岑威鈞,李鄧軍,和浩楠
(河海大學(xué)水利水電學(xué)院,江蘇 南京 210098)
?
持續(xù)強(qiáng)降雨引發(fā)水位耦合變化條件下堤防滲流及穩(wěn)定性分析
岑威鈞,李鄧軍,和浩楠
(河海大學(xué)水利水電學(xué)院,江蘇 南京210098)
針對(duì)江、河、湖泊土質(zhì)堤防工程在持續(xù)強(qiáng)降雨下會(huì)導(dǎo)致堤前水位顯著變化而可能引發(fā)堤防安全隱患,采用水-氣二相非飽和滲流模型對(duì)堤防進(jìn)行降雨入滲和堤前水位變化耦合條件下的飽和-非飽和滲流分析。分別開展降雨入滲、堤前水位上升及持續(xù)強(qiáng)降雨耦合堤前水位上升過程的非穩(wěn)定滲流有限元仿真分析。在此基礎(chǔ)上對(duì)堤坡進(jìn)行抗滑穩(wěn)定分析,同時(shí)考察堤前水位變化及降雨過程中氣相和基質(zhì)吸力對(duì)堤坡穩(wěn)定性的影響。計(jì)算結(jié)果表明:與單純的降雨和水位上升相比,降雨耦合堤前水位上升會(huì)使堤身滲流及堤坡抗滑穩(wěn)定性呈現(xiàn)較復(fù)雜的變化特性;考慮氣相和基質(zhì)吸力在一定程度上對(duì)堤坡穩(wěn)定分析結(jié)果有利。
堤防滲流;堤坡穩(wěn)定性;持續(xù)降雨;徑流;水位變化;降雨耦合堤前水位上升;水-氣二相流
江、河、湖泊、池塘和蓄水池等工程一般多采用土質(zhì)堤防進(jìn)行擋水。長(zhǎng)時(shí)間持續(xù)強(qiáng)降雨會(huì)導(dǎo)致堤前水位快速上升。土質(zhì)堤防浸水后抗剪強(qiáng)度一般會(huì)有較明顯的下降,可能誘發(fā)堤坡失穩(wěn)。持續(xù)強(qiáng)降雨會(huì)在地表產(chǎn)生超滲產(chǎn)流和蓄滿產(chǎn)流[1]。強(qiáng)降雨來臨初期,降雨強(qiáng)度小于地表入滲率,地表雨水完全入滲。隨著降雨強(qiáng)度增大,堤身淺層非飽和帶逐漸達(dá)到飽和或暫態(tài)飽和,迫使多余的降雨形成徑流,匯于江、河、湖泊中,使堤前水位上升,并于堤坡臨水處形成有壓入滲[2]。對(duì)于降雨入滲、水位變化及相應(yīng)的邊坡穩(wěn)定分析,國(guó)內(nèi)外學(xué)者開展了大量有益的研究工作[1,3-7]。如劉俊新等[1]研究了非飽和地表徑流-滲流和流固體耦合條件下降雨入滲對(duì)路堤邊坡穩(wěn)定性的影響。岑威鈞等[3]對(duì)降雨條件下多裂隙膨脹巖渠坡進(jìn)行了穩(wěn)定性分析。孫冬梅等[4]探討了水位下降過程中氣相對(duì)土坡穩(wěn)定性的影響。吳長(zhǎng)富等[5]分析了強(qiáng)降雨條件下土質(zhì)邊坡的瞬態(tài)穩(wěn)定性。Pinyol等[6]研究了庫(kù)水位驟降條件下北蘇格蘭Glen Shira土石壩的孔隙水壓力分布。Moellmann等[7]在概率框架下分析了庫(kù)水位升降對(duì)土石壩壩坡穩(wěn)定性的影響。已有的研究一般僅考慮降雨入滲,忽略因持續(xù)強(qiáng)降雨引起水位快速上升的耦合變化過程。另外,堤身淺層土體處于典型的水-氣兩相非飽和狀態(tài),考慮氣相對(duì)非飽和土體的影響更加符合土坡真實(shí)的自然狀態(tài)[8]。因此,本文基于飽和-非飽和水-氣二相流理論,考慮氣相和基質(zhì)吸力的作用,對(duì)堤防進(jìn)行非飽和非恒定滲流仿真分析,進(jìn)而研究持續(xù)降雨耦合堤前水位變化條件下堤身內(nèi)、外坡的抗滑穩(wěn)定性變化規(guī)律。
