohashi K,Shibata R,Murohara T,et al.Role of anti-inflammatory adipokines in obesity-related diseases[J].Trends Endocrinol Metab,2014,25(7):348-355.
[9] Enomoto T,Ohashi K,Shibata R,et al.Adipolin/ C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism[J].J Biol Chem,2011,286(40):34552-34558.
[10]Deng W,Li CY,Tong J,et al.Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury[J].Respir Res,2012,13:29.
[11]He J,Qi D,Wang DX,et al.Insulin upregulates the expression of epithelial sodium channel in vitro and in a mouse model of acute lung injury:role of mTORC2/SGK1 pathway[J].Exp Cell Res,2015,331(1):164-175.
[12]Wang Q,Zheng X,Cheng Y,et al.Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel,Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury[J].J Immunol,2014,192(8):3765-3777.
[13]Qi D,He J,Wang D,et al.17beta-estradiol suppresses lipopolysaccharide induced acute lung injury through PI3K/Akt/SGK1 mediated up-regulation of epithelial sodium channel(ENaC)in vitro and in vitro[J].Respir Res,2014,15:159.
[14]Boyle AJ,Mac SR,McAuley DF.Pharmacological treatments in ARDS;a state-of-the-art update[J].BMC Med,2013,11:166.
[15]Spieth PM,Zhang H.Pharmacological therapies for acute respiratory distress syndrome[J].Curr Opin Crit Care,2014,20(1):113-121.
[16]Bhalla V,Hallows KR.Mechanisms of ENaC regulation and clinical implications[J].J Am Soc Nephrol,2008,19(10):1845-1854.
[17]Hummler E,Barker P,Gatzy J,et al.Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice[J].Nat Genet,1996,12(3):325-328.
[18]高偉忠,但 伶,田澤丹,等.丙泊酚對肝缺血再灌注大鼠肺損傷及PI3K/Akt通路的影響[J].中國病理生理雜志,2013,29(3):488-492.
[19]Williams DL,Ozment-Skelton T,Li C.Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis,inflammation,and ischemia/reperfusion injury[J].Shock,2006,25(5):432-439.
[20] Soundararajan R,Pearce D,Ziera T.The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport[J].Mol Cell Endocrinol,2012,350(2):242-247.
[21]Mansley MK,Wilson SM.Effects of nominally selective inhibitors of the kinases PI3K,SGK1 and PKB on the insulin-dependent control of epithelial Na+absorption[J].Br J Pharmacol,2010,161(3):571-588.
[22]Wei Z,Peterson JM,Lei X,et al.C1q/TNF-related protein-12(CTRP12),a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes[J].J Biol Chem,2012,287(13): 10301-10315.
(責(zé)任編輯:林白霜,羅 森)
Adipolin/CTRP12 protects against LPS-induced ARDS by up-regulating alveolar epithelial sodium channel in mice
TANG Xu-mao,QI Di,WANG Dao-xin
(Department of Respiratory Medicine,Second Affiliated Hospital of Chongqing Medical University,Chongqing 400010,China.E-mail:wangdaoxin1@163.com)
AIM:To investigate the effect of adipolin/CTRP12 in LPS-induced acute respiratory distress syndrome(ARDS)and its potential regulation on alveolar epithelial sodium channel(ENaC)in mice.METHODS:C57BL/ 6J mice(n=40)were randomly divided into control group,LPS group,adipolin group and wortmannin(PI3K inhibitor) group with 10 mice in each group using random number table.The pathological changes of the lung tissues were evaluated by HE staining.The alveolar fluid clearance(AFC)was measured by Evans blue-marked albumin,and the concentrations of total protein in bronchoalveolar lavage fluid(BALF)were assessed by bicinchoninic acid(BCA)method.In BALF,the levels of IL-1β and TNF-α were determined by ELISA,and the activity of myeloperoxidase(MPO)was detected by an MPO assay kit.The total cell counts and polymorphonuclear neutrophil(PMN)counts in the BALF were analyzed by Giemsa staining.The mRNA levels of α-ENaC were assessed by qPCR,while the protein levels of α-ENaC and p-Akt were determined by Western blot.RESULTS:Compared with control group,the classic ARDS pathological changes were observed in the mice in LPS group,manifesting by severe pathological lung injury(P<0.05),increases in W/D weight ratio,total protein levels,cell counts,MPO activitiy,and IL-1β and TNF-α levels in the BALF,and decrease in AFC(P<0.05),accompanied by down-regulated levels of α-ENaC and p-Akt in the lung tissues(P<0.05).The deteriorating effects triggered by LPS were significantly reversed by administration of adipolin.However,PI3K inhibitor wortmannin canceled the beneficial effects of adipolin on LPS-induced ARDS,as evidenced by aggravated lung injury,increased levels of W/D weight ratio,protein levels,cell counts,MPO activity,and IL-1β and TNF-α levels in the BALF(P<0.05),and decreased levels of AFC,α-ENaC and p-Akt in the lung tissues.CONCLUSION:Adipolin protects against LPS-induced ARDS in the mice by up-regulating α-ENaC and enhancing AFC via PI3K/Akt signal pathway.
Acute respiratory distress syndrome;Adipolin/CTRP12;Epithelial sodium channel;PI3K/Akt signaling pathway
R363.2
A
10.3969/j.issn.1000-4718.2016.07.016
1000-4718(2016)07-1252-07
2016-02-19
2016-04-13
國家自然科學(xué)基金資助項目(No.81270141)
△Tel:023-63693094;E-mail:wangdaoxin1@163.com