柳瑞瑞 , 耿志遠(yuǎn)
(西北師范大學(xué) 化學(xué)與化工學(xué)院 , 甘肅 蘭州 730070)
?
氣相中Ti2+活化環(huán)己烷同面脫氫機(jī)理的研究
柳瑞瑞 , 耿志遠(yuǎn)
(西北師范大學(xué) 化學(xué)與化工學(xué)院 , 甘肅 蘭州730070)
摘要:采用密度泛函理論(DFT)的B3LYP方法對(duì)2+活化環(huán)己烷的同面脫氫機(jī)理進(jìn)行理論計(jì)算,分別得到反應(yīng)中涉及到的駐點(diǎn)、優(yōu)化構(gòu)型及相關(guān)的構(gòu)型參數(shù),并簡(jiǎn)單繪制了反應(yīng)勢(shì)能圖,從而對(duì)反應(yīng)機(jī)理進(jìn)行詳細(xì)的分析。對(duì)環(huán)己烷與2+反應(yīng)的同面脫氫機(jī)理進(jìn)行研究,研究結(jié)果表明環(huán)己烷與2+的同面脫氫過(guò)程中三次脫氫機(jī)理相似,反應(yīng)發(fā)生在混合勢(shì)能面上,最終產(chǎn)物是二、四重態(tài)的混合物,且放熱分別為54.85、28.74 kJ/mol。
關(guān)鍵詞:脫氫機(jī)理 ; 環(huán)己烷 ;; DFT 理論研究
0引言
環(huán)己烷是一種非常重要的化學(xué)藥品,在天然綠色能源中得到廣泛利用,尤其以氫能為主[1-4]。在環(huán)己烷中,C—H鍵的活化是一個(gè)重要的能源過(guò)程,因?yàn)榄h(huán)己烷比其他的材料具有更好的儲(chǔ)氫功能,例如壓縮氫氣、液體氫、氫儲(chǔ)藏金屬合金以及碳材料[5-9]。因此,更多的科學(xué)家對(duì)于研究環(huán)己烷脫氫有很大的興趣。
1計(jì)算方法
采用了密度泛函理論(DFT)的B3LYP方法,應(yīng)用量子化學(xué)通用的計(jì)算軟件Gaussian09程序,對(duì)于C、H原子,使用了6-31G(d,p)基組,對(duì)于Ti2+,采用LANL2DZ贗勢(shì)基組,將所有中間體以及過(guò)渡態(tài)的結(jié)構(gòu)進(jìn)行了全優(yōu)化;通過(guò)對(duì)各中間體的頻率分析,說(shuō)明反應(yīng)物、中間體和產(chǎn)物都是穩(wěn)定點(diǎn),每個(gè)過(guò)渡態(tài)的頻率只有一個(gè)虛頻[14-15]。用內(nèi)稟反應(yīng)坐標(biāo)(IRC)[16]驗(yàn)證了反應(yīng)沿著虛頻振動(dòng)方式分別趨于反應(yīng)物和產(chǎn)物,并且運(yùn)用了Yoshizawa等[17]提出的內(nèi)稟坐標(biāo)垂直激發(fā)單點(diǎn)計(jì)算法確定不同自旋態(tài)下兩個(gè)勢(shì)能面的交叉點(diǎn)(crossing point, CP),即用任意自旋態(tài)內(nèi)反應(yīng)坐標(biāo)點(diǎn)所對(duì)應(yīng)的構(gòu)型,對(duì)該構(gòu)型在二、四重態(tài)下的單點(diǎn)能進(jìn)行計(jì)算,從而得到其中一個(gè)自旋態(tài)勢(shì)能面上的內(nèi)稟反應(yīng)坐標(biāo)點(diǎn)在另外一個(gè)自旋態(tài)勢(shì)能面上的投影曲線,進(jìn)而找到一個(gè)自旋態(tài)勢(shì)能面上的IRC曲線和另外一個(gè)自旋態(tài)勢(shì)能面間的交叉點(diǎn),采用Crossing 2004和GAMESS程序包,在交叉點(diǎn)的基礎(chǔ)上再找到對(duì)應(yīng)的MECP并計(jì)算相對(duì)應(yīng)的SOC值。對(duì)部分重要的中間體,做了NBO分析[18]。
2結(jié)果與討論