地表徑流形成過程一般可概括為降雨過程、產(chǎn)流過程和地面匯流過程3個(gè)階段[2]。降雨過程是徑流形成的首要環(huán)節(jié),其大小及時(shí)空分布決定著徑流的大小和變化過程。在降雨開始階段,部分雨水首先被地表植物等截留,部分雨水降至地面。降雨量首先滿足截留,其次是地表土壤的下滲和側(cè)滲。隨著降雨時(shí)間的增長(zhǎng),當(dāng)降雨強(qiáng)度大于入滲率后,強(qiáng)降雨會(huì)使地面快速產(chǎn)生余水,地表洼處開始充填。待余水積滿洼地后,開始產(chǎn)生地表徑流,從高處沿坡面快速匯流至湖泊河道內(nèi),致使堤前水位快速上升。鑒于所分析堤防的降雨資料不全,本文將降雨產(chǎn)生的徑流匯流過程進(jìn)行簡(jiǎn)化,認(rèn)為降雨產(chǎn)生的徑流匯流按一定值倍比于降雨強(qiáng)度,并隨時(shí)間變化匯于河道。
假定堤身土體中的水和氣均滿足達(dá)西滲流條件,依據(jù)質(zhì)量守恒定律可推得水-氣兩相滲流的微分方程,即[8]
(1)
(2)
式中:ρg、ρw——?dú)?、水密度;kws——飽和水相滲透系數(shù);μw、μg——水相、氣相動(dòng)力黏度;qg、qw——?dú)庀唷⑺嗟膮R源項(xiàng); Sg、Sw——?dú)?、水飽和度;Hg、Hw——?dú)忸^、水頭。
對(duì)堤防進(jìn)行飽和-非飽和滲流分析時(shí),需要選用合適的土水特征曲線(SWCC)模型和滲透系數(shù)模型。本文選用van Genuchten模型[9]描述土體體積含水量與基質(zhì)吸力間的函數(shù)關(guān)系,其表達(dá)式為
(3)
式中:Se——飽和度;θw——體積含水量;θr——?dú)堄囿w積含水量;θs——飽和體積含水量; ψ——基質(zhì)吸力;α、n和m為擬合參數(shù),m=1-1/n。
相應(yīng)的氣相和液相閉合形式方程表示的相對(duì)滲透系數(shù)的表達(dá)式[4]為
(4)
(5)
式中:krw——水相相對(duì)滲透率;krg——?dú)庀嘞鄬?duì)滲透率;τ——迂曲度因子。
2.1堤身飽和-非飽和土的抗剪強(qiáng)度
非飽和土常采用的應(yīng)力狀態(tài)變量是凈法向應(yīng)力和基質(zhì)吸力。Fredlund等[9]利用這2個(gè)應(yīng)力變量建立了非飽和土的抗剪強(qiáng)度公式:
τ=c′+(σ-ug)tanφ′+(ug-uw)tanφb
(6)
式中:(σ-ug)——凈法向應(yīng)力;ug——孔隙氣壓力;φ′——有效內(nèi)摩擦角;φb——抗剪強(qiáng)度隨基質(zhì)吸力(ug-uw)增加的曲線的平均傾角。
隨著降雨入滲或水位升高,堤身非飽和區(qū)域可能逐漸飽和,此時(shí)土體的孔隙氣壓力等于孔隙水壓力,基質(zhì)吸力為零,則式(6)轉(zhuǎn)化為飽和土的抗剪強(qiáng)度公式。
2.2飽和-非飽和堤坡的抗滑安全系數(shù)
簡(jiǎn)化畢肖普法是土質(zhì)邊坡抗滑穩(wěn)定分析中廣泛應(yīng)用的計(jì)算方法。在非飽和土的情況下,需要考慮基質(zhì)吸力的影響,此時(shí)邊坡穩(wěn)定安全系數(shù)Fs的表達(dá)式[4]如下:
(7)
3.1計(jì)算模型與計(jì)算條件
圖1 有限元模型Fig. 1 Finite element model
以某一內(nèi)河湖泊堤防為研究對(duì)象,計(jì)算模型如圖1所示。堤防高7.3 m,堤頂寬4 m,堤頂高程為108.1 m,上、下游坡比均為1∶2,湖泊枯水位為102.25 m、豐水位為106.75 m,堤防背水側(cè)無水。堤基黏土層厚度為4 m,黏土層以下為基巖。土體計(jì)算參數(shù)見表1。
堤身土體van Genuchten模型的參數(shù)取值[10]如下:飽和含水量θs和殘余含水量θr分別取0.48和0.035,SWCC擬合參數(shù)a、n和m分別取為6.615 kPa,2.68和0.627。此外,由于淤泥、基巖和堤基黏土對(duì)堤身滲流與堤坡穩(wěn)定影響相對(duì)較小,故將它們均視作飽和材料,這3種材料的飽和滲透系數(shù)見表1。