2.1反應(yīng)物結(jié)構(gòu)
圖在二、四重態(tài)的分子軌道能級(jí)圖
圖2 反應(yīng)在二、四重態(tài)下的同面脫氫勢(shì)能圖
圖3 同面脫氫反應(yīng)中二、四重態(tài)下第一分子的脫氫反應(yīng)中各駐點(diǎn)幾何構(gòu)型
各駐點(diǎn)幾何構(gòu)型如圖4所示。
圖4 同面脫氫反應(yīng)中二、四重態(tài)下發(fā)生第二、三分子脫氫的各駐點(diǎn)的幾何構(gòu)型
2.3最低能量交叉點(diǎn)(MECP)與自旋—軌道耦合常數(shù)(SOC)
圖5 2IM2→2TS1/2 (a),2TS5/6→2IM6 (b)過(guò)程中CP1、CP2和MECP1、MECP2的構(gòu)型圖
如圖2所示,基態(tài)二重態(tài)反應(yīng)物能量比四重態(tài)低21.17 kJ/mol,但是二重態(tài)的過(guò)渡態(tài)2TS1/2的能量比四重態(tài)高28.11 kJ/mol,這說(shuō)明交叉點(diǎn)生在過(guò)渡態(tài)2TS1/2之前,我們應(yīng)用上述提到的相關(guān)方法和程序在此處找到了CP1和MECP1如圖5所示。同時(shí)也計(jì)算出了MECP1的自旋耦合常數(shù)(SOC)為398.12 cm-1,利用相同的方法,我們找到了CP2和MECP2,同時(shí)也計(jì)算出了MECP2的自旋耦合常數(shù)(SOC)為312.45 cm-1,其SOC值均大于100 cm-1,說(shuō)明在MECP1、2處發(fā)生了有效的電子自旋翻轉(zhuǎn)。
為了更好地理解電子組態(tài)和每個(gè)最低能量交叉點(diǎn)處的機(jī)理,我們進(jìn)行了NBO分析,如圖6所示。
圖6中ψ(a)主要代表Ti2的3dxz軌道,這也是2MECP1的LUMO軌道和4MECP1的HOMO軌道,ψ(c)主要代表Ti2的3dxy軌道, 在MECP1中,Ti2的3dxy上的β電子翻轉(zhuǎn)進(jìn)入Ti2的3dxz軌道,在MECP1處,二重態(tài)轉(zhuǎn)向四重態(tài)并降低了反應(yīng)勢(shì)壘。在圖b中,ψ(a)主要代表Ti2的4s和3dz2軌道,這也是4MECP2的HOMO軌道和2MECP2的LUMO軌道,在MECP2處,ψ(c)主要代表Ti2的3dz2軌道,Ti2的雜化軌道上的α電子翻轉(zhuǎn)進(jìn)入Ti2的 軌道并完成了四重態(tài)向二重態(tài)轉(zhuǎn)變的過(guò)程,前線分子軌道的分析說(shuō)明多重態(tài)在MECP處的相互轉(zhuǎn)化是可行的。
3結(jié)論
參考文獻(xiàn):
[1]Nouryzadeh H,Iranshahi D.Hydrogen and gasoline production through the coupling of fischer-tropsch synthesis and cyclohexane dehydrogenation in a thermally coupled membrane reactor[J].Petroleum Coal,2014,56:231-248.
[2]Markiewicz M,Zhang Y Q,smann A B,et al.Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems-challenges and preliminary results[J].Energy Environ.Sci.2015(8):1035-1045.
[3]劉凱,安越,徐國(guó)華,等.環(huán)己烷連續(xù)脫氫反應(yīng)研究[J]. 西安交通大學(xué)學(xué)報(bào). 2007,41(12):1495-1498.