表1 堤身及地基材料參數(shù)Table 1 Material parameters of dike and foundation
選取3種典型工況進(jìn)行堤身滲流與堤坡穩(wěn)定對(duì)比分析。工況1模擬雨季來臨時(shí)的持續(xù)強(qiáng)降雨,降雨在地面形成地表徑流匯于湖泊中,使水位上升,其中水位上升速度隨降雨過程耦合變化,模擬時(shí)間為360 h,水位最終保持在106.75 m附近;工況2模擬歷時(shí)48 h的單純降雨,其他同工況1;工況3模擬水位從枯水位102.25 m在48 h內(nèi)勻速上升至106.75 m,之后保持不變,總模擬時(shí)間也為360 h。
3.2堤身非飽和非穩(wěn)定滲流特性
本文主要研究強(qiáng)降雨與堤前水位耦合變化時(shí)的堤防滲流,鑒于考慮氣相影響與不考慮氣相影響條件下的滲流場(chǎng)變化規(guī)律基本一致,限于篇幅,僅給出考慮氣相作用下的堤身滲流狀態(tài)。
由于計(jì)算歷時(shí)較長(zhǎng),選取每一定歷時(shí)下的滲流浸潤(rùn)線變化進(jìn)行分析,見圖2。從圖2(a)(b)可以明顯看到降雨入滲于臨水坡,使堤坡表層非飽和土達(dá)到暫態(tài)飽和,故而在堤坡臨水面形成緊貼堤坡的浸潤(rùn)線。對(duì)比降雨徑流導(dǎo)致水位升高的圖2(a)與單純水位上升的圖2(c),耦合條件下臨水坡附近的浸潤(rùn)線變化更為復(fù)雜。
圖2 各工況下浸潤(rùn)線的變化Fig. 2 Variations of phreatic lines in different cases
3.3堤坡抗滑穩(wěn)定性
堤前水位的快速變化導(dǎo)致堤身浸潤(rùn)線變化區(qū)土體的孔隙水壓力變化跟不上水位的變化,出現(xiàn)滯后現(xiàn)象,使堤防土體的受力狀態(tài)變得復(fù)雜,進(jìn)而影響堤坡的穩(wěn)定性。為此,在飽和-非飽和滲流分析的基礎(chǔ)上分別對(duì)考慮氣相影響、不考慮氣相影響和不考慮基質(zhì)吸力各種條件下進(jìn)行堤防的穩(wěn)定性計(jì)算,求得的堤坡穩(wěn)定安全系數(shù)隨時(shí)間變化曲線見圖3~6。
圖3 各工況下堤坡穩(wěn)定安全系數(shù)隨時(shí)間的變化Fig. 3 Variations of safety factor of dike slope with time in different cases
圖4 工況1堤坡穩(wěn)定安全系數(shù)隨時(shí)間的變化Fig. 4 Variations of safety factor of dike slope with time in case 1
圖5 工況2堤坡穩(wěn)定安全系數(shù)隨時(shí)間的變化Fig. 5 Variations of safety factor of dike slope with time in case 2
圖6 工況3堤坡安全系數(shù)隨時(shí)間的變化Fig. 6 Variations of safety factor of dike slope with time in case 3
由圖3可見,堤前水位快速上升使堤坡抗滑力減小,但下滑力也減小,淺表土層浸水后堤坡穩(wěn)定性隨水位總體上呈先上升、后下降的趨勢(shì)。其中,工況1為強(qiáng)降雨耦合堤前水位上升。降雨初期,雨水入滲,降雨產(chǎn)生的徑流對(duì)水位的影響微小,降雨對(duì)堤坡穩(wěn)定占主要因素,堤坡浸水部分土體抗滑力下降程度大于下滑力的下降,使堤坡穩(wěn)定性在初期有一定的下降。這點(diǎn)與單純的水位上升情況(工況3)不同。當(dāng)降雨持續(xù)一定時(shí)間后,堤前水位才會(huì)因降雨徑流有明顯的快速上升現(xiàn)象,此時(shí)土體下滑力下降程度超過了抗滑力的下降程度,因而堤坡穩(wěn)定安全系數(shù)有短時(shí)的快速上升。相比于單純的水位上升情況(工況3),此階段堤坡穩(wěn)定安全系數(shù)的上升有明顯的滯后現(xiàn)象,且上升幅度相對(duì)緩慢些。當(dāng)?shù)糖八坏竭_(dá)豐水位后不再上升時(shí),堤身內(nèi)部浸潤(rùn)線隨著時(shí)間延長(zhǎng)會(huì)繼續(xù)上升,導(dǎo)致堤坡的穩(wěn)定性呈現(xiàn)緩慢下降,最終隨著穩(wěn)定滲流狀態(tài)的到來堤坡抗滑穩(wěn)定安全系數(shù)趨于穩(wěn)定值。工況3模擬單純的堤前水位急劇上升,由于一開始雨水來不及入滲堤坡,因此堤坡穩(wěn)定性呈現(xiàn)單調(diào)上升趨勢(shì),等升到豐水位后呈現(xiàn)與工況1類似的情況,堤坡穩(wěn)定性略有緩慢下降,表明此時(shí)河水已經(jīng)慢慢入滲至堤身內(nèi),安全系數(shù)最終隨滲流變化一同趨于穩(wěn)定值。工況2是模擬單純的降雨情況,相比之下,堤坡穩(wěn)定安全系數(shù)變化明顯平緩許多。可見,堤前水位的急劇變化較單純降雨入滲會(huì)更明顯地影響堤身的抗滑穩(wěn)定性,應(yīng)引起重視,尤其是兩種出現(xiàn)耦合的情況。
由式(6)可知,非飽和土中的氣相和基質(zhì)吸力均對(duì)土體強(qiáng)度有貢獻(xiàn),進(jìn)而影響堤坡抗滑穩(wěn)定安全系數(shù)。圖4~6為各工況下堤坡抗滑穩(wěn)定安全系數(shù)變化過程線。工況1(圖4)下,堤身臨水坡穩(wěn)定性在降雨初期先減小,之后隨降雨引發(fā)的水位上升而增大,最終逐漸減小并趨于穩(wěn)定。堤防背水坡穩(wěn)定性則逐漸減小,也需引起重視。工況2(圖5)下,單純的降雨會(huì)降低堤坡穩(wěn)定性。隨著堤身穩(wěn)定滲流場(chǎng)的形成,堤坡穩(wěn)定安全系數(shù)有小幅度變化。工況3(圖6)下,堤防臨水坡穩(wěn)定性因水位驟升而急劇增大,之后隨河水的入滲逐漸減小,最終趨于穩(wěn)定。背水坡的穩(wěn)定性則單調(diào)持續(xù)減小。3種不同工況下,考慮氣相和基質(zhì)吸力均能提高堤坡的抗滑穩(wěn)定安全系數(shù)計(jì)算值,其中氣相對(duì)堤坡穩(wěn)定的貢獻(xiàn)更明顯。
a. 僅考慮降雨影響而不計(jì)堤前水位耦合變化時(shí),降雨會(huì)在堤身淺層非飽和區(qū)域形成暫態(tài)飽和區(qū),降低了淺層土體的抗剪強(qiáng)度,從而降低堤坡的穩(wěn)定性。
b. 堤前水位急劇變化會(huì)引起堤坡穩(wěn)定安全系數(shù)的急劇變化,其比降雨的影響更為顯著,應(yīng)引起重視。
c. 與單純的降雨和水位驟升相比,降雨耦合堤前水位快速上升會(huì)使堤坡抗滑穩(wěn)定性呈現(xiàn)更為復(fù)雜的變化特性,更能體現(xiàn)堤防的實(shí)際工作性態(tài)。
d. 考慮氣相和基質(zhì)吸力能使非飽和堤坡抗滑穩(wěn)定安全系數(shù)計(jì)算值有所提高。
[1] 劉俊新, 劉育田, 胡啟軍. 非飽和地表徑流-滲流和流固體耦合條件下降雨入滲對(duì)路堤邊坡穩(wěn)定性研究[J].巖土力學(xué),2010,31(3):903-910.(LIU Junxin, LIU Yutian, Hu Qijun. Stability of embankment slope subjected to rainfall infiltration considering both runoff-underground seepage and fluid-solid coupling [J]. Rock and Soil Mechanics, 2010, 31(3): 903-910. (in Chinese))
[2] 任伯幟. 城市設(shè)計(jì)暴雨及雨水徑流計(jì)算模型研究[D].重慶:重慶大學(xué),2004.