[4]陳進(jìn)富,蔡衛(wèi)權(quán),俞英.有機(jī)液態(tài)氫化物可逆儲(chǔ)放氫技術(shù)的研究現(xiàn)狀與展望[J].太陽(yáng)能學(xué)報(bào).2002,23(4): 528-532.
[5]Ciobica I M,Frechard F,Van Santen R A,et al. A DFT study of transition states for CH activation on the Ru (0001) surface[J].The Journal of Physical Chemistry B. 2000,104(14): 3364-3369.
[6]Strassner T, Muehlhofer M, Zeller A, et al. The counterion influence on the CH-activation of methane by palladium (II) biscarbene complexes-structures, reactivity and DFT calculations[J]. Journal of organometallic chemistry. 2004, 689(8): 1418-1424.
[7]Ciobica I M,Van Santen R A.A DFT study of CHxchemisorption and transition states for CH activation on the Ru (1120) surface[J]. The Journal of Physical Chemistry B. 2002, 106(24): 6200-6205.
[8]Schr?der D,Schwarz H.Gas-phase activation of methane by ligated transition-metal cations[J].P. Natl. Acad. Sci. 2008,105:18114-18119.
[9]Du J,Wu J,Guo T,et al.Catalytic performance of Mo2C supported on onion-like carbon for dehydrogenation of cyclohexane[J].RSC Adv,2014,4:53950-53953.
[10]Seemeyer K,Schroder D,Kempf M, et al.Face selectivity of the C—H bond activation of cyclohexane by the “bare” first-row transition-metal cations Sc+-Zn+[J].Organometallics.1995,14:4465-4470.
[12]Schlangen M,Schwarz H.Probing elementary steps of nickel-mediated bond activation in gas-phase reactions:ligand- and cluster-size effects[J].J Catal,2011,284:126-137.
[14]Becke A D. Density‐functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys,1993,98(7): 5648-5652.
[15]Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J].J Chem Phys,1985, 82(1): 284-298.
[16]Fukui K.The path of chemical reactions - the IRC approach[J]. Acc Chem Res,1981, 14(12): 363-368.
[17]Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: a study of crossing seams of potential energy surfaces[J].J Chem Phys,1999, 111(2): 538-545.
[18]Harvey J N, Aschi M, Schwarz H,et al. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces[J].Theor Chem Acc,1998, 99(2): 95-99.
[19]Jiang R W,But P P -H,Ma S -C,et al.Structure and antiviral properties of macrocaesalmin, a novel cassane furanoditerpenoid lactone from the seeds of Caesalpinia minax Hance[J].Tetrahedron Lett,2002,43:2415-2418.
收稿日期:2016-03-25
作者簡(jiǎn)介:柳瑞瑞(1990-),女,碩士,研究方向是計(jì)算量子化學(xué),電話:18294435134。
中圖分類號(hào):O621.25+4.3
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1003-3467(2016)05-0033-06
Study on Same-face Dehydrogenation Mechanism of C6H12Activated by2+in Gas Phase
LIU Ruirui , GENG Zhiyuan
( School of Chemical and Chemical Engineering , Northwest Normal University , Lanzhou730070 , China)
Abstract:The mechanism of catalyzed cyclohexane dehydrogenation has been studied by the B3LYP level of density functional theory (DFT).The stagnation point, optimizing configuration and related parameters are obtained,and the reaction potential energy is drawn,and the reaction mechanism is analyzed in detail.The same-face dehydrogenation mechanism of cyclohexane catalyzed by is studied,the results show that every molecular dehydrogenation mechanism of the same-face dehydrogenation is similar,and the reaction proceed in mixed potential energy surface,final product is mixtures of doublet,quartet state,which is exothermic by 54.85 kJ/mol for the doublet and 28.74 kJ/mol for the quartet states.
Key words:dehydrogenation mechanism ; cyclohexane ; ; DFT theoretical study