[3] 岑威鈞, 王蒙, 石從浩, 等. 降雨條件下多裂隙膨脹巖渠坡穩(wěn)定性分析[J].鄭州大學(xué)學(xué)報(bào)(工學(xué)版),2014,35(2):10-14.(CEN Weijun,WANG Meng,SHI Conghao,et al. Stability study of an expensive channel slope with fissures due to rainfall infiltration[J]. Journal of Zhengzhou University ( Engineering Science) 2014,35(2):10-14. (in Chinese))
[4] 孫冬梅,張楊, SEMPRICH S,等. 水位下降過程中氣相對(duì)土坡穩(wěn)定性的影響[J]. 地下空間與工程學(xué)報(bào),2015,11(2):511-518.( SUN Dongmei, ZHANG Yang, SEMPRICH S, et al. Effects of pore air on the stability of soil slope during the process of water level drawdown[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(2):511-518. (in Chinese))
[5] 吳長(zhǎng)富, 朱向榮, 尹小濤,等. 強(qiáng)降雨條件下土質(zhì)邊坡瞬態(tài)穩(wěn)定性分析[J].巖土力學(xué),2008, 29(2):386-391.( WU Changfu, ZHU Xiangrong, YIN Xiaotao, et al. Analysis of soil slope’s transient stability under intensive rainfall[J]. Rock and Soil Mechanics, 2008, 29(2):386-391. (in Chinese))
[6] PINYOL N M, ALONSO E E, SEBASTIO. Rapid drawdown in slopes and embankments[J]. Water Resources Research, 2008, 44(5):303-312.
[7] MOELLMANN A, VERMEER P A, HUBER M. A probabilistic finite element analysis of embankment stability under transient seepage conditions[J]. Georisk Assessment & Management of Risk for Engineered Systems & Geohazards, 2011, 5(2):110-119.
[8] FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M].New York: Wiley, 1993.
[9] GENUCHTEN M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Journal of the Soil Science Society ofAmerica, 1980, 44(5):892-898.
[10] CHO S E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation[J]. Engineering Geology, 2012, 133/134(3):30-39.
Analysis of dike seepage and slope stability under coupled conditions of continuously heavy rainfall and consequent change of water level
CEN Weijun, LI Dengjun, HE Haonan
(CollegeofWaterConservancyandHydropowerEngineering,HohaiUniversity,Nanjing210098,China)
In dike engineering projects for rivers and lakes, continuously heavy rainfall will lead to a significant change in the water level, which may cause safety hazards to dikes. To solve these problems, a water-gas two-phase unsaturated seepage model was used to analyze the saturated-unsaturated seepage of a dike under the coupled conditions of rainfall infiltration and water level change. Finite element simulation was performed to study the unsteady seepage in the processes of rainfall infiltration, water level rise in front of the dike, and coupling of continuously heavy rainfall and the water level rise. On these bases, anti-sliding stability analysis of the dike slope was conducted, with consideration of the effects of the dike water level changes, and the gas phase and matric suction during rainfall on the slope stability. The results show that, compared to the rainfall infiltration or the water level rise, the coupled conditions of rainfall and the water level rise will cause the seepage and slope stability of the dike to become more complex. Considering the gas phase and matrix suction will be helpful to slope stability analysis.
dike seepage; slope stability of dike; continuous rainfall; runoff; water level change; coupling of rainfall and water level rise; water-gas two-phase flow
1000-1980(2016)04-0364-06
10.3876/j.issn.1000-1980.2016.04.014
2015-12-10
江蘇省自然科學(xué)基金(BK20141418);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(YS11001)
岑威鈞(1977—),男,浙江慈溪人,副教授,主要從事水工滲流分析與控制及土石壩抗震研究。E-mail:hhucwj@163.com
TU431
